1
|
Watanabe-Asaka T, Hayashi M, Harada T, Uemura S, Takai J, Nakamura Y, Moriguchi T, Kawai Y. Perturbed collagen metabolism underlies lymphatic recanalization failure in Gata2 heterozygous deficient mice. J Biochem 2024; 175:551-560. [PMID: 38168819 DOI: 10.1093/jb/mvad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.
Collapse
Affiliation(s)
- Tomomi Watanabe-Asaka
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Takuya Harada
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Satoshi Uemura
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical and Pharmaceutical University, School of Medicine 983-8536 Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| |
Collapse
|
2
|
Liu Q, Li C, Deng B, Gao P, Wang L, Li Y, Shiri M, Alkaifi F, Zhao J, Stephens JM, Simintiras CA, Francis J, Sun J, Fu X. Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell Rep 2023; 42:112166. [PMID: 36857185 PMCID: PMC10208561 DOI: 10.1016/j.celrep.2023.112166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/01/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Distinct locations of different white adipose depots suggest anatomy-specific developmental regulation, a relatively understudied concept. Here, we report a population of Tcf21 lineage cells (Tcf21 LCs) present exclusively in visceral adipose tissue (VAT) that dynamically contributes to VAT development and expansion. During development, the Tcf21 lineage gives rise to adipocytes. In adult mice, Tcf21 LCs transform into a fibrotic or quiescent state. Multiomics analyses show consistent gene expression and chromatin accessibility changes in Tcf21 LC, based on which we constructed a gene-regulatory network governing Tcf21 LC activities. Furthermore, single-cell RNA sequencing (scRNA-seq) identifies the heterogeneity of Tcf21 LCs. Loss of Tcf21 promotes the adipogenesis and developmental progress of Tcf21 LCs, leading to improved metabolic health in the context of diet-induced obesity. Mechanistic studies show that the inhibitory effect of Tcf21 on adipogenesis is at least partially mediated via Dlk1 expression accentuation.
Collapse
Affiliation(s)
- Qianglin Liu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Chaoyang Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Buhao Deng
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; Department of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peidong Gao
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Leshan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Yuxia Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Mohammad Shiri
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Fozi Alkaifi
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Junxing Zhao
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; Department of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jiangwen Sun
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA.
| | - Xing Fu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Aplastic Anemia as a Roadmap for Bone Marrow Failure: An Overview and a Clinical Workflow. Int J Mol Sci 2022; 23:ijms231911765. [PMID: 36233062 PMCID: PMC9569739 DOI: 10.3390/ijms231911765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, it has become increasingly apparent that bone marrow (BM) failures and myeloid malignancy predisposition syndromes are characterized by a wide phenotypic spectrum and that these diseases must be considered in the differential diagnosis of children and adults with unexplained hematopoiesis defects. Clinically, hypocellular BM failure still represents a challenge in pathobiology-guided treatment. There are three fundamental topics that emerged from our review of the existing data. An exogenous stressor, an immune defect, and a constitutional genetic defect fuel a vicious cycle of hematopoietic stem cells, immune niches, and stroma compartments. A wide phenotypic spectrum exists for inherited and acquired BM failures and predispositions to myeloid malignancies. In order to effectively manage patients, it is crucial to establish the right diagnosis. New theragnostic windows can be revealed by exploring BM failure pathomechanisms.
Collapse
|
4
|
Zhang C, Han X, Liu J, Chen L, Lei Y, Chen K, Si J, Wang TY, Zhou H, Zhao X, Zhang X, An Y, Li Y, Wang QF. Single-cell Transcriptomic Analysis Reveals the Cellular Heterogeneity of Mesenchymal Stem Cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:70-86. [PMID: 35123072 PMCID: PMC9510874 DOI: 10.1016/j.gpb.2022.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 01/04/2023]
Abstract
Ex vivo-expanded mesenchymal stem cells (MSCs) have been demonstrated to be a heterogeneous mixture of cells exhibiting varying proliferative, multipotential, and immunomodulatory capacities. However, the exact characteristics of MSCs remain largely unknown. By single-cell RNA sequencing of 61,296 MSCs derived from bone marrow and Wharton’s jelly, we revealed five distinct subpopulations. The developmental trajectory of these five MSC subpopulations was mapped, revealing a differentiation path from stem-like active proliferative cells (APCs) to multipotent progenitor cells, followed by branching into two paths: 1) unipotent preadipocytes or 2) bipotent prechondro-osteoblasts that were subsequently differentiated into unipotent prechondrocytes. The stem-like APCs, expressing the perivascular mesodermal progenitor markers CSPG4/MCAM/NES, uniquely exhibited strong proliferation and stemness signatures. Remarkably, the prechondrocyte subpopulation specifically expressed immunomodulatory genes and was able to suppress activated CD3+ T cell proliferation in vitro, supporting the role of this population in immunoregulation. In summary, our analysis mapped the heterogeneous subpopulations of MSCs and identified two subpopulations with potential functions in self-renewal and immunoregulation. Our findings advance the definition of MSCs by identifying the specific functions of their heterogeneous cellular composition, allowing for more specific and effective MSC application through the purification of their functional subpopulations.
Collapse
Affiliation(s)
- Chen Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Qingdao 266035, China
| | - Xueshuai Han
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingkun Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Lei
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunying Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Si
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Yi Wang
- International Department, Liangxiang Campus, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Hui Zhou
- Yihua Biotechnology Co., Ltd., Beijing 100041, China
| | - Xiaoyun Zhao
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China; Qingdao Key Lab of Mitochondrial Medicine, Qingdao 266035, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China
| | - Yihua An
- Department of Functional Neurosurgery, Third Medical Center, General Hospital of Chinese PLA, Beijing 100039, China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Tanhuad N, Thongsa-Ad U, Sutjarit N, Yoosabai P, Panvongsa W, Wongniam S, Suksamrarn A, Piyachaturawat P, Anurathapan U, Borwornpinyo S, Chairoungdua A, Hongeng S, Bhukhai K. Ex vivo expansion and functional activity preservation of adult hematopoietic stem cells by a diarylheptanoid from Curcuma comosa. Biomed Pharmacother 2021; 143:112102. [PMID: 34474347 DOI: 10.1016/j.biopha.2021.112102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs, CD34+ cells) have shown therapeutic efficacy for transplantation in various hematological disorders. However, a large quantity of HSCs is required for transplantation. Therefore, strategies to increase HSC numbers and preserve HSC functions through ex vivo culture are critically required. Here, we report that expansion medium supplemented with ASPP 049, a diarylheptanoid isolated from Curcuma comosa, and a cocktail of cytokines markedly increased numbers of adult CD34+ cells. Interestingly, phenotypically defined primitive HSCs (CD34+CD38-CD90+) were significantly increased under ASPP 049 treatment relative to control. ASPP 049 treatment also improved two functional properties of HSCs, as evidenced by an increased number of CD34+CD38- cells in secondary culture (self-renewal) and the growth of colony-forming units as assessed by colony formation assay (multilineage differentiation). Transplantation of cultured CD34+ cells into immunodeficient mice demonstrated the long-term reconstitution and differentiation ability of ASPP 049-expanded cells. RNA sequencing and KEGG analysis revealed that Hippo signaling was the most likely pathway involved in the effects of ASPP 049. These results suggest that ASPP 049 improved ex vivo expansion and functional preservation of expanded HSCs. Our findings provide a rationale for the use of ASPP 049 to grow HSCs prior to hematological disease treatment.
Collapse
Affiliation(s)
- Nopmullee Tanhuad
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ploychompoo Yoosabai
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sirapope Wongniam
- Central Instrument Facility Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Kim S, Lee N, Park ES, Yun H, Ha TU, Jeon H, Yu J, Choi S, Shin B, Yu J, Rhee SD, Choi Y, Rho J. T-Cell Death Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis. Mol Cells 2021; 44:1-12. [PMID: 33335079 PMCID: PMC7854182 DOI: 10.14348/molcells.2020.0143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.
Collapse
Affiliation(s)
- Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Eui-Soon Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Uk Ha
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Seunga Choi
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Bongjin Shin
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jungeun Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sang Dal Rhee
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Sun C, Zhang K, Yue J, Meng S, Zhang X. Deconstructing transcriptional variations and their effects on immunomodulatory function among human mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:53. [PMID: 33422149 PMCID: PMC7796611 DOI: 10.1186/s13287-020-02121-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC)-based therapies are being actively investigated in various inflammatory disorders. However, functional variability among MSCs cultured in vitro will lead to distinct therapeutic efficacies. Until now, the mechanisms behind immunomodulatory functional variability in MSCs are still unclear. Methods We systemically investigated transcriptomic variations among MSC samples derived from multiple tissues to reveal their effects on immunomodulatory functions of MSCs. We then analyzed transcriptomic changes of MSCs licensed with INFγ to identify potential molecular mechanisms that result in distinct MSC samples with different immunomodulatory potency. Results MSCs were clustered into distinct groups showing different functional enrichment according to transcriptomic patterns. Differential expression analysis indicated that different groups of MSCs deploy common regulation networks in response to inflammatory stimulation, while expression variation of genes in the networks could lead to different immunosuppressive capability. These different responsive genes also showed high expression variability among unlicensed MSC samples. Finally, a gene panel was derived from these different responsive genes and was able to regroup unlicensed MSCs with different immunosuppressive potencies. Conclusion This study revealed genes with expression variation that contribute to immunomodulatory functional variability of MSCs and provided us a strategy to identify candidate markers for functional variability assessment of MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02121-8.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kehua Zhang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianhui Yue
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shufang Meng
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Zhang
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| |
Collapse
|
8
|
Jiang R, Yang T, Zhang Y, Wang Z, Zhang T. LKB1 Promotes the Transformation of Bone Marrow Mesenchymal Stem Cells into Adipocytes Under Oxidative Stress via AMPK-mTOR Signaling Pathway. J Interferon Cytokine Res 2020; 40:370-376. [PMID: 32634329 DOI: 10.1089/jir.2019.0212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) are cells with the potential to differentiate into adipocytes in oxidative stress. In this study, tert-butyl hydroperoxide is used as a stimulator that promotes reactive oxygen species in BM-MSCs. The results demonstrate that knockdown of LKB1 inhibits the transformation of BM-MSCs into adipocytes in the presence of oxidative stress. In addition, β3 adrenergic receptor agonists, a positive stimulatory molecule for the transformation of BM-MSCs into adipocytes, restores the transformation ability of BM-MSCs caused by LKB1-siRNA. As an upstream signal of adenosine monophosphate-activated protein kinase (AMPK), LKB1 activates the AMPK pathway and promotes the expression of PPARγ and CCAAT/enhancer binding proteins (C/EBPα). This indicates that the regulation of LKB1 on BM-MSCs is dependent on the AMPK pathway. Immunofluorescence localization experiments reveal that the LKB1 and AMPK localizations partially overlap, oxidative stress promotes their expression in the cytoplasm. In general, LKB1 promotes the transformation of BM-MSCs to adipocytes by activating AMPK pathway under oxidative stress.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Orthopaedic Surgery, Shanghai Gongli Hospital, Shanghai, China
| | - Tieyi Yang
- Department of Orthopaedic Surgery, Shanghai Gongli Hospital, Shanghai, China
| | - Yan Zhang
- Department of Orthopaedic Surgery, Shanghai Gongli Hospital, Shanghai, China
| | - Zhi Wang
- Department of Orthopaedic Surgery, Shanghai Gongli Hospital, Shanghai, China
| | - Tong Zhang
- Department of Dermatology, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Weinstein N, Mendoza L, Álvarez-Buylla ER. A Computational Model of the Endothelial to Mesenchymal Transition. Front Genet 2020; 11:40. [PMID: 32226439 PMCID: PMC7080988 DOI: 10.3389/fgene.2020.00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they may differentiate into mesenchymal cells (MCs). These processes are known as EC activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip, and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP) function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart valve development, while a defective EndMT regulation is involved in the physiopathology of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis, pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has many promising potential applications in regenerative medicine. Despite the fact that many molecular components involved in EC activation and EndMT have been characterized, the system-level molecular mechanisms involved in this process have not been elucidated. Toward this end, hereby we present Boolean network model of the molecular involved in the regulation of EC activation and EndMT. The simulated dynamic behavior of our model reaches fixed and cyclic patterns of activation that correspond to the expected EC and MC cell types and behaviors, recovering most of the specific effects of simple gain and loss-of-function mutations as well as the conditions associated with the progression of several diseases. Therefore, our model constitutes a theoretical framework that can be used to generate hypotheses and guide experimental inquiry to comprehend the regulatory mechanisms behind EndMT. Our main findings include that both the extracellular microevironment and the pattern of molecular activity within the cell regulate EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip cells cannot undergo EndMT directly. Furthermore, the specific conditions that are sufficient to trigger EndMT depend on the specific pattern of molecular activation within the cell.
Collapse
Affiliation(s)
- Nathan Weinstein
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Ciciarello M, Curti A. Good news for acute myeloid leukaemia patients from the stroll niche? Br J Haematol 2020; 189:597-599. [PMID: 31960415 DOI: 10.1111/bjh.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marilena Ciciarello
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", Bologna, Italy
| | - Antonio Curti
- Department of Haematology and Oncology, University Hospital S.Orsola-Malpighi, Institute of Haematology "L. and A. Seràgnoli", Bologna, Italy
| |
Collapse
|
11
|
Li S, Qin M, Wu R, Meng H, He Y, Wang B, Zhou X, Zhu G. Insensitive to PTH of CD8 + T cells regulate bone marrow mesenchymal stromal cell in aplastic anemia patients. Int J Med Sci 2020; 17:1665-1672. [PMID: 32714069 PMCID: PMC7378662 DOI: 10.7150/ijms.47273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Aplastic anemia (AA) is a rare disorder characterized by the suppression of bone marrow function resulting in progressive pancytopenia. The pathogenesis of AA is complex and involves an abnormal hematopoietic microenvironment, hematopoietic stem cell/progenitor cell deficiencies, and immunity disorders. However, the underlying mechanism of the disease is still not fully uncovered. In this research, we collected both donor and patient samples and found suppressed proliferation, abnormal differentiation as well as increased apoptosis of patient mesenchymal stem cells (MSCs). Considering the close relationship of parathyroid hormone (PTH) and MSCs differentiation, further studies showed that although patients maintained normal serum PTH level, their CD8+ T cells possessed lower PTH receptors. The insensitive to PTH of patients' CD8+ T cells finally lead to reduced expression of key Wnt factors. In all, bone marrow CD8+ T cells may play an important role in inducing MSCs adipogenesis and osteogenesis imbalancement.
Collapse
Affiliation(s)
- Sidan Li
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Maoquan Qin
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Runhui Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hengxing Meng
- Zhong Wei Xin Biotechnology Co., Ltd, Tianjin, China
| | - Yixuan He
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xuan Zhou
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guanghua Zhu
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Benova A, Tencerova M. Obesity-Induced Changes in Bone Marrow Homeostasis. Front Endocrinol (Lausanne) 2020; 11:294. [PMID: 32477271 PMCID: PMC7235195 DOI: 10.3389/fendo.2020.00294] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Obesity is characterized by low-grade inflammation, which is accompanied by increased accumulation of immune cells in peripheral tissues including adipose tissue (AT), skeletal muscle, liver and pancreas, thereby impairing their primary metabolic functions in the regulation of glucose homeostasis. Obesity has also shown to have a detrimental effect on bone homeostasis by altering bone marrow and hematopoietic stem cell differentiation and thus impairing bone integrity and immune cell properties. The origin of immune cells arises in the bone marrow, which has been shown to be affected with the obesogenic condition via increased cellularity and shifting differentiation and function of hematopoietic and bone marrow mesenchymal stem cells in favor of myeloid progenitors and increased bone marrow adiposity. These obesity-induced changes in the bone marrow microenvironment lead to dramatic bone marrow remodeling and compromising immune cell functions, which in turn affect systemic inflammatory conditions and regulation of whole-body metabolism. However, there is limited information on the inflammatory secretory factors creating the bone marrow microenvironment and how these factors changed during metabolic complications. This review summarizes recent findings on inflammatory and cellular changes in the bone marrow in relation to obesity and further discuss whether dietary intervention or physical activity may have beneficial effects on the bone marrow microenvironment and whole-body metabolism.
Collapse
|
13
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
14
|
Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone. Mol Cell Biol 2018; 38:MCB.00599-17. [PMID: 29581184 DOI: 10.1128/mcb.00599-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 12/27/2022] Open
Abstract
The transcription factor GATA2 is required for expansion and differentiation of hematopoietic stem cells (HSCs). In mesenchymal stem cells (MSCs), GATA2 blocks adipogenesis, but its biological relevance and underlying genomic events are unknown. We report a dual function of GATA2 in bone homeostasis. GATA2 in MSCs binds near genes involved in skeletal system development and colocalizes with motifs for FOX and HOX transcription factors, known regulators of skeletal development. Ectopic GATA2 blocks osteoblastogenesis by interfering with SMAD1/5/8 activation. MSC-specific deletion of GATA2 in mice increases the numbers and differentiation capacity of bone-derived precursors, resulting in elevated bone formation. Surprisingly, MSC-specific GATA2 deficiency impairs the trabecularization and mechanical strength of bone, involving reduced MSC expression of the osteoclast inhibitor osteoprotegerin and increased osteoclast numbers. Thus, GATA2 affects bone turnover via MSC-autonomous and indirect effects. By regulating bone trabecularization, GATA2 expression in the osteogenic lineage may contribute to the anatomical and cellular microenvironment of the HSC niche required for hematopoiesis.
Collapse
|
15
|
Ohashi K, Fujiwara T, Onodera K, Saito Y, Ichikawa S, Kobayashi M, Okitsu Y, Fukuhara N, Onishi Y, Harigae H. Establishment of a Screening System to Identify Novel GATA-2 Transcriptional Regulators. TOHOKU J EXP MED 2018; 244:41-52. [PMID: 29343653 DOI: 10.1620/tjem.244.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in hematopoietic stem and progenitor cells and is essential for cell proliferation and differentiation. Heterozygous germline GATA2 mutations induce GATA-2 deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia and acute myeloid leukemia, and a profoundly reduced dendritic cell (DC) population, which is associated with increased susceptibility to viral infections. Because patients with GATA-2 deficiency syndrome could retain a wild-type copy of GATA-2, boosting residual wild-type GATA-2 activity may represent a novel therapeutic strategy for the disease. Here, we sought to establish a screening system to identify GATA-2 activators using human U937 monocytic cells as a potential model of the DC progenitor. Enforced GATA-2 expression in U937 cells induces CD205 expression, a marker of DC differentiation, indicating U937 cells as a surrogate of human primary DC progenitors. Transient luciferase reporter assays in U937 cells reveals a high promoter activity of the -0.5 kb GATA-2 hematopoietic-specific promoter (1S promoter) fused with two tandemly connected GATA-2 +9.9 kb intronic enhancers. We thus established U937-derived cell lines stably expressing tandem +9.9 kb/-0.5 kb 1S-luciferase. Importantly, forced GATA-1 expression, a repressor for GATA-2 expression, in the stable clones caused significant decreases in the luciferase activities. In conclusion, our system represents a potential tool for identifying novel regulators of GATA-2, thereby contributing to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Keiichi Ohashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Koichi Onodera
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Yo Saito
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Satoshi Ichikawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Masahiro Kobayashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Yoko Okitsu
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| |
Collapse
|
16
|
Abstract
Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are "inert space fillers" has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.
Collapse
|
17
|
Carrillo-de-Santa-Pau E, Juan D, Pancaldi V, Were F, Martin-Subero I, Rico D, Valencia A. Automatic identification of informative regions with epigenomic changes associated to hematopoiesis. Nucleic Acids Res 2017; 45:9244-9259. [PMID: 28934481 PMCID: PMC5716146 DOI: 10.1093/nar/gkx618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis is one of the best characterized biological systems but the connection between chromatin changes and lineage differentiation is not yet well understood. We have developed a bioinformatic workflow to generate a chromatin space that allows to classify 42 human healthy blood epigenomes from the BLUEPRINT, NIH ROADMAP and ENCODE consortia by their cell type. This approach let us to distinguish different cells types based on their epigenomic profiles, thus recapitulating important aspects of human hematopoiesis. The analysis of the orthogonal dimension of the chromatin space identify 32,662 chromatin determinant regions (CDRs), genomic regions with different epigenetic characteristics between the cell types. Functional analysis revealed that these regions are linked with cell identities. The inclusion of leukemia epigenomes in the healthy hematological chromatin sample space gives us insights on the healthy cell types that are more epigenetically similar to the disease samples. Further analysis of tumoral epigenetic alterations in hematopoietic CDRs points to sets of genes that are tightly regulated in leukemic transformations and commonly mutated in other tumors. Our method provides an analytical approach to study the relationship between epigenomic changes and cell lineage differentiation. Method availability: https://github.com/david-juan/ChromDet.
Collapse
Affiliation(s)
| | - David Juan
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, 08003, Spain
| | - Vera Pancaldi
- Barcelona Supercomputing Centre (BSC), Barcelona, 08034, Spain
| | - Felipe Were
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Ignacio Martin-Subero
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Barcelona, 08036, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alfonso Valencia
- Barcelona Supercomputing Centre (BSC), Barcelona, 08034, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | | |
Collapse
|
18
|
Effects of in vivo deletion of GATA2 in bone marrow stromal cells. Exp Hematol 2017; 56:31-45.e2. [PMID: 28866324 DOI: 10.1016/j.exphem.2017.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
The bone marrow (BM) microenvironment comprises multiple stem cell niches derived from BM mesenchymal stem cells (MSCs). Previous in vitro analyses have suggested that transcription factor GATA2 plays an important role in adipocyte differentiation of BM-MSCs and in hematopoietic support, but the role of GATA2 in vivo remains unknown. We evaluated GATA2 effects in BM-MSCs in vivo. Expression profiling analysis of Gata2-knockout Ter119-CD45- mesenchymal stromal cells obtained from compact bone from tamoxifen-treated Gata2 conditional knockout mice (Gata2f/f/ER-Cre mice) revealed upregulation of 110 genes and downregulation of 141 genes by a factor of 2. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell adhesion and chemotaxis. We did not find any phenotypic changes when Gata2 was deleted with BM-MSC-related gene promoters, such as Nestin, Prx1, and Lepr, except for a significant decrease in the colony number of Gata2f/f/Prx1-Cre mice. There was a significant decrease in the percentage of the common myeloid progenitor fraction when Gata2 was deleted in all BM cells, except hematopoietic cells after normal BM cells were transplanted into irradiated Gata2f/f/ER-Cre mice with Gata2 subsequently knocked out by tamoxifen administration. In conclusion, GATA2 could affect the function of BM-MSCs in vivo, presumably by regulating the expression of extracellular signals.
Collapse
|
19
|
Ou YQ, Liu HY, Lu W, Wen MJ, Liu H. [The mechanism of bone marrow-derived mesenchymal stem cells excessive senescence in severe aplastic anemia mouse model]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:325-329. [PMID: 28468095 PMCID: PMC7342723 DOI: 10.3760/cma.j.issn.0253-2727.2017.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Objective: To explore the mechanism of excessive senescence in bone marrow-derived mesenchymal stem cells (BM-MSC) of mouse model with severe aplastic anemia (SAA) . Methods: 40 BALB/c mice were randomly assigned to two groups of control (n=20) and AA (n=20) . SAA mouse model was induced by intraperitoneal injection with IFN-γ and intragastric infusion with busulfan. BM-MSC were isolated and cultured from bone marrow of SAA and healthy mice. The cell morphology was observed by inverted microscope and cell cytoskeleton was stained by Rhodamine-Phalloidin; The level of proliferation was analyzed by CCK-8 method, and cell cycle was tested by flow cytometry. Senescence-associated β-galactosidase (SA-β-gal) assay was used to detect senescent BM-MSC; The expression of mTOR protein was detected by Western blot method. Results: BM-MSC from normal mice presented spindle-shaped, clear boundaries and stress fibers were arranged in parallel, neat. while BM-MSCs from SAA mice presented cell volume increases, tiled, ill-shaped and the stress fiber appeared to be disordered. The decreased activity of proliferation [more cells restricted in G(0)/G(1) phase [ (77.461±1.567) % vs (46.045±2.055) %, t=-34.384, P<0.001], increased percentage of SA-β-gal positive cells [ (75±11) % vs (28±8) %, t=15.454, P<0.001] and notably enhanced expression of mTOR of BM-MSC from SAA mice were observed when compared with those from normal mice. Conclusion: This study clarified senescent BM-MSCs from SAA model mice, which could be caused by the excessive activation of mTOR pathway.
Collapse
Affiliation(s)
- Y Q Ou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | | | | | | | | |
Collapse
|
20
|
Fujiwara T. GATA Transcription Factors: Basic Principles and Related Human Disorders. TOHOKU J EXP MED 2017; 242:83-91. [DOI: 10.1620/tjem.242.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine
| |
Collapse
|
21
|
Taghizadeh M, Noruzinia M. Lovastatin Reduces Stemness via Epigenetic Reprograming of BMP2 and GATA2 in Human Endometrium and Endometriosis. CELL JOURNAL 2017; 19:50-64. [PMID: 28367417 PMCID: PMC5241518 DOI: 10.22074/cellj.2016.3894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The stem cell theory in the endometriosis provides an advanced avenue of targeting these cells as a novel therapy to eliminate endometriosis. In this regard, studies showed that lovastatin alters the cells from a stem-like state to more differentiated condition and reduces stemness. The aim of this study was to investigate whether lovastatin treatment could influence expression and methylation patterns of genes regulating differentiation of endometrial mesenchymal stem cells (eMSCs) such as BMP2, GATA2 and RUNX2 as well as eMSCs markers. MATERIALS AND METHODS In this experimental investigation, MSCs were isolated from endometrial and endometriotic tissues and treated with lovastatin and decitabin. To investigate the osteogenic and adipogenic differentiation of eMSCs treated with the different concentration of lovastatin and decitabin, BMP2, RUNX2 and GATA2 expressions were measured by real-time polymerase chain reaction (PCR). To determine involvement of DNA methylation in BMP2 and GATA2 gene regulations of eMSCs, we used quantitative Methylation Specific PCR (qMSP) for evaluation of the BMP2 promoter status and differentially methylated region of GATA2 exon 4. RESULTS In the present study, treatment with lovastatin increased expression of BMP2 and RUNX2 and induced BMP2 promoter demethylation. We also demonstrated that lovastatin treatment down-regulated GATA2 expression via inducing methylation. In addition, the results indicated that CD146 cell marker was decreased to 53% in response to lovastatin treatment compared to untreated group. CONCLUSION These findings indicated that lovastatin treatment could increase the differentiation of eMSCs toward osteogenic and adiogenic lineages, while it decreased expression of eMSCs markers and subsequently reduced the stemness.
Collapse
Affiliation(s)
| | - Mehrdad Noruzinia
- P.O.Box: 11115-331Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
22
|
GATA2 regulates dendritic cell differentiation. Blood 2016; 128:508-18. [PMID: 27259979 DOI: 10.1182/blood-2016-02-698118] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/18/2016] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.
Collapse
|
23
|
Yu P, Ji L, Lee KJ, Yu M, He C, Ambati S, McKinney EC, Jackson C, Baile CA, Schmitz RJ, Meagher RB. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS One 2016; 11:e0154949. [PMID: 27171244 PMCID: PMC4865362 DOI: 10.1371/journal.pone.0154949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of cellular memory in specific cell types, and in visceral adipocytes in particular, appears to be a fundamental aspect of obesity and its related negative health outcomes. We explored the hypothesis that adipose tissue contains epigenetically distinct subpopulations of adipocytes that are differentially potentiated to record cellular memories of their environment. Adipocytes are large, fragile, and technically difficult to efficiently isolate and fractionate. We developed fluorescence nuclear cytometry (FNC) and fluorescence activated nuclear sorting (FANS) of cellular nuclei from visceral adipose tissue (VAT) using the levels of the pan-adipocyte protein, peroxisome proliferator-activated receptor gamma-2 (PPARg2), to distinguish classes of PPARg2-Positive (PPARg2-Pos) adipocyte nuclei from PPARg2-Negative (PPARg2-Neg) leukocyte and endothelial cell nuclei. PPARg2-Pos nuclei were 10-fold enriched for most adipocyte marker transcripts relative to PPARg2-Neg nuclei. PPARg2-Pos nuclei showed 2- to 50-fold higher levels of transcripts encoding most of the chromatin-remodeling factors assayed, which regulate the methylation of histones and DNA cytosine (e.g., DNMT1, TET1, TET2, KDM4A, KMT2C, SETDB1, PAXIP1, ARID1A, JMJD6, CARM1, and PRMT5). PPARg2-Pos nuclei were large with decondensed chromatin. TAB-seq demonstrated 5-hydroxymethylcytosine (5hmC) levels were remarkably dynamic in gene bodies of various classes of VAT nuclei, dropping 3.8-fold from the highest quintile of expressed genes to the lowest. In short, VAT-derived adipocytes appear to be more actively remodeling their chromatin than non-adipocytes.
Collapse
Affiliation(s)
- Ping Yu
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Kevin J. Lee
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
- GRU-UGA Medical Partnership, University of Georgia Health Sciences Campus, Prince Avenue, Athens, GA, 30602, United States of America
| | - Miao Yu
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637 USA
| | - Chuan He
- Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637 USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Elizabeth C. McKinney
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Crystal Jackson
- Abeome Corporation, Athens, GA, 111 Riverbend Road, 30602, United States of America
| | - Clifton A. Baile
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Dr, Athens, GA, 30602, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, 120 East Green Street, Athens, GA, 30602, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Gata2 is a zinc finger transcription factor that is important in hematopoiesis and neuronal development. However, the roles of Gata2 in the mesenchymal lineages are poorly understood. In vitro studies suggest that Gata2 modulates adipocyte differentiation and mesenchymal stem cell (MSC) proliferation. To systematically determine the in vivo functions of Gata2 in the MSC lineage commitment and development, we have generated three mouse models in which Gata2 is specifically deleted in MSCs, adipocytes, or osteoblasts. During the MSC expansion stage, Gata2 promotes proliferation and attenuates differentiation; thereby Gata2 loss in MSCs results in enhanced differentiation of both adipocytes and osteoblasts. During the differentiation stage, Gata2 also plays MSC-independent roles to impede lineage commitment; hence, Gata2 loss in adipocyte or osteoblast lineages also augments adipogenesis and osteoblastogenesis, respectively. These findings reveal Gata2 as a crucial rheostat of MSC fate to control osteoblast and adipocyte lineage development.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Pharmacology (X.L., H.H., H.Z., Y.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Veterinary Biosciences (M.S.), University of Helsinki, Helsinki 00014, Finland
| | - HoangDinh Huynh
- Department of Pharmacology (X.L., H.H., H.Z., Y.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Veterinary Biosciences (M.S.), University of Helsinki, Helsinki 00014, Finland
| | - Hao Zuo
- Department of Pharmacology (X.L., H.H., H.Z., Y.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Veterinary Biosciences (M.S.), University of Helsinki, Helsinki 00014, Finland
| | - Marjo Salminen
- Department of Pharmacology (X.L., H.H., H.Z., Y.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Veterinary Biosciences (M.S.), University of Helsinki, Helsinki 00014, Finland
| | - Yihong Wan
- Department of Pharmacology (X.L., H.H., H.Z., Y.W.), The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and Department of Veterinary Biosciences (M.S.), University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
25
|
Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, Sacchetti A, Erba E, Panini N, Parazzi V, Barilani M, Forloni G, Perale G, Lazzari L, Veglianese P. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials 2016; 75:135-147. [DOI: 10.1016/j.biomaterials.2015.10.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 02/06/2023]
|
26
|
Saito Y, Fujiwara T, Ohashi K, Okitsu Y, Fukuhara N, Onishi Y, Ishizawa K, Harigae H. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells. PLoS One 2015; 10:e0137079. [PMID: 26325290 PMCID: PMC4556642 DOI: 10.1371/journal.pone.0137079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA) library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S); therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2.
Collapse
Affiliation(s)
- Yo Saito
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Ohashi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Okitsu
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Fukuhara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Onishi
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishizawa
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Hematology and Cell Therapy, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
27
|
Zeng Y, Katsanis E. The complex pathophysiology of acquired aplastic anaemia. Clin Exp Immunol 2015; 180:361-70. [PMID: 25683099 DOI: 10.1111/cei.12605] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
Immune-mediated destruction of haematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired aplastic anaemia (aAA). Dysregulated CD8(+) cytotoxic T cells, CD4(+) T cells including T helper type 1 (Th1), Th2, regulatory T cells and Th17 cells, natural killer (NK) cells and NK T cells, along with the abnormal production of cytokines including interferon (IFN)-γ, tumour necrosis factor (TNF)-α and transforming growth factor (TGF)-β, induce apoptosis of HSPCs, constituting a consistent and defining feature of severe aAA. Alterations in the polymorphisms of TGF-β, IFN-γ and TNF-α genes, as well as certain human leucocyte antigen (HLA) alleles, may account for the propensity to immune-mediated killing of HSPCs and/or ineffective haematopoiesis. Although the inciting autoantigens remain elusive, autoantibodies are often detected in the serum. In addition, recent studies provide genetic and molecular evidence that intrinsic and/or secondary deficits in HSPCs and bone marrow mesenchymal stem cells may underlie the development of bone marrow failure.
Collapse
Affiliation(s)
- Y Zeng
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, AZ, USA
| | - E Katsanis
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|