1
|
Tran ANT, Kim HY, Oh SY, Kim HS. CD49f and CD146: A Possible Crosstalk Modulates Adipogenic Differentiation Potential of Mesenchymal Stem Cells. Cells 2023; 13:55. [PMID: 38201259 PMCID: PMC10778538 DOI: 10.3390/cells13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The lack of appropriate mesenchymal stem cells (MSCs) selection methods has given the challenges for standardized harvesting, processing, and phenotyping procedures of MSCs. Genetic engineering coupled with high-throughput proteomic studies of MSC surface markers arises as a promising strategy to identify stem cell-specific markers. However, the technical limitations are the key factors making it less suitable to provide an appropriate starting material for the screening platform. A more accurate, easily accessible approach is required to solve the issues. METHODS This study established a high-throughput screening strategy with forward versus side scatter gating to identify the adipogenesis-associated markers of bone marrow-derived MSCs (BMSCs) and tonsil-derived MSCs (TMSCs). We classified the MSC-derived adipogenic differentiated cells into two clusters: lipid-rich cells as side scatter (SSC)-high population and lipid-poor cells as SSC-low population. By screening the expression of 242 cell surface proteins, we identified the surface markers which exclusively found in lipid-rich subpopulation as the specific markers for BMSCs and TMSCs. RESULTS High-throughput screening of the expression of 242 cell surface proteins indicated that CD49f and CD146 were specific for BMSCs and TMSCs. Subsequent immunostaining confirmed the consistent specific expression of CD49f and CD146 and in BMSCs and TMSCs. Enrichment of MSCs by CD49f and CD146 surface markers demonstrated that the simultaneous expression of CD49f and CD146 is required for adipogenesis and osteogenesis of mesenchymal stem cells. Furthermore, the fate decision of MSCs from different sources is regulated by distinct responses of cells to differentiation stimulations despite sharing a common CD49f+CD146+ immunophenotype. CONCLUSIONS We established an accurate, robust, transgene-free method for screening adipogenesis associated cell surface proteins. This provided a valuable tool to investigate MSC-specific markers. Additionally, we showed a possible crosstalk between CD49f and CD146 modulates the adipogenesis of MSCs.
Collapse
Affiliation(s)
- An Nguyen-Thuy Tran
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
| | - Se-Young Oh
- Department of Convergence Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University, Seoul 07985, Republic of Korea;
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea; (A.N.-T.T.); (H.Y.K.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Ribarski-Chorev I, Schudy G, Strauss C, Schlesinger S. Short heat shock has a long-term effect on mesenchymal stem cells' transcriptome. iScience 2023; 26:107305. [PMID: 37529103 PMCID: PMC10387575 DOI: 10.1016/j.isci.2023.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
The adverse effects of heat stress (HS) on physiological systems are well documented, yet the underlying molecular mechanisms behind it remain poorly understood. To address this knowledge gap, we conducted a comprehensive investigation into the impact of HS on mesenchymal stem cells (MSCs), focusing on their morphology, phenotype, proliferative capacity, and fate determination. Our in-depth analysis of the MSCs' transcriptome revealed a significant influence of HS on the transcriptional landscape. Notably, even after a short period of stress, we observed a persistent alteration in cell identity, potentially mediated by the activation of bivalent genes. Furthermore, by comparing the differentially expressed genes following short HS with their transcriptional state after recovery, we identified the transient upregulation of MLL and other histone modifiers, providing a potential mechanistic explanation for the stable activation of bivalent genes. This could be used to predict and modify the long-term effect of HS on cell identity.
Collapse
Affiliation(s)
- Ivana Ribarski-Chorev
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gisele Schudy
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Carmit Strauss
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sharon Schlesinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Rikitake K, Kunimatsu R, Yoshimi Y, Nakajima K, Hiraki T, Aisyah Rizky Putranti N, Tsuka Y, Abe T, Ando K, Hayashi Y, Nikawa H, Tanimoto K. Effect of CD146 + SHED on bone regeneration in a mouse calvaria defect model. Oral Dis 2023; 29:725-734. [PMID: 34510661 DOI: 10.1111/odi.14020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Stem cells from human exfoliated deciduous teeth (SHED) have bone regeneration ability and potential therapeutic applications. CD146, a cell adhesion protein expressed by vascular endothelial cells, is involved in osteoblastic differentiation of stem cells. The effect of CD146 on SHED-mediated bone regeneration in vivo remains unknown. We aimed to establish efficient conditions for SHED transplantation. MATERIALS AND METHODS SHED were isolated from the pulp of an extracted deciduous tooth and cultured; CD146-positive (CD146+ ) and CD146-negative (CD146- ) populations were sorted. Heterogeneous populations of SHED and CD146+ and CD146- cells were transplanted into bone defects generated in the skulls of immunodeficient mice. Micro-computed tomography was performed immediately and 4 and 8 weeks later. Histological and immunohistochemical assessments were performed 8 weeks later. RESULTS Bone regeneration was observed upon transplantation with CD146+ and heterogeneous populations of SHED, with significantly higher bone regeneration observed with CD146+ cells. Bone regeneration was higher in the CD146- group than in the control group, but significantly lower than that in the other transplant groups at 4 and 8 weeks. Histological and immunohistochemical assessments revealed that CD146+ cells promoted bone regeneration and angiogenesis. CONCLUSION Transplantation of CD146+ SHED into bone defects may be useful for bone regeneration.
Collapse
Affiliation(s)
- Kodai Rikitake
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoka Hiraki
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Nurul Aisyah Rizky Putranti
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuyo Ando
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoko Hayashi
- Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hiroki Nikawa
- Department of Oral Biology and Engineering, Division of Oral Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University Graduate School, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
5
|
Feng J, Wang Y, Li B, Yu X, Lei L, Wu J, Zhang X, Chen Q, Zhou Y, Gou J, Li H, Tan Z, Dai Z, Li X, Guan F. Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML. Leukemia 2023; 37:113-121. [PMID: 36335262 DOI: 10.1038/s41375-022-01748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Bone marrow (BM) stroma plays key roles in supporting hematopoietic stem cell (HSC) growth. Glycosylation contributes to the interactions between HSC and surrounding microenvironment. We observed that bisecting N-acetylglucosamine (GlcNAc) structures, in BM stromal cells were significantly lower for MDS/AML patients than for healthy subjects. Malignant clonal cells delivered exosomal miR-188-5p to recipient stromal cells, where it suppressed bisecting GlcNAc by targeting MGAT3 gene. Proteomic analysis revealed reduced GlcNAc structures and enhanced expression of MCAM, a marker of BM niche. We characterized MCAM as a bisecting GlcNAc-bearing target protein, and identified Asn 56 as bisecting GlcNAc modification site on MCAM. MCAM on stromal cell surface with reduced bisecting GlcNAc bound strongly to CD13 on myeloid cells, activated responding ERK signaling, and thereby promoted myeloid cell growth. Our findings, taken together, suggest a novel mechanism whereby MDS/AML clonal cells generate a self-permissive niche by modifying glycosylation level of stromal cells.
Collapse
Affiliation(s)
- Jingjing Feng
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Bingxin Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xinwen Yu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Lei Lei
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Jinpeng Wu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xin Zhang
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | | | - Yue Zhou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Junjie Gou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Hongjiao Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiang Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
6
|
Sion C, Ghannoum D, Ebel B, Gallo F, de Isla N, Guedon E, Chevalot I, Olmos E. A new perfusion mode of culture for WJ-MSCs expansion in a stirred and online monitored bioreactor. Biotechnol Bioeng 2021; 118:4453-4464. [PMID: 34387862 DOI: 10.1002/bit.27914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/22/2023]
Abstract
As a clinical dose requires a minimum of 106 cells per kilogram of patients, it is, therefore, crucial to develop a scalable method of production of Wharton Jelly mesenchymal stem cells (WJ-MSCs) with maintained inner characteristics. Scalable expansion of WJ-MSCs on microcarriers usually found in cell culture, involves specific cell detachment using trypsin and could have harmful effects on cells. In this study, the performance of batch, fed-batch, and perfused-continuous mode of culture were compared. The batch and fed-batch modes resulted in expansion factors of 5 and 43, respectively. The perfused-continuous mode strategy consisted of the implementation of a settling tube inside the bioreactor. The diameter of the tube was calculated to maintain microcarriers colonized by cells in the bioreactor whereas empty microcarriers (responsible for potentially damaging collisions) were removed, using a continuous flow rate based on MSCs physiological requirements. Thanks to this strategy, a maximal number of 800 million cells was obtained in a 1.5 L bioreactor in 10 days. Lastly, online dielectric spectroscopy was implemented in the bioreactor and indicated that cell growth could be monitored during the culture.
Collapse
Affiliation(s)
- Caroline Sion
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Dima Ghannoum
- Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, CNRS UMR 7365, Vandœuvre-lès-Nancy, France
| | - Bruno Ebel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Fanny Gallo
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Natalia de Isla
- Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, CNRS UMR 7365, Vandœuvre-lès-Nancy, France
| | - Emmanuel Guedon
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Isabelle Chevalot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| | - Eric Olmos
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, Vandoeuvre les Nancy, France
| |
Collapse
|
7
|
Lei X, Wang K, Wang W, Jin H, Gu W, Chen Z, Wang W, Gao K, Wang H. Recognize the role of CD146/MCAM in the osteosarcoma progression: an in vitro study. Cancer Cell Int 2021; 21:300. [PMID: 34103063 PMCID: PMC8186124 DOI: 10.1186/s12935-021-02006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteosarcoma (OS) is a common malignant bone tumor with poor prognosis. We previously reviewed that CD146 is correlated with multiple cancer progression, while its impact on OS is currently not systematically studied. Methods MG63 was transfected with lentivirus to express CD146 ectopically, and anti-CD146 neutralizing antibody ab75769 was used to inhibit 143B. Cyclic migration of MG63 and co-culture between MG63 and 143B were used to explore the role of OS malignancy in CD146 expression. The effect of OS cell medium (CM) on endothelium behaviors was assessed, and the expression changes of CD146 before and after co-culture of endothelium and OS were evaluated. Finally, the expression of CD146 in OS was detected under different culture conditions, including hyperoxia, low oxygen, high glucose and low glucose conditions. Results CD146 promoted the colony formation, migration, invasion and homotypic adhesion of OS cells, and reducing the concentration of soluble CD146 in the OS medium inhibited the proliferation, migration and lumen formation of the cultured endothelium. However, CD146 did not affect the adhesion between OS and endothelium, nor did co-culture of both sides affect the CD146 expression. Similarly, the proliferation, migration and CD146 expression of MG63 remained unchanged after many cycles of migration itself, as did its co-culture with 143B for expressing CD146. In addition, we also showed that high glucose promoted the expression of CD146 in OS, while hypoxia had the opposite effect. Conclusions These findings demonstrate that CD146 promotes OS progression by mediating pro-tumoral and angiogenic effects. Thus, CD146 could be a potential therapeutic target for OS, especially for OS patients with diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02006-7.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hao Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Wenguang Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Zhiguo Chen
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Wei Wang
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Kaituo Gao
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Huan Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
8
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
9
|
Wan Q, Jin L, Wang Z. Comprehensive analysis of cancer hallmarks in cutaneous melanoma and identification of a novel unfolded protein response as a prognostic signature. Aging (Albany NY) 2020; 12:20684-20701. [PMID: 33136551 PMCID: PMC7655195 DOI: 10.18632/aging.103974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Molecular pathways regulating the initiation and development of melanoma are potential therapeutic targets for this aggressive skin cancer. Therefore, transcriptome profiles of cutaneous melanoma were obtained from a public database and used to systematically evaluate cancer hallmark pathways enriched in melanoma. Finally, the unfolded protein response pathway was screened out, and the unfolded protein response-related genes were used to develop a robust biomarker that can predict the prognosis of melanoma, especially for younger, metastatic and high Clark level patients. This biomarker was further validated in two other independent datasets. In addition, melanoma patients were divided into high- and low-risk subgroups by applying a risk score system. The high-risk group exhibited higher immune infiltration and higher expression of N6-methyladenosine RNA methylation regulators, and had significantly shorter survival times than the low-risk subgroup. Gene Set Enrichment Analysis revealed that, among the enriched genes, gene sets involved in immune response and the extracellular matrix receptor interaction were significantly activated in the high-risk group. Our findings thus provide a new clinical application for prognostic prediction as well as potential targets for treatment of melanoma.
Collapse
Affiliation(s)
- Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510064, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510064, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510064, China
| |
Collapse
|
10
|
Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. Sci Rep 2020; 10:13254. [PMID: 32764590 PMCID: PMC7411039 DOI: 10.1038/s41598-020-69956-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding mechanisms mediating tumor metastasis is crucial for diagnostic and therapeutic targeting. Here, we take advantage of a transparent embryonic zebrafish xenograft model (eZXM) to visualize and track metastatic cells in real time using selective plane illumination microscopy (SPIM) for up to 30 h. Injected human leukemic and breast cancer cells exhibited cell-type specific patterns of intravascular distribution with leukemic cells moving faster than breast cancer cells. Tracking of tumor cells from high-resolution images revealed acute differences in intravascular speed and distance covered by cells. While the majority of injected breast cancer cells predominantly adhered to nearby vasculature, about 30% invaded the non-vascularized tissue, reminiscent of their metastatic phenotype. Survival of the injected tumor cells appeared to be partially inhibited and time-lapse imaging showed a possible role for host macrophages of the recipient embryos. Leukemic cell dissemination could be effectively blocked by pharmacological ROCK1 inhibition using Fasudil. These observations, and the ability to image several embryos simultaneously, support the use of eZXM and SPIM imaging as a functional screening platform to identify compounds that suppress cancer cell spread and invasion.
Collapse
|
11
|
Stockwin LH. Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data. PeerJ 2020; 8:e9394. [PMID: 32596059 PMCID: PMC7307565 DOI: 10.7717/peerj.9394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is an extremely rare malignancy characterized by the unbalanced translocation der(17)t(X;17)(p11;q25). This translocation generates a fusion protein, ASPL-TFE3, that drives pathogenesis through aberrant transcriptional activity. Although considerable progress has been made in identifying ASPS therapeutic vulnerabilities (e.g., MET inhibitors), basic research efforts are hampered by the lack of appropriate in vitro reagents with which to study the disease. In this report, previously unmined microarray data for the ASPS cell line, ASPS-1, was analyzed relative to the NCI sarcoma cell line panel. These data were combined with meta-analysis of pre-existing ASPS patient microarray and RNA-seq data to derive a platform-independent ASPS transcriptome. Results demonstrated that ASPS-1, in the context of the NCI sarcoma cell panel, had some similarities to normal mesenchymal cells and connective tissue sarcomas. The cell line was characterized by high relative expression of transcripts such as CRYAB, MT1G, GCSAML, and SV2B. Notably, ASPS-1 lacked mRNA expression of myogenesis-related factors MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. Furthermore, ASPS-1 had a predicted mRNA surfaceome resembling an undifferentiated mesenchymal stromal cell through expression of GPNMB, CD9 (TSPAN29), CD26 (DPP4), CD49C (ITGA3), CD54 (ICAM1), CD63 (TSPAN30), CD68 (SCARD1), CD130 (IL6ST), CD146 (MCAM), CD147 (BSG), CD151 (SFA-1), CD166 (ALCAM), CD222 (IGF2R), CD230 (PRP), CD236 (GPC), CD243 (ABCB1), and CD325 (CDHN). Subsequent re-analysis of ASPS patient data generated a consensus expression profile with considerable overlap between studies. In common with ASPS-1, elevated expression was noted for CTSK, DPP4, GPNMB, INHBE, LOXL4, PSG9, SLC20A1, STS, SULT1C2, SV2B, and UPP1. Transcripts over-expressed only in ASPS patient samples included ABCB5, CYP17A1, HIF1A, MDK, P4HB, PRL, and PSAP. These observations are consistent with that expected for a mesenchymal progenitor cell with adipogenic, osteogenic, or chondrogenic potential. In summary, the consensus data generated in this study highlight the unique and highly conserved nature of the ASPS transcriptome. Although the ability of the ASPL-TFE3 fusion to perturb mRNA expression must be acknowledged, the prevailing ASPS transcriptome resembles that of a mesenchymal stromal progenitor.
Collapse
|
12
|
Gabrielli M, Romero DG, Martini CN, Raiger Iustman LJ, Vila MDC. MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes. Mol Cell Biochem 2018; 448:299-309. [PMID: 29468504 DOI: 10.1007/s11010-018-3334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
We investigated for the first time the expression of melanoma cell adhesion molecule (MCAM) and its involvement in the differentiation of 3T3-L1 fibroblasts to adipocytes. We found that MCAM mRNA increased subsequent to the activation of the master regulator of adipogenesis, PPARγ, and this increase was maintained in the mature adipocytes. On the other hand, MCAM knockdown impaired differentiation and induction of PPARγ as well as expression of genes activated by PPARγ. However, events that precede and are necessary for early PPARγ activation, such as C/EBPβ induction, β-catenin downregulation, and ERK activation, were not affected in the MCAM knockdown cells. In keeping with this, the increase in PPARγ mRNA that precedes MCAM induction was not altered in the knockdown cells. In conclusion, our findings suggest that MCAM is a gene upregulated and involved in maintaining PPARγ induction in the late but not in the early stages of 3T3-L1 fibroblasts adipogenesis.
Collapse
Affiliation(s)
- Matías Gabrielli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Damián G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Claudia N Martini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Laura Judith Raiger Iustman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - María Del C Vila
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
- Universidad de Buenos Aires, CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
13
|
CD146 positive human dental pulp stem cells promote regeneration of dentin/pulp-like structures. Hum Cell 2018; 31:127-138. [PMID: 29313241 PMCID: PMC5852189 DOI: 10.1007/s13577-017-0198-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
CD146 and STRO-1 are endothelial biomarkers that are co-expressed on the cellular membranes of blood vessels within human dental pulp tissue. This study characterized the percentage of dentin-like structures produced by CD146-positive (CD146+) human dental pulp stem cells (DPSCs), compared with their CD146-negative (CD146-) counterparts. DPSC populations were enriched using magnetic-activated cell sorting (MACS), yielding CD146+ and CD146- cells, as well as mixtures composed of 25% CD146+ cells and 75% CD146- cells (CD146+/-). Cell growth assays indicated that CD146+ cells exhibit an approximate 3-4 h difference in doubling time, compared with CD146- cells. Cell cycle distributions were determined by flow cytometry analysis. The low percentage of CD146+ cells' DNA content in G0/G1 phase were compared with CD146- and non-separated cells. In contrast to CD146- and non-separated cells, prompt mineralization was observed in CD146+ cells. Subsequently, qRT-PCR revealed high mRNA expression of CD146 and Alkaline phosphatase in mineralization-induced CD146+ cells. CD146+ cells were also observed high adipogenic ability by Oil red O staining. Histological examinations revealed an increased area of dentin/pulp-like structures in transplanted CD146+ cells, compared with CD146- and CD146+/- cells. Immunohistochemical studies detected dentin matrix protein-1 (DMP1) and dentin sialophosphoprotein (DSPP), as well as human mitochondria, in transplanted DPSCs. Co-expression of CD146 and GFP indicated that CD146 was expressed in transplanted CD146+ cells. CD146+ cells may promote mineralization and generate dentin/pulp-like structures, suggesting a role in self-renewal of stem cells and dental pulp regenerative therapy.
Collapse
|
14
|
Arulmozhivarman G, Kräter M, Wobus M, Friedrichs J, Bejestani EP, Müller K, Lambert K, Alexopoulou D, Dahl A, Stöter M, Bickle M, Shayegi N, Hampe J, Stölzel F, Brand M, von Bonin M, Bornhäuser M. Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells. Sci Rep 2017; 7:12084. [PMID: 28935977 PMCID: PMC5608703 DOI: 10.1038/s41598-017-12360-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of small molecules that either increase the number and/or enhance the activity of human hematopoietic stem and progenitor cells (hHSPCs) during ex vivo expansion remains challenging. We used an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model and identified histone deacetylase inhibitors (HDACIs), particularly valproic acid (VPA), as significant enhancers of the number of phenotypic HSPCs, both in vivo and during ex vivo expansion. The long-term functionality of these expanded hHSPCs was verified in a xenotransplantation model with NSG mice. Interestingly, VPA increased CD34+ cell adhesion to primary mesenchymal stromal cells and reduced their in vitro chemokine-mediated migration capacity. In line with this, VPA-treated human CD34+ cells showed reduced homing and early engraftment in a xenograft transplant model, but retained their long-term engraftment potential in vivo, and maintained their differentiation ability both in vitro and in vivo. In summary, our data demonstrate that certain HDACIs lead to a net expansion of hHSPCs with retained long-term engraftment potential and could be further explored as candidate compounds to amplify ex-vivo engineered peripheral blood stem cells.
Collapse
Affiliation(s)
| | - Martin Kräter
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Manja Wobus
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute for Polymer Research, Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Elham Pishali Bejestani
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Katrin Müller
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Katrin Lambert
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Dimitra Alexopoulou
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group SFB655, Biotechnology Center, Technical University of Dresden, Dresden, Germany
| | - Martin Stöter
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nona Shayegi
- Department of Hematology, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jochen Hampe
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Friedrich Stölzel
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| | - Malte von Bonin
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), partner site, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology/Oncology, Medical Clinic and Policlinic I, University Hospital, Dresden, Germany. .,DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Tong Y, Niu M, Du Y, Mei W, Cao W, Dou Y, Yu H, Du X, Yuan H, Zhao W. Aryl hydrocarbon receptor suppresses the osteogenesis of mesenchymal stem cells in collagen-induced arthritic mice through the inhibition of β-catenin. Exp Cell Res 2016; 350:349-357. [PMID: 28007558 DOI: 10.1016/j.yexcr.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022]
Abstract
The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis (RA), particularly bone loss, have not been clearly explored. The imbalance between osteoblasts and osteoclasts is a major reason for bone loss. The dysfunction of osteoblasts, which are derived from mesenchymal stem cells (MSCs), induced bone erosion occurs earlier and is characterized as more insidious. Here, we showed that the nuclear expression and translocation of Ahr were both significantly increased in MSCs from collagen-induced arthritis (CIA) mice. The enhanced Ahr suppressed the mRNA levels of osteoblastic markers including Alkaline phosphatase (Alp) and Runt-related transcription factor 2 (Runx2) in the differentiation of MSCs to osteoblasts in CIA. The 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated activation of Ahr dose-dependently suppressed the expression of osteoblastic markers. In addition, the expression of β-catenin was reduced in CIA MSCs compared with control, and the TCDD-mediated activation of the Ahr significantly inhibited β-catenin expression. The Wnt3a-induced the activation of Wnt/β-catenin pathway partly rescued the osteogenesis decline induced by TCDD. Taken together, these results indicate that activated Ahr plays a negative role in CIA MSCs osteogenesis, possibly by suppressing the expression of β-catenin.
Collapse
Affiliation(s)
- Yulong Tong
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Menglin Niu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China; Department of Blood Transfusion, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Beijing 100142, PR China
| | - Yuxuan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Wentong Mei
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Wei Cao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Yunpeng Dou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Haitao Yu
- Department of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China.
| | - Wenming Zhao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, PR China.
| |
Collapse
|
16
|
Generation of stem cell-based bioartificial anterior cruciate ligament (ACL) grafts for effective ACL rupture repair. Stem Cell Res 2016; 17:448-457. [PMID: 27217303 DOI: 10.1016/j.scr.2016.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
In the present study, we combined stem cell technology with a non-absorbable biomaterial for the reconstruction of the ruptured ACL. Towards this purpose, multipotential stromal cells derived either from subcutaneous human adipose tissue (hAT-MSCs) or from induced pluripotent stem cells (iPSCs) generated from human foreskin fibroblasts (hiPSC-MSCs) were cultured on the biomaterial for 21days in vitro to generate a 3D bioartifical ACL graft. Stem cell differentiation towards bone and ligament at the ends and central part of the biomaterial was selectively induced using either BMP-2/FGF-2 or TGF-β/FGF-2 combinations, respectively. The bioartificial ACL graft was subsequently implanted in a swine ACL rupture model in place of the surgically removed normal ACL. Four months post-implantation, the tissue engineered ACL graft generated an ACL-like tissue exhibiting morphological and biochemical characteristics resembling those of normal ACL.
Collapse
|
17
|
Fujimoto M, Mano Y, Anai M, Yamamoto S, Fukuyo M, Aburatani H, Kaneda A. Epigenetic alteration to activate Bmp2-Smad signaling in Raf-induced senescence. World J Biol Chem 2016; 7:188-205. [PMID: 26981207 PMCID: PMC4768123 DOI: 10.4331/wjbc.v7.i1.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/30/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate epigenomic and gene expression alterations during cellular senescence induced by oncogenic Raf.
METHODS: Cellular senescence was induced into mouse embryonic fibroblasts (MEFs) by infecting retrovirus to express oncogenic Raf (RafV600E). RNA was collected from RafV600E cells as well as MEFs without infection and MEFs with mock infection, and a genome-wide gene expression analysis was performed using microarray. The epigenomic status for active H3K4me3 and repressive H3K27me3 histone marks was analyzed by chromatin immunoprecipitation-sequencing for RafV600E cells on day 7 and for MEFs without infection. These data for Raf-induced senescence were compared with data for Ras-induced senescence that were obtained in our previous study. Gene knockdown and overexpression were done by retrovirus infection.
RESULTS: Although the expression of some genes including secreted factors was specifically altered in either Ras- or Raf-induced senescence, many genes showed similar alteration pattern in Raf- and Ras-induced senescence. A total of 841 commonly upregulated 841 genes and 573 commonly downregulated genes showed a significant enrichment of genes related to signal and secreted proteins, suggesting the importance of alterations in secreted factors. Bmp2, a secreted protein to activate Bmp2-Smad signaling, was highly upregulated with gain of H3K4me3 and loss of H3K27me3 during Raf-induced senescence, as previously detected in Ras-induced senescence, and the knockdown of Bmp2 by shRNA lead to escape from Raf-induced senescence. Bmp2-Smad inhibitor Smad6 was strongly repressed with H3K4me3 loss in Raf-induced senescence, as detected in Ras-induced senescence, and senescence was also bypassed by Smad6 induction in Raf-activated cells. Different from Ras-induced senescence, however, gain of H3K27me3 did not occur in the Smad6 promoter region during Raf-induced senescence. When comparing genome-wide alteration between Ras- and Raf-induced senescence, genes showing loss of H3K27me3 during senescence significantly overlapped; genes showing H3K4me3 gain, or those showing H3K4me3 loss, also well-overlapped between Ras- and Raf-induced senescence. However, genes with gain of H3K27me3 overlapped significantly rarely, compared with those with H3K27me3 loss, with H3K4me3 gain, or with H3K4me3 loss.
CONCLUSION: Although epigenetic alterations are partly different, Bmp2 upregulation and Smad6 repression occur and contribute to Raf-induced senescence, as detected in Ras-induced senescence.
Collapse
|
18
|
Nagree MS, López-Vásquez L, Medin JA. Towards in vivo amplification: Overcoming hurdles in the use of hematopoietic stem cells in transplantation and gene therapy. World J Stem Cells 2015; 7:1233-1250. [PMID: 26730268 PMCID: PMC4691692 DOI: 10.4252/wjsc.v7.i11.1233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
With the advent of safer and more efficient gene transfer methods, gene therapy has become a viable solution for many inherited and acquired disorders. Hematopoietic stem cells (HSCs) are a prime cell compartment for gene therapy aimed at correcting blood-based disorders, as well as those amenable to metabolic outcomes that can effect cross-correction. While some resounding clinical successes have recently been demonstrated, ample room remains to increase the therapeutic output from HSC-directed gene therapy. In vivo amplification of therapeutic cells is one avenue to achieve enhanced gene product delivery. To date, attempts have been made to provide HSCs with resistance to cytotoxic drugs, to include drug-inducible growth modules specific to HSCs, and to increase the engraftment potential of transduced HSCs. This review aims to summarize amplification strategies that have been developed and tested and to discuss their advantages along with barriers faced towards their clinical adaptation. In addition, next-generation strategies to circumvent current limitations of specific amplification schemas are discussed.
Collapse
|
19
|
Cavazzini F, Campioni D, Ferrari L, Buldini B, Bardi MA, Michielotto B, Lazzari MC, Ongari M, Dabusti M, Daghia G, Sofritti O, Basso G, Lanza F, Cuneo A. Expression of the immunoglobulin superfamily cell membrane adhesion molecule Cd146 in acute leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:247-56. [PMID: 26102234 DOI: 10.1002/cyto.b.21267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The expression of the immunoglobulin superfamily cell membrane adhesion molecule CD146 has been reported on several normal and pathological cell types in human. The aim of this study was to investigate CD146 expression in acute leukemia using a multiparametric cytofluorimetric approach. METHODS Cytofluorimetric and cytogenetic studies were performed on peripheral blood and bone marrow samples from 162 patients with acute myeloid leukemia (AML, n = 121) and acute lymphoblastic leukemia (ALL, n = 41). ALL patients were subdivided in B-ALL (n = 38) and T-ALL (n = 3). Adult (n = 18) and pediatric (n = 20) B-ALL were considered as a whole group. RESULTS Four out of 121 (3.3%) AML cases, 14/38 (36.8%) B-ALL, and 2/3 (66.6%) T-ALL expressed CD146 on 12-98% of blasts (p < 0.001). CD146 expression was not observed in 10 healthy controls. Among B-ALL CD146-positive cases, 78.6% were associated with a "common"/BII-ALL and 21.4% with a pre-B/BIII-ALL immunophenotype while pro-B/BI-ALL and mature-B/BIV-ALL cases were CD146-negative. Statistical analysis showed CD146 expression strongly associated with Ph+ positivity in B-ALL with the highest percentage of CD146-positive blasts in all Ph-positive B-ALL cases (84 ± 22% Ph-positive B-ALL SD vs. 40 ± 24% SD in Ph-negative B-ALL; p < 0,001). CONCLUSION In our series, CD146 was expressed in all cases of Ph-positive B-ALL and in the vast majority of T-ALL, whereas it was rarely expressed by AML blasts. We suggest that CD146 may be considered as an additional marker for acute lymphoblastic leukemia diagnosis and monitoring of minimal residual disease in those cases which are CD146-positive at diagnosis. © 2015 International Clinical Cytometry Society.
Collapse
Affiliation(s)
| | - Diana Campioni
- Section of Hematology, University-S.Anna Hospital, Ferrara, Italy
| | - Luisa Ferrari
- Section of Hematology, University-S.Anna Hospital, Ferrara, Italy
| | - Barbara Buldini
- Onco-Hematology Division, SDB Department, University of Padova, Italy
| | | | | | | | - Manuele Ongari
- Section of Hematology, Hospital of Cremona, Cremona, Italy
| | - Melissa Dabusti
- Section of Hematology, University-S.Anna Hospital, Ferrara, Italy
| | - Giulia Daghia
- Section of Hematology, University-S.Anna Hospital, Ferrara, Italy
| | - Olga Sofritti
- Section of Hematology, University-S.Anna Hospital, Ferrara, Italy
| | - Giuseppe Basso
- Onco-Hematology Division, SDB Department, University of Padova, Italy
| | | | - Antonio Cuneo
- Section of Hematology, University-S.Anna Hospital, Ferrara, Italy
| |
Collapse
|
20
|
Ulrich C, Abruzzese T, Maerz JK, Ruh M, Amend B, Benz K, Rolauffs B, Abele H, Hart ML, Aicher WK. Human Placenta-Derived CD146-Positive Mesenchymal Stromal Cells Display a Distinct Osteogenic Differentiation Potential. Stem Cells Dev 2015; 24:1558-69. [DOI: 10.1089/scd.2014.0465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Christine Ulrich
- Center for Regenerative Medicine, University of Tübingen Hospital, Tübingen, Germany
| | - Tanja Abruzzese
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Jan K. Maerz
- Center for Regenerative Medicine, University of Tübingen Hospital, Tübingen, Germany
| | - Manuel Ruh
- Center for Regenerative Medicine, University of Tübingen Hospital, Tübingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Karin Benz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bernd Rolauffs
- Department of Traumatology, BGU Hospital, University of Tübingen, Tübingen, Germany
| | - Harald Abele
- Department of Gynecology and Obstetrics, University of Tübingen Hospital, Tübingen, Germany
| | - Melanie L. Hart
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| | - Wilhelm K. Aicher
- Center for Regenerative Medicine, University of Tübingen Hospital, Tübingen, Germany
- Department of Urology, University of Tübingen Hospital, Tübingen, Germany
| |
Collapse
|
21
|
Wang WM, Zhao ZL, Zhang WF, Zhao YF, Zhang L, Sun ZJ. Role of hypoxia-inducible factor-1α and CD146 in epidermal growth factor receptor-mediated angiogenesis in salivary gland adenoid cystic carcinoma. Mol Med Rep 2015; 12:3432-3438. [PMID: 25997612 PMCID: PMC4526044 DOI: 10.3892/mmr.2015.3815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
Adenoid cystic carcinoma (AdCC) of the salivary gland in the head and neck is characterized by indolent yet persistent growth, multiple local recurrences and early hematogenous metastasis. Considering the possible association between the epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in various types of cancer and the overexpression of EGFR in AdCC, it is reasonable to examine the correlation between angiogenesis and the EGFR signaling pathway in this carcinoma. In the present study, the expression of EGFR, CD31, CD146 and hypoxia-inducible factor-1α (HIF-1α) were evaluated by immunohistochemical staining with tissue microarray containing normal salivary gland (NSG), pleomorphic adenoma (PMA) and AdCC tissues. Pearson's correlation coefficient was conducted to demonstrate the correlation between EGFR, CD31, CD146 and HIF-1α. To determine their similarity and intimacy, hierarchical analysis was performed with Cluster 3.0 and then visualized using TreeView software. Immunohistochemical results of tissue microarrays were quantified, revealing that the expression of EGFR, CD146 and HIF-1α increased in AdCC compared with in PMA and NSG tissues. The association between the expression of EGFR and CD31 was significant and positive. The expression of CD146 and HIF-1α was positively correlated with EGFR and CD31, respectively. These findings suggest that the EGFR signaling pathway has a vital role in AdCC progression and may be associated with HIF-1α-mediated angiogenesis. These results may enhance our understanding of the mechanism underlying AdCC progression and provide potential clinical therapeutic strategies based on the inhibition of EGFR.
Collapse
Affiliation(s)
- Wei-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Zhi-Li Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
22
|
Lei X, Guan CW, Song Y, Wang H. The multifaceted role of CD146/MCAM in the promotion of melanoma progression. Cancer Cell Int 2015; 15:3. [PMID: 25685061 PMCID: PMC4326486 DOI: 10.1186/s12935-014-0147-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022] Open
Abstract
Human malignant melanoma is a common primary malignant cutaneous tumour derived from transformed epidermal melanocytes. Patients with melanoma have a high rate of mortality due to resistance to chemotherapeutic drugs, a major obstacle to a successful treatment. Several reports have suggested that CD146 plays an important role as a signalling molecule in human melanoma. This role includes CD146 as a participant in inflammation, differentiation, adhesion, tumourigenicity, metastasis, invasion and angiogenesis among other processes, which suggests that this molecule promotes the progression of human melanoma as a multifaceted regulator. In this article, we explore the effects and corresponding mechanisms with respect to the role of CD146/MUC18 in the promotion of human melanoma progression. Collectively, the studies indicated that targeting CD146, because it is a suitable marker of poor patient outcome, might be useful in the design of future strategies for the prevention and treatment of human melanoma.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000 China
| | - Ce-Wen Guan
- Department of Orthopedic Surgery, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001 China
| | - Yang Song
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150001 China
| | - Huan Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001 China
| |
Collapse
|
23
|
Goodrich AD, Varain NM, Jeanblanc CM, Colon DM, Kim J, Zanjani ED, Hematti P. Influence of a dual-injection regimen, plerixafor and CXCR4 on in utero hematopoietic stem cell transplantation and engraftment with use of the sheep model. Cytotherapy 2014; 16:1280-93. [PMID: 25108653 PMCID: PMC4131210 DOI: 10.1016/j.jcyt.2014.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Inadequate engraftment of hematopoietic stem cells (HSCs) after in utero HSC transplantation (IUHSCT) remains a major obstacle for the prenatal correction of numerous hereditary disorders. HSCs express CXCR4 receptors that allow homing and engraftment in response to stromal-derived factor 1 (SDF-1) ligand present in the bone marrow stromal niche. Plerixafor, a mobilization drug, works through the interruption of the CXCR4-SDF-1 axis. METHODS We used the fetal sheep large-animal model to test our hypotheses that (i) by administering plerixafor in utero before performing IUHSCT to release fetal HSCs and thus vacating recipient HSC niches, (ii) by using human mesenchymal stromal/stem cells (MSCs) to immunomodulate and humanize the fetal BM niches and (iii) by increasing the CXCR4(+) fraction of CD34(+) HSCs, we could improve engraftment. Human cord blood-derived CD34(+) cells and human bone marrow-derived MSCs were used for these studies. RESULTS When MSCs were transplanted 1 week before CD34(+) cells with plerixafor treatment, we observed 2.80% donor hematopoietic engraftment. Combination of this regimen with additional CD34(+) cells at the time of MSC infusion increased engraftment levels to 8.77%. Next, increasing the fraction of CXCR4(+) cells in the CD34(+) population albeit transplanting at a late gestation age was not beneficial. Our results show engraftment of both lymphoid and myeloid lineages. CONCLUSIONS Prior MSC and HSC cotransplantation followed by manipulation of the CXCR4-SDF-1 axis in IUHSCT provides an innovative conceptual approach for conferring competitive advantage to donor HSCs. Our novel approach could provide a clinically relevant approach for enhancing engraftment early in the fetus.
Collapse
Affiliation(s)
- A Daisy Goodrich
- Department of Agriculture, Nutrition, and Veterinary Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Nicole M Varain
- Department of Agriculture, Nutrition, and Veterinary Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Christine M Jeanblanc
- Department of Agriculture, Nutrition, and Veterinary Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Donna M Colon
- Department of Agriculture, Nutrition, and Veterinary Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Jaehyup Kim
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Esmail D Zanjani
- Department of Agriculture, Nutrition, and Veterinary Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Carbone Cancer Center, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA.
| |
Collapse
|
24
|
Panaroni C, Tzeng YS, Saeed H, Wu JY. Mesenchymal progenitors and the osteoblast lineage in bone marrow hematopoietic niches. Curr Osteoporos Rep 2014; 12:22-32. [PMID: 24477415 PMCID: PMC4077781 DOI: 10.1007/s11914-014-0190-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bone marrow cavity is essential for the proper development of the hematopoietic system. In the last few decades, it has become clear that mesenchymal stem/progenitor cells as well as cells of the osteoblast lineage, besides maintaining bone homeostasis, are also fundamental regulators of bone marrow hematopoiesis. Several studies have demonstrated the direct involvement of mesenchymal and osteoblast lineage cells in the maintenance and regulation of supportive microenvironments necessary for quiescence, self-renewal and differentiation of hematopoietic stem cells. In addition, specific niches have also been identified within the bone marrow for maturing hematopoietic cells. Here we will review recent findings that have highlighted the roles of mesenchymal progenitors and cells of the osteoblast lineage in regulating distinct stages of hematopoiesis.
Collapse
Affiliation(s)
- Cristina Panaroni
- Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Dr., S-025, Stanford, CA, 94305, USA
| | | | | | | |
Collapse
|
25
|
Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensébé L, Bourin P. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med 2013; 18:104-14. [PMID: 24188055 PMCID: PMC3916122 DOI: 10.1111/jcmm.12168] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/16/2013] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacity and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146−/Low and CD146High cells under clonal conditions and after sorting of the non-clonal cell population to determine whether this expression is associated with specific functions. CD146−/Low and CD146High bone marrow MSCs did not differ in colony-forming unit-fibroblast number, osteogenic, adipogenic and chondrogenic differentiation or in vitro haematopoietic-supportive activity. However, CD146−/Low clones proliferated slightly but significantly faster than did CD146High clones. In addition, a strong expression of CD146 molecule was associated with a commitment to a vascular smooth muscle cell (VSMC) lineage characterized by a strong up-regulation of calponin-1 and SM22α expression and an ability to contract collagen matrix. Thus, within a bone marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed towards a VSMC lineage.
Collapse
Affiliation(s)
- Nicolas Espagnolle
- EFS Pyrénées Méditerranée UMR5273 CNRS/UPS/EFS, Inserm U1031 STROMALab, Toulouse, France
| | | | | | | | | | | |
Collapse
|
26
|
Dye DE, Medic S, Ziman M, Coombe DR. Melanoma biomolecules: independently identified but functionally intertwined. Front Oncol 2013; 3:252. [PMID: 24069584 PMCID: PMC3781348 DOI: 10.3389/fonc.2013.00252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Biomedical Science & Curtin Health Innovation Research Institute, Faculty of Health, Curtin University , Perth, WA , Australia
| | | | | | | |
Collapse
|
27
|
Ferrer RA, Wobus M, List C, Wehner R, Schönefeldt C, Brocard B, Mohr B, Rauner M, Schmitz M, Stiehler M, Ehninger G, Hofbauer LC, Bornhäuser M, Platzbecker U. Mesenchymal stromal cells from patients with myelodyplastic syndrome display distinct functional alterations that are modulated by lenalidomide. Haematologica 2013; 98:1677-85. [PMID: 23716561 DOI: 10.3324/haematol.2013.083972] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The contribution of the bone marrow microenvironment in myelodysplastic syndrome is controversial. We therefore analyzed the functional properties of primary mesenchymal stromal cells from patients with myelodysplastic syndrome in the presence or absence of lenalidomide. Compared to healthy controls, clonality and growth were reduced across all disease stages. Furthermore, differentiation defects and particular expression of adhesion and cell surface molecules (e.g. CD166, CD29, CD146) were detected. Interestingly, the levels of stromal derived factor 1-alpha in patients' cells culture supernatants were almost 2-fold lower (P<0.01) than those in controls and this was paralleled by a reduced induction of migration of CD34(+) hematopoietic cells. Co-cultures of mesenchymal stromal cells from patients with CD34(+) cells from healthy donors resulted in reduced numbers of cobblestone area-forming cells and fewer colony-forming units. Exposure of stromal cells from patients and controls to lenalidomide led to a further reduction of stromal derived factor 1-alpha secretion and cobblestone area formation, respectively. Moreover, lenalidomide pretreatment of mesenchymal stromal cells from patients with low but not high-risk myelodysplastic syndrome was able to rescue impaired erythroid and myeloid colony formation of early hematopoietic progenitors. In conclusion, our analyses support the notion that the stromal microenvironment is involved in the pathophysiology of myelodysplastic syndrome thus representing a potential target for therapeutic interventions.
Collapse
|