1
|
Howard T, Almieda M, Diego V, Viel K, Luu B, Haack K, Raja R, Ameri A, Chitlur M, Rydz N, Lillicrap D, Watts R, Kessler C, Ramsey C, Dinh L, Kim B, Powell J, Peralta J, Bouls R, Abraham S, Shen YM, Murillo C, Mead H, Lehmann P, Fine E, Escobar M, Kumar S, Williams-Blangero S, Kasper C, Almasy L, Cole S, Blangero J, Konkle B. A Scan of Pleiotropic Immune Mediated Disease Genes Identifies Novel Determinants of Baseline FVIII Inhibitor Status in Hemophilia-A. RESEARCH SQUARE 2023:rs.3.rs-3371095. [PMID: 37886476 PMCID: PMC10602130 DOI: 10.21203/rs.3.rs-3371095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hemophilia-A (HA) is caused by heterogeneous loss-of-function factor (F)VIII gene (F8)-mutations and deficiencies in plasma-FVIII-activity that impair intrinsic-pathway-mediated coagulation-amplification. The standard-of-care for severe-HA-patients is regular infusions of therapeutic-FVIII-proteins (tFVIIIs) but ~30% develop neutralizing-tFVIII-antibodies called "FVIII-inhibitors (FEIs)" and become refractory. We used the PATH study and ImmunoChip to scan immune-mediated-disease (IMD)-genes for novel and/or replicated genomic-sequence-variations associated with baseline-FEI-status while accounting for non-independence of data due to genetic-relatedness and F8-mutational-heterogeneity. The baseline-FEI-status of 450 North American PATH subjects-206 with black-African-ancestry and 244 with white-European-ancestry-was the dependent variable. The F8-mutation-data and a genetic-relatedness matrix were incorporated into a binary linear-mixed model of genetic association with baseline-FEI-status. We adopted a gene-centric-association-strategy to scan, as candidates, pleiotropic-IMD-genes implicated in the development of either ³2 autoimmune-/autoinflammatory-disorders (AADs) or ³1 AAD and FEIs. Baseline-FEI-status was significantly associated with SNPs assigned to NOS2A (rs117382854; p=3.2E-6) and B3GNT2 (rs10176009; p=5.1E-6), which have functions in anti-microbial-/-tumoral-immunity. Among IMD-genes implicated in FEI-risk previously, we identified strong associations with CTLA4 assigned SNPs (p=2.2E-5). The F8-mutation-effect underlies ~15% of the total heritability for baseline-FEI-status. Additive genetic heritability and SNPs in IMD-genes account for >50% of the patient-specific variability in baseline-FEI-status. Race is a significant determinant independent of F8-mutation-effects and non-F8-genetics.
Collapse
Affiliation(s)
- Tom Howard
- University of Texas Rio Grande Valley School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Eisen B, Binah O. Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24108657. [PMID: 37240001 DOI: 10.3390/ijms24108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle degenerative disease caused by mutations in the dystrophin gene, resulting in death by the end of the third decade of life at the latest. A key aspect of the DMD clinical phenotype is dilated cardiomyopathy, affecting virtually all patients by the end of the second decade of life. Furthermore, despite respiratory complications still being the leading cause of death, with advancements in medical care in recent years, cardiac involvement has become an increasing cause of mortality. Over the years, extensive research has been conducted using different DMD animal models, including the mdx mouse. While these models present certain important similarities to human DMD patients, they also have some differences which pose a challenge to researchers. The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations. DMD cardiac involvement has been shown in animal models to include changes in gene expression of different proteins, abnormal cellular Ca2+ handling, and other aberrations. To gain a better understanding of the disease mechanisms, it is imperative to validate these findings in human cells. Furthermore, with the recent advancements in gene-editing technology, hiPSCs provide a valuable platform for research and development of new therapies including the possibility of regenerative medicine. In this article, we review the DMD cardiac-related research performed so far using human hiPSCs-derived cardiomyocytes (hiPSC-CMs) carrying DMD mutations.
Collapse
Affiliation(s)
- Binyamin Eisen
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ofer Binah
- Cardiac Research Laboratory, Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
3
|
Lessard S, He C, Rajpal DK, Klinger K, Loh C, Harris T, Dumont J. Genome-Wide Association Study and Gene-Based Analysis of Participants With Hemophilia A and Inhibitors in the My Life, Our Future Research Repository. Front Med (Lausanne) 2022; 9:903838. [PMID: 35814780 PMCID: PMC9260508 DOI: 10.3389/fmed.2022.903838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Up to 30% of individuals with hemophilia A develop inhibitors to replacement factor VIII (FVIII), rendering the treatment ineffective. The underlying mechanism of inhibitor development remains poorly understood. The My Life, Our Future Research Repository (MLOF RR) has gathered F8 and F9 mutational information, phenotypic data, and biological material from over 11,000 participants with hemophilia A (HA) and B as well as carriers enrolled across US hemophilia treatment centers, including over 5,000 whole-genome sequences. Identifying genes associated with inhibitors may contribute to our understanding of why certain patients develop those neutralizing antibodies. Aim and Methods Here, we performed a genome-wide association study and gene-based analyses to identify genes associated with inhibitors in participants with HA from the MLOF RR. Results We identify a genome-wide significant association within the human leukocyte antigen (HLA) locus in participants with HA with F8 intronic inversions. HLA typing revealed independent associations with the HLA alleles major histocompatibility complex, class II, DR beta 1 (HLA DRB1*15:01) and major histocompatibility complex, class II, DQ beta 1 (DQB1*03:03). Variant aggregation tests further identified low-frequency variants within GRID2IP (glutamate receptor, ionotropic, delta 2 [GRID2] interacting protein 1) significantly associated with inhibitors. Conclusion Overall, our study confirms the association of DRB1*15:01 with FVIII inhibitors and identifies a novel association of DQB1*03:03 in individuals with HA carrying intronic inversions of F8. In addition, our results implicate GRID2IP, encoding GRID2-interacting protein, with the development of inhibitors, and suggest an unrecognized role of this gene in autoimmunity.
Collapse
Affiliation(s)
- Samuel Lessard
- Sanofi S.A., Framingham, MA, United States
- *Correspondence: Samuel Lessard,
| | - Chunla He
- American Thrombosis and Hemostasis Network, Rochester, NY, United States
| | | | | | - Christine Loh
- Bioverativ, a Sanofi Company, Waltham, MA, United States
| | - Tim Harris
- Bioverativ, a Sanofi Company, Waltham, MA, United States
| | | |
Collapse
|
4
|
Bravo MI, Pérez A, Raventós A, Grancha S, Jorquera JI, Butta NV, Álvarez-Román MT, Costa M, Willis T, Jiménez-Yuste V. Plasma-derived FVIII/VWF complex shows higher protection against inhibitors than isolated FVIII after infusion in haemophilic patients: A translational study. Haemophilia 2022; 28:737-744. [PMID: 35654086 PMCID: PMC9545517 DOI: 10.1111/hae.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Introduction Presence of von Willebrand factor (VWF) in FVIII concentrates offers protection against neutralizing inhibitors in haemophilia A (HA). Whether this protection is more evident in plasma‐derived (pd) FVIII/VWF or recombinant (r) FVIII concentrates remains controversial. Aim We investigated the protection exerted by VWF against FVIII inhibitors in an in vivo mouse model of HA exposed to pdFVIII/VWF or to various rFVIII concentrates. Methods Haemophilia A mice received the different FVIII concentrates after administration of vehicle or an inhibitory IgG purified from a commercial pool of HA plasma with inhibitors and FVIII:C recoveries were measured. Furthermore, using a novel clinically oriented ex vivo approach, Bethesda inhibitory activities (BU) of a commercial pool of HA plasma with inhibitors were assessed using normal plasma, or plasma from severe HA patients, without inhibitors, after treatment with the same concentrates. Results in vivo studies showed that pdFVIII/VWF offers markedly higher protection against inhibitors when compared with any of the FVIII products without VWF. More importantly, in the ex vivo studies, plasma from patients treated with pdFVIII/VWF showed higher protection against inhibitors (P values ranging .05‐.001) in comparison with that observed in plasma from patients who received FVIII products without VWF, regardless of the type of product evaluated. Conclusion Data indicate that FVIII+VWF complexes assembled in the circulation after rFVIII infusion are not equivalent to the naturally formed complex in pdFVIII/VWF. Therefore, rFVIII infused into HA patients with inhibitors would be less protected by VWF than the FVIII in pdFVIII/VWF concentrates.
Collapse
Affiliation(s)
| | - Alba Pérez
- Bioscience Research Group, Grifols, Barcelona, Spain
| | - Aida Raventós
- Bioscience Research Group, Grifols, Barcelona, Spain
| | | | | | - Nora Viviana Butta
- Thrombosis and Haemostasis Unit - IdiPAZ, University Hospital La Paz, Madrid, Spain
| | | | | | - Todd Willis
- Bioscience Research Group, Grifols, Raleigh, North Carolina, USA
| | - Victor Jiménez-Yuste
- Thrombosis and Haemostasis Unit - IdiPAZ, University Hospital La Paz, Madrid, Spain.,Medicine Department, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Pshenichnikova OS, Surin VL. Genetic Risk Factors for Inhibitor Development in Hemophilia A. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tomczyk M, Kraszewska I, Mąka R, Waligórska A, Dulak J, Jaźwa-Kusior A. Characterization of hepatic macrophages and evaluation of inflammatory response in heme oxygenase-1 deficient mice exposed to scAAV9 vectors. PLoS One 2020; 15:e0240691. [PMID: 33057437 PMCID: PMC7561190 DOI: 10.1371/journal.pone.0240691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/30/2020] [Indexed: 12/05/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are characterised by low immunogenicity, although humoral and cellular responses may be triggered upon infection. Following systemic administration high levels of vector particles accumulate within the liver. Kupffer cells (KCs) are liver resident macrophages and an important part of the liver innate immune system. Decreased functional activity of KCs can contribute to exaggerated inflammatory response upon antigen exposure. Heme oxygenase-1 (HO-1) deficiency is associated with considerably reduced numbers of KCs. In this study we aimed to investigate the inflammatory responses in liver and to characterise two populations of hepatic macrophages in adult wild type (WT) and HO-1 knockout (KO) mice following systemic administration of one or two doses (separated by 3 months) of self-complementary (sc)AAV9 vectors. At steady state, the livers of HO-1 KO mice contained significantly higher numbers of monocyte-derived macrophages (MDMs), but significantly less KCs than their WT littermates. Three days after re-administration of scAAV9 we observed increased mRNA level of monocyte chemoattractant protein-1 (Mcp-1) in the livers of both WT and HO-1 KO mice, but the protein level and the macrophage infiltration were not affected. Three days after the 1st and 3 days after the 2nd vector dose the numbers of AAV genomes in the liver were comparable between both genotypes indicating similar transduction efficiency, but the percentage of transgene-expressing MDMs and KCs was higher in WT than in HO-1 KO mice. In the primary culture, KCs were able to internalize AAV9 particles without induction of TLR9-mediated immune responses, but no transgene expression was observed. In conclusion, in vivo and in vitro cultured KCs have different susceptibility to scAAV9 vectors. Regardless of the presence or absence of HO-1 and initial numbers of KCs in the liver, scAAV9 exhibits a low potential to stimulate inflammatory response at the analysed time points.
Collapse
Affiliation(s)
- Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Robert Mąka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Waligórska
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- * E-mail:
| |
Collapse
|
7
|
Pratt KP, Arruda VR, Lacroix-Desmazes S. Inhibitors-Recent insights. Haemophilia 2020; 27 Suppl 3:28-36. [PMID: 32608138 DOI: 10.1111/hae.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
The development of inhibitory antibodies to therapeutic factor VIII (FVIII) in haemophilia A (HA) patients is the major complication in treatment/prevention of haemorrhages. The reasons some HA patients develop inhibitors while others do not remain unclear. This review briefly summarizes our understanding of anti-FVIII immune responses, the roles of T cells, both effector and regulatory, and generally discusses the interplay between FVIII and the immune system, both in factor replacement therapy and gene therapy, with some comparisons to factor IX and haemophilia B therapies. Notably, we propose that the prevailing observed active tolerance to FVIII in both HA and non-HA individuals rests to greater or lesser extents on peripherally induced immune tolerance. We also propose that the immune systems of inhibitor-negative HA patients do not merely ignore therapeutic FVIII, but rather have immunologically assessed and actively tolerized the patients to exogenous FVIII. Induction of such peripheral immune tolerance may further be triggered in HA patients who failed to tolerize upon initial FVIII exposure by 'appropriate' stimulation of their immune system, eg by immune tolerance induction therapy via intensive FVIII therapy, by oral administration of FVIII, by cellular therapies or by gene therapy directed to immuno-tolerogenic sites such as the liver.
Collapse
Affiliation(s)
- Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Valder R Arruda
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
8
|
Bou Jaoudeh M, Delignat S, Varthaman A, Lacroix-Desmazes S. [Origin and nature of the neutralizing immune response against therapeutic factor VIII]. Med Sci (Paris) 2020; 36:341-347. [PMID: 32356710 DOI: 10.1051/medsci/2020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of therapeutic proteins induces in some patients the appearance of neutralizing antibodies. This is the case of pro-coagulant factor VIII (FVIII) used in patients with hemophilia A. Several parameters related to the protein itself, to the type of pathology or to the patients, condition the immunogenicity of a therapeutic protein. Understanding these parameters would help to anticipate or prevent the development of neutralizing antibodies. In the case of FVIII, we propose that the development of neutralizing antibodies does not result from an unpredicted immune response but rather from the inability of the patient's organism to develop an anti-inflammatory or regulatory response.
Collapse
Affiliation(s)
- Mélissa Bou Jaoudeh
- Centre de recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Sandrine Delignat
- Centre de recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Aditi Varthaman
- Centre de recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de recherche des Cordeliers, Inserm, Sorbonne Université, Université de Paris, F-75006, Paris, France
| |
Collapse
|
9
|
Matino D, Afraz S, Zhao G, Tieu P, Gargaro M, Fallarino F, Iorio A. Tolerance to FVIII: Role of the Immune Metabolic Enzymes Indoleamine 2,3 Dyoxigenase-1 and Heme Oxygenase-1. Front Immunol 2020; 11:620. [PMID: 32351505 PMCID: PMC7174632 DOI: 10.3389/fimmu.2020.00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
The occurrence of neutralizing anti-FVIII antibodies is a major complication in the treatment of patients affected by hemophilia A. The immune response to FVIII is a complex, multi-factorial process that has been extensively studied for the past two decades. The reasons why only a proportion of hemophilic patients treated with FVIII concentrates develop a clinically significant immune response is incompletely understood. The "danger theory" has been proposed as a possible explanation to interpret the findings of some observational clinical studies highlighting the possible detrimental impact of inflammatory stimuli at the time of replacement therapy on inhibitor development. The host immune system is often challenged to react to FVIII under steady state or inflammatory conditions (e.g., bleeding, infections) although fine tuning of mechanisms of immune tolerance can control this reactivity and promote long-term unresponsiveness to the therapeutically administered factor. Recent studies have provided evidence that multiple interactions involving central and peripheral mechanisms of tolerance are integrated by the host immune system with the environmental conditions at the time of FVIII exposure and influence the balance between immunity and tolerance to FVIII. Here we review evidences showing the involvement of two key immunoregulatory oxygenase enzymes (IDO1, HO-1) that have been studied in hemophilia patients and pre-clinical models, showing that the ability of the host immune system to induce such regulatory proteins under inflammatory conditions can play important roles in the balance between immunity and tolerance to exogenous FVIII.
Collapse
Affiliation(s)
- Davide Matino
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Sajjad Afraz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - George Zhao
- McMaster Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Paul Tieu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- McMaster Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Alfonso Iorio
- Department of Health Research Methods, Evidence, and Impact, Hamilton, ON, Canada
| |
Collapse
|
10
|
Bachelet D, Albert T, Mbogning C, Hässler S, Zhang Y, Schultze-Strasser S, Repessé Y, Rayes J, Pavlova A, Pezeshkpoor B, Liphardt K, Davidson JE, Hincelin-Méry A, Dönnes P, Lacroix-Desmazes S, Königs C, Oldenburg J, Broët P. Risk stratification integrating genetic data for factor VIII inhibitor development in patients with severe hemophilia A. PLoS One 2019; 14:e0218258. [PMID: 31194850 PMCID: PMC6564000 DOI: 10.1371/journal.pone.0218258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Replacement therapy in severe hemophilia A leads to factor VIII (FVIII) inhibitors in 30% of patients. Factor VIII gene (F8) mutation type, a family history of inhibitors, ethnicity and intensity of treatment are established risk factors, and were included in two published prediction tools based on regression models. Recently investigated immune regulatory genes could also play a part in immunogenicity. Our objective is to identify bio-clinical and genetic markers for FVIII inhibitor development, taking into account potential genetic high order interactions. The study population consisted of 593 and 79 patients with hemophilia A from centers in Bonn and Frankfurt respectively. Data was collected in the European ABIRISK tranSMART database. A subset of 125 severely affected patients from Bonn with reliable information on first treatment was selected as eligible for risk stratification using a hybrid tree-based regression model (GPLTR). In the eligible subset, 58 (46%) patients developed FVIII inhibitors. Among them, 49 (84%) were “high risk” F8 mutation type. 19 (33%) had a family history of inhibitors. The GPLTR model, taking into account F8 mutation risk, family history of inhibitors and product type, distinguishes two groups of patients: a high-risk group for immunogenicity, including patients with positive HLA-DRB1*15 and genotype G/A and A/A for IL-10 rs1800896, and a low-risk group of patients with negative HLA-DRB1*15 / HLA-DQB1*02 and T/T or G/T for CD86 rs2681401. We show associations between genetic factors and the occurrence of FVIII inhibitor development in severe hemophilia A patients taking into account for high-order interactions using a generalized partially linear tree-based approach.
Collapse
Affiliation(s)
- Delphine Bachelet
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
| | - Thilo Albert
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Cyprien Mbogning
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
| | - Signe Hässler
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
| | - Yuan Zhang
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
| | - Stephan Schultze-Strasser
- University Hospital Frankfurt, Goethe University, Department of Pediatrics, Molecular Haemostasis and Immunodeficiency, Frankfurt am Main, Germany
| | | | - Julie Rayes
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Anna Pavlova
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Behnaz Pezeshkpoor
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Kerstin Liphardt
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | | | | | | | - Sébastien Lacroix-Desmazes
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christoph Königs
- University Hospital Frankfurt, Goethe University, Department of Pediatrics, Molecular Haemostasis and Immunodeficiency, Frankfurt am Main, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Philippe Broët
- CESP, INSERM UMR 1018, Faculty of Medicine, Paris-Sud University, UVSQ, Paris-Saclay University, Villejuif, France
- AP-HP, Paris-Sud University Hospitals, Villejuif, France
- * E-mail:
| | | |
Collapse
|
11
|
Schep SJ, Boes M, Schutgens RE, van Vulpen LF. An update on the ‘danger theory’ in inhibitor development in hemophilia A. Expert Rev Hematol 2019; 12:335-344. [DOI: 10.1080/17474086.2019.1604213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sarah J. Schep
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roger E.G. Schutgens
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lize F.D. van Vulpen
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Repessé Y, Costa C, Palla R, Moshai EF, Borel-Derlon A, D'Oiron R, Rothschild C, El-Beshlawy A, Elalfy M, Ramanan V, Eshghi P, Oldenburg J, Pavlova A, Rosendaal FR, Peyvandi F, Kaveri SV, Lacroix-Desmazes S. Role of factor VIII-binding capacity of endogenous von Willebrand factor in the development of factor VIII inhibitors in patients with severe hemophilia A. Haematologica 2019; 104:e369-e372. [PMID: 30705098 DOI: 10.3324/haematol.2018.212001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yohann Repessé
- CHU de Caen, Hematology Laboratory, Caen, France.,INSERM, U1237, GIP Cyceron, Caen, France.,Normandie Université, UNI-CAEN, UFR Santé, Caen, France
| | - Catherine Costa
- Service de Génétique et Biologie Moléculaires, APHP, Groupe Hospitalier Cochin Broca, Hôtel-Dieu, Site Cochin, Paris, France
| | - Roberta Palla
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Elika Farrokhi Moshai
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Annie Borel-Derlon
- CHU de Caen, Hematology Laboratory, Caen, France.,INSERM, U1237, GIP Cyceron, Caen, France.,Normandie Université, UNI-CAEN, UFR Santé, Caen, France
| | - Roseline D'Oiron
- Centres de Traitement de l'Hémophilie, APHP, Le Kremlin-Bicêtre, France
| | - Chantal Rothschild
- Centres de Traitement de l'Hémophilie, APHP, Hôpital Necker, Paris, France
| | - Amal El-Beshlawy
- Pediatric Hematology Department, Cairo University Pediatric Hospital, Cairo, Egypt
| | - Mohsen Elalfy
- Faculty of Medicine, Ain Shams Center, University - Department of Pediatrics, Cairo, Egypt
| | - Vijay Ramanan
- Jehangir Clinical Development Center, Department of Hematology, Jehangir Hospital Premises, Pune, India
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Anna Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
13
|
Kis-Toth K, Rajani GM, Simpson A, Henry KL, Dumont J, Peters RT, Salas J, Loh C. Recombinant factor VIII Fc fusion protein drives regulatory macrophage polarization. Blood Adv 2018; 2:2904-2916. [PMID: 30396910 PMCID: PMC6234359 DOI: 10.1182/bloodadvances.2018024497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
The main complication of replacement therapy with factor in hemophilia A (HemA) is the formation of inhibitors (neutralizing anti-factor VIII [FVIII] antibodies) in ∼30% of severe HemA patients. Because these inhibitors render replacement FVIII treatment essentially ineffective, preventing or eliminating them is of top priority in disease management. The extended half-life recombinant FVIII Fc fusion protein (rFVIIIFc) is an approved therapy for HemA patients. In addition, it has been reported that rFVIIIFc may induce tolerance to FVIII more readily than FVIII alone in HemA patients that have developed inhibitors. Given that the immunoglobulin G1 Fc region has the potential to interact with immune cells expressing Fc receptors (FcRs) and thereby affect the immune response to rFVIII, we investigated how human macrophages, expressing both FcRs and receptors reported to bind FVIII, respond to rFVIIIFc. We show herein that rFVIIIFc, but not rFVIII, uniquely skews macrophages toward an alternatively activated regulatory phenotype. rFVIIIFc initiates signaling events that result in morphological changes, as well as a specific gene expression and metabolic profile that is characteristic of the regulatory type Mox/M2-like macrophages. Further, these changes are dependent on rFVIIIFc-FcR interactions. Our findings elucidate mechanisms of potential immunomodulatory properties of rFVIIIFc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joe Salas
- Bioverativ, a Sanofi company, Waltham, MA; and
| | | |
Collapse
|
14
|
Garagiola I, Palla R, Peyvandi F. Risk factors for inhibitor development in severe hemophilia A. Thromb Res 2018; 168:20-27. [DOI: 10.1016/j.thromres.2018.05.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
|
15
|
Tolerogenic properties of the Fc portion of IgG and its relevance to the treatment and management of hemophilia. Blood 2018; 131:2205-2214. [PMID: 29588277 DOI: 10.1182/blood-2017-12-822908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Hemophilia, or inherited genetic deficiencies in coagulation factors, results in uncontrolled bleeding requiring replacement therapy with recombinant proteins given preventively or on demand. However, a major problem with these approaches is the potential for development of immune responses to the administered proteins due to the underlying genetic deficiency of the factor(s) throughout life. As such, there is great interest in developing strategies that avoid immunogenicity and induce immune tolerance. Recently, recombinant factor VIII (rFVIII) and rFIX fused to the crystallizable fragment (Fc) domain of immunoglobulin G (IgG) have been developed as therapeutic agents for hemophilia A and B, respectively. Although it is well known that the possession of an Fc domain confers IgG's longer-lasting circulating half-life, it is not generally appreciated that the Fc domain also confers immunoregulatory properties that are associated with the induction of tolerance. Here, we review some of the latest advances in our understanding of the tolerogenic abilities of IgG Fc and the impact of Fc-fusion proteins of rFVIII on the treatment of hemophilia.
Collapse
|
16
|
Peyron I, Hartholt RB, Pedró-Cos L, van Alphen F, Brinke AT, Lardy N, Meijer AB, Voorberg J. Comparative profiling of HLA-DR and HLA-DQ associated factor VIII peptides presented by monocyte-derived dendritic cells. Haematologica 2017; 103:172-178. [PMID: 29025906 PMCID: PMC5777204 DOI: 10.3324/haematol.2017.175083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022] Open
Abstract
The development of anti-factor VIII antibodies is a major complication of the treatment of patients with hemophilia A. Generation of high affinity anti-factor VIII antibodies is dependent on help provided by CD4+ T cells that recognize factor VIII-derived peptides presented on class II major histocompatibility complex on the surface of antigen-presenting cells. In order to identify the immune-dominant epitopes that can be presented to CD4+ T cells, we previously developed a mass spectrometry-based method to identify factor VIII-derived peptides that are presented on human leukocyte antigen (HLA)-DR. In the present work, we compared the repertoire of FVIII-derived peptide presented on HLA-DR and HLA-DQ. Monocyte-derived dendritic cells from nine HLA-typed healthy donors were pulsed with recombinant factor VIII. HLA-DR and HLA-DQ molecules were purified using monoclonal antibodies. Our data show that HLA-DQ and HLA-DR present a similar repertoire of factor VIII-derived peptides. However, the number of peptides associated with HLA-DQ was lower than that with HLA-DR. We also identified a peptide, within the acidic a3 domains of factor VIII, which is presented with higher frequency on HLA-DQ. Interestingly, this peptide was found to have a higher predicted affinity for HLA-DQ than for HLA-DR. Taken together, our data suggest that HLA-DQ participates in the presentation of factor VIII peptides, thereby contributing to the development of inhibitory antibodies in a proportion of patients with severe hemophilia A.
Collapse
Affiliation(s)
- Ivan Peyron
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Robin B Hartholt
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Laura Pedró-Cos
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Floris van Alphen
- Department of Research Facilities, Sanquin Research Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Neubury Lardy
- Department of Immunogenetics, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, the Netherlands
| | - Alexander B Meijer
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands.,Department of Research Facilities, Sanquin Research Amsterdam, the Netherlands.,Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands .,Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
17
|
Hartholt RB, van Velzen AS, Peyron I, Ten Brinke A, Fijnvandraat K, Voorberg J. To serve and protect: The modulatory role of von Willebrand factor on factor VIII immunogenicity. Blood Rev 2017; 31:339-347. [PMID: 28716211 DOI: 10.1016/j.blre.2017.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022]
Abstract
Hemophilia A is a bleeding disorder characterized by the absence or dysfunction of blood coagulation factor VIII (FVIII). Patients are treated with regular infusions of FVIII concentrate. In response to treatment, approximately 30% of patients with severe hemophilia A develop inhibitory antibodies targeting FVIII. Both patient and treatment related risk factors for inhibitor development have been described. Multiple studies comparing the immunogenicity of recombinant and plasma-derived FVIII have yielded conflicting results. The randomized controlled SIPPET (Survey of Inhibitors in Plasma-Product Exposed Toddlers) trial demonstrated an increased risk of inhibitor development of recombinant FVIII when compared to von Willebrand factor (VWF)-containing plasma-derived FVIII. Presently, it is unclear which mechanism underlies the reduced immunogenicity of plasma-derived FVIII. In this review we address the potential role of VWF on FVIII immunogenicity and we discuss how VWF affects the immune recognition, processing and presentation of FVIII. We also briefly discuss the potential impact of glycan-composition on FVIII immunogenicity. It is well established that VWF shields the uptake of FVIII by antigen presenting cells. We have recently shown that VWF binds to the surface of dendritic cells. Here, we present a novel model in which surface bound FVIII-VWF complexes regulate the internalization of FVIII. Binding of FVIII to VWF is critically dependent on sulfation of Tyr1699 (HVGS numbering) in the light chain of FVIII. Incomplete sulfation of Tyr1699 has been suggested to occur in several recombinant FVIII products resulting in a loss of VWF binding. We hypothesize that this results in alternative pathways of FVIII internalization by antigen presenting cells which are not regulated by VWF. This hypothetical mechanism may explain the reduced immunogenicity of VWF containing plasma-derived FVIII concentrates as found in the SIPPET study.
Collapse
Affiliation(s)
- Robin B Hartholt
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | - Alice S van Velzen
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | - Ivan Peyron
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | - Anja Ten Brinke
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | - Karin Fijnvandraat
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin Research, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
18
|
van Vulpen LFD, Mastbergen SC, Lafeber FPJG, Schutgens REG. Differential effects of bleeds on the development of arthropathy - basic and applied issues. Haemophilia 2017; 23:521-527. [DOI: 10.1111/hae.13236] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Affiliation(s)
- L. F. D. van Vulpen
- Van Creveldkliniek; University Medical Center Utrecht; Utrecht The Netherlands
- Department of Rheumatology & Clinical Immunology; University Medical Center Utrecht; Utrecht The Netherlands
| | - S. C. Mastbergen
- Department of Rheumatology & Clinical Immunology; University Medical Center Utrecht; Utrecht The Netherlands
| | - F. P. J. G. Lafeber
- Department of Rheumatology & Clinical Immunology; University Medical Center Utrecht; Utrecht The Netherlands
| | - R. E. G. Schutgens
- Van Creveldkliniek; University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
19
|
Dargaud Y, Pavlova A, Lacroix-Desmazes S, Fischer K, Soucie M, Claeyssens S, Scott DW, d'Oiron R, Lavigne-Lissalde G, Kenet G, Escuriola Ettingshausen C, Borel-Derlon A, Lambert T, Pasta G, Négrier C. Achievements, challenges and unmet needs for haemophilia patients with inhibitors: Report from a symposium in Paris, France on 20 November 2014. Haemophilia 2016; 22 Suppl 1:1-24. [PMID: 26728503 DOI: 10.1111/hae.12860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 12/28/2022]
Abstract
Over the past 20 years, there have been many advances in haemophilia treatment that have allowed patients to take greater control of their disease. However, the development of factor VIII (FVIII) inhibitors is the greatest complication of the disease and a challenge in the treatment of haemophilia making management of bleeding episodes difficult and surgical procedures very challenging. A meeting to discuss the unmet needs of haemophilia patients with inhibitors was held in Paris on 20 November 2014. Topics discussed were genetic and non-genetic risk factors for the development of inhibitors, immunological aspects of inhibitor development, FVIII products and inhibitor development, generation and functional properties of engineered antigen-specific T regulatory cells, suppression of immune responses to FVIII, prophylaxis in haemophilia patients with inhibitors, epitope mapping of FVIII inhibitors, current controversies in immune tolerance induction therapy, surgery in haemophilia patients with inhibitors and future perspectives for the treatment of haemophilia patients with inhibitors. A summary of the key points discussed is presented in this paper.
Collapse
Affiliation(s)
- Y Dargaud
- Unite d'Hemostase Clinique, Hopital Cardiologique Louis Pradel, Universite Lyon 1, Lyon, France
| | - A Pavlova
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic, Bonn, Germany
| | - S Lacroix-Desmazes
- INSERM UMRS 1138, Immunopathologie et immuno-intervention thérapeutique, Centre de Recherche des Cordeliers, Paris, France
| | - K Fischer
- Van Creveldkliniek (HP C01.425), University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Soucie
- Division of Blood Disorders, National Center for Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S Claeyssens
- Chu Purpan Pav. Centre Hospitalier Lefebvre, Centre Rgal de l'Hemophilie, Toulouse, France
| | - D W Scott
- Department of Medicine, Uniformed Services, University for the Health Sciences, Bethesda, MD, USA
| | - R d'Oiron
- Centre de Traitement de l'Hémophilie et des Maladies Hémorragiques Constitutionnelles, Hôpitaux Universitaires Paris Sud - Site Bicêtre, Le Kremlin-Bicêtre, France
| | - G Lavigne-Lissalde
- Laboratoire d'Hématologie et Consultations d'Hématologie Biologique Centre Hospitalier Universitaire de Nîmes, Place du Pr R. Debré Nîmes, France
| | - G Kenet
- National Hemophilia Institute, Sheba Medical Center, Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | | | - A Borel-Derlon
- Haemophilia and von Willebrand Disease Centre, University Hospital of Caen, Caen
| | - T Lambert
- Hemophilia Care Center, Bicêtre AP-HP Hospital and Faculté de Médecine Paris XI, Paris, France
| | - G Pasta
- UOSD di Ortopedia e Traumatologia, Centro Emofilia 'Angelo Bianchi Bonomi', Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - C Négrier
- Haematology Department, Director Hemophilia Comprehensive Care Center, Hopital Louis Pradel, Université Lyon 1, Bron Cedex, France
| |
Collapse
|
20
|
Goudemand J, Peyvandi F, Lacroix-Desmazes S. Key insights to understand the immunogenicity of FVIII products. Thromb Haemost 2016; 116 Suppl 1:S2-9. [PMID: 27528279 DOI: 10.1160/th16-01-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/04/2016] [Indexed: 11/05/2022]
Abstract
The treatment of haemophilia has made significant progress in recent decades, and patients are now being treated safely with great clotting products. However, inhibitor development remains the largest problem, particularly in children. Consequently, the haemostasis that was obtained with traditional clotting factors is not being achieved. Moreover, inhibitor complications translate into adult life and there are an increasing number of situations where adult patients with an inhibitor require major surgery but the clinician is faced with the knowledge that required haemostasis levels are difficult to achieve. Therefore, it is of upmost importance to consider factors relating to inhibitor development, and to determine how inhibitors can be prevented and/or eliminated. Of the various factors at play with regard to inhibitor development, it is important to consider the immunogenicity of factor VIII (FVIII) products, and this topic is the focus of the current paper.
Collapse
Affiliation(s)
| | | | - Sébastien Lacroix-Desmazes
- Sebastien Lacroix-Desmazes, INSERM U872 eq16 - Centre de Recherche des Cordeliers, 15 Rue de l'école de medicine, Paris 75006, France, Tel.: +33 0155438265, Fax: +33 0155426261, E-mail:
| |
Collapse
|
21
|
Hartholt RB, Peyron I, Voorberg J. Hunting down factor VIII in the immunopeptidome. Cell Immunol 2016; 301:59-64. [DOI: 10.1016/j.cellimm.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/24/2023]
|
22
|
Klintman J, Berntorp E. Epidemiological aspects of inhibitor development in hemophilia and strategies of management. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Carcao M, Re W, Ewenstein B. The role of previously untreated patient studies in understanding the development of FVIII inhibitors. Haemophilia 2015; 22:22-31. [PMID: 26315604 DOI: 10.1111/hae.12790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 01/01/2023]
Abstract
Development of inhibitors against factor VIII (FVIII), the major complication of haemophilia A treatment today, is influenced by multiple factors. Genetic (F8 mutation, family history, ethnicity, polymorphisms in immune modulating genes) and non-genetic (intensive exposure to FVIII, presence of pro-inflammatory signals as might occur with large bleeds, infections, surgery, or other immune stimulants [e.g. vaccines]) risk factors as well as their complex inter-relationships contribute to the inhibitor risk profile of haemophilia patients, particularly in the previously untreated patient (PUP) population. Studies in PUPs have been fundamental to furthering the understanding of FVIII inhibitor development, as well as discovering previously unappreciated risk factors. The multi-factorial nature of inhibitor development makes it difficult to ascertain the contribution of FVIII products in inhibitor development through individual PUP studies. Sufficiently powered studies of large cohorts may overcome these limitations but interpretations should be conducted cautiously. Proper design and implementation of PUP safety studies will become even more important with the introduction of new molecules, such as extended half-life or human cell-line derived FVIII that propose reduced immunogenicity. Despite these difficulties, carefully performed clinical studies in PUPs may provide important insights into the natural history of the immune response to FVIII and may suggest targets for intervention to reduce immunogenicity.
Collapse
Affiliation(s)
- M Carcao
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - W Re
- Baxter Healthcare Corporation, West Lake, CA, USA
| | - B Ewenstein
- Baxter Healthcare, Clinical Research and Development, Westlake Village, CA, USA
| |
Collapse
|
24
|
Abstract
The pathogenesis of inhibitory antibodies has been the focus of major scientific interest over the last decades, and several studies on underlying immune mechanisms and risk factors for formation of these antibodies have been performed with the aim of improving the ability to both predict and prevent their appearance. It seems clear that the decisive factors for the immune response to the deficient factor are multiple and involve components of both a constitutional and therapy-related nature. A scientific concern and obstacle for research in the area of hemophilia is the relatively small cohorts available for studies and the resulting risk of confounded and biased results. Careful interpretation of data is recommended to avoid treatment decisions based on a weak scientific platform. This review will summarize current concepts of the underlying immunological mechanisms and risk factors for development of inhibitory antibodies in patients with hemophilia A and discuss how these findings may be interpreted and influence our clinical management of patients.
Collapse
|
25
|
Minno GD, Santagostino E, Pratt K, Königs C. New predictive approaches for ITI treatment. Haemophilia 2015; 20 Suppl 6:27-43. [PMID: 24975702 DOI: 10.1111/hae.12467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune tolerance induction (ITI) therapy in patients with haemophilia A and inhibitors constitutes a huge burden for affected patients and families and poses a large economic burden for a chronic disease. Concerted research efforts are attempting to optimize the therapeutic approach to the prevention and eradication of inhibitors. The Italian ITI Registry has provided data on 110 patients who completed ITI therapy as at July 2013. Analysis of independent predictors of success showed that, together with previously recognized factors - namely inhibitor titre prior to ITI, historical peak titre and peak titre on ITI - the type of causative FVIII gene mutation also contributes to the identification of patients with good prognosis and may be useful to optimize candidate selection and treatment regimens. Numerous studies have demonstrated that inhibitor reactivity against different FVIII products varies and is lower against concentrates containing von Willebrand factor (VWF). An Italian study compared inhibitor titres against a panel of FVIII concentrates in vitro and correlated titres with the capacity to inhibit maximum thrombin generation as measured by the thrombin generation assay (TGA). Observations led to the design of the PredictTGA study which aims to correlate TGA results with epitope specificity, inhibitor reactivity against different FVIII concentrates and clinical data in inhibitor patients receiving FVIII in the context of ITI or as prophylactic/on demand treatment. At the immunological level, it is known that T cells drive inhibitor development and that B cells secrete FVIII-specific antibodies. As understanding increases about the immunological response in ITI, it is becoming apparent that modulation of T-cell- and B-cell-mediated responses offers a range of potential new and specific approaches to prevent and eliminate inhibitors as well as individualize ITI therapy.
Collapse
Affiliation(s)
- G D Minno
- Regional Reference Centre for Coagulation Disorders, Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | | | | | | |
Collapse
|
26
|
Abstract
Abstract
The development of neutralizing antibodies against factor VIII (FVIII inhibitors) and factor IX (FIX inhibitors) is the major complication in hemophilia care today. The antibodies neutralize the biological activity of FVIII and FIX and render replacement therapies ineffective. Antibodies are generated as a result of a cascade of tightly regulated interactions between different cells of the innate and the adaptive immune system located in distinct compartments. Any event that modulates the repertoire of specific B or T cells, the activation state of the innate and adaptive immune system, or the migration pattern of immune cells will therefore potentially influence the risk for patients to develop inhibitors. This chapter reviews our current understanding of different pathways of antibody development that result in different qualities of antibodies. Potential differences in differentiation pathways leading to high-affinity neutralizing or low-affinity non-neutralizing antibodies and the potential influence of gene polymorphisms such as HLA haplotype, FVIII haplotype, and polymorphisms of immunoregulatory genes are discussed.
Collapse
|
27
|
Reipert BM. Risky business of inhibitors: HLA haplotypes, gene polymorphisms, and immune responses. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:372-378. [PMID: 25696881 DOI: 10.1182/asheducation-2014.1.372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of neutralizing antibodies against factor VIII (FVIII inhibitors) and factor IX (FIX inhibitors) is the major complication in hemophilia care today. The antibodies neutralize the biological activity of FVIII and FIX and render replacement therapies ineffective. Antibodies are generated as a result of a cascade of tightly regulated interactions between different cells of the innate and the adaptive immune system located in distinct compartments. Any event that modulates the repertoire of specific B or T cells, the activation state of the innate and adaptive immune system, or the migration pattern of immune cells will therefore potentially influence the risk for patients to develop inhibitors. This chapter reviews our current understanding of different pathways of antibody development that result in different qualities of antibodies. Potential differences in differentiation pathways leading to high-affinity neutralizing or low-affinity non-neutralizing antibodies and the potential influence of gene polymorphisms such as HLA haplotype, FVIII haplotype, and polymorphisms of immunoregulatory genes are discussed.
Collapse
|
28
|
Vogel CW, Finnegan PW, Fritzinger DC. Humanized cobra venom factor: Structure, activity, and therapeutic efficacy in preclinical disease models. Mol Immunol 2014; 61:191-203. [DOI: 10.1016/j.molimm.2014.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|