1
|
Argall AD, Sucharski-Argall HC, Comisford LG, Jurs SJ, Seminetta JT, Wallace MJ, Crawford CA, Takenaka SS, Han M, El Refaey M, Hund TJ, Mohler PJ, Koenig SN. Novel Identification of Ankyrin-R in Cardiac Fibroblasts and a Potential Role in Heart Failure. Int J Mol Sci 2024; 25:8403. [PMID: 39125973 PMCID: PMC11313496 DOI: 10.3390/ijms25158403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Altered ankyrin-R (AnkR; encoded by ANK1) expression is associated with diastolic function, left ventricular remodeling, and heart failure with preserved ejection fraction (HFpEF). First identified in erythrocytes, the role of AnkR in other tissues, particularly the heart, is less studied. Here, we identified the expression of both canonical and small isoforms of AnkR in the mouse myocardium. We demonstrate that cardiac myocytes primarily express small AnkR (sAnkR), whereas cardiac fibroblasts predominantly express canonical AnkR. As canonical AnkR expression in cardiac fibroblasts is unstudied, we focused on expression and localization in these cells. AnkR is expressed in both the perinuclear and cytoplasmic regions of fibroblasts with considerable overlap with the trans-Golgi network protein 38, TGN38, suggesting a potential role in trafficking. To study the role of AnkR in fibroblasts, we generated mice lacking AnkR in activated fibroblasts (Ank1-ifKO mice). Notably, Ank1-ifKO mice fibroblasts displayed reduced collagen compaction, supportive of a novel role of AnkR in normal fibroblast function. At the whole animal level, in response to a heart failure model, Ank1-ifKO mice displayed an increase in fibrosis and T-wave inversion compared with littermate controls, while preserving cardiac ejection fraction. Collagen type I fibers were decreased in the Ank1-ifKO mice, suggesting a novel function of AnkR in the maturation of collagen fibers. In summary, our findings illustrate the novel expression of AnkR in cardiac fibroblasts and a potential role in cardiac function in response to stress.
Collapse
Affiliation(s)
- Aaron D. Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Holly C. Sucharski-Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Luke G. Comisford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sallie J. Jurs
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Jack T. Seminetta
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Casey A. Crawford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sarah S. Takenaka
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Mei Han
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sara N. Koenig
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
A novel splicing mutation of ANK1 is associated with phenotypic heterogeneity of hereditary spherocytosis in a Chinese family. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166595. [PMID: 36336297 DOI: 10.1016/j.bbadis.2022.166595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Hereditary spherocytosis (HS) is a common hematological genetic disorder that results in anemia, jaundice and splenomegaly. It is caused by mutations in the ANK1, SPTA, SPTB, SLC4A1 and EPB42 genes, which encode red blood cell membrane and skeletal proteins. Patients show high heterogeneity in phenotype and genotype and the genotype-phenotype correlation still requires clarification. Here, a novel splicing mutation (ANK1: c.4391-2 A>C) was identified by whole-exome sequencing (WES) and Sanger sequencing in a Chinese boy who exhibited a moderately severe HS phenotype. However, his father exhibited a mild phenotype, despite carrying the same HS-causing mutation. The function of the mutant ANK1 protein was analyzed by both bioinformatics and experimental analysis. The mutant protein (p.N1463Kfs*4) showed a different 3D-structure and altered subcellular localization, when compared with the wild-type ANK1 protein. These changes disrupted the normal cell membrane structure and resulted in spheroidized red blood cells. Amplification of cDNA from the son and his father revealed a difference in expression of the abnormal transcript produced by the splicing mutation. We proposed that the lower expression of the mutant allele may have contributed to the relatively mild symptoms of the father. Our study verified ANK1 c. c.4391-2 A>C as a novel pathogenic mutation that causes HS. We have also provided new insights into the interpretation of phenotypic variability within families, which could greatly improve the clinical diagnosis and genetic counseling of HS.
Collapse
|
3
|
Wang X, Zhang G, Lu Y, Luo X, Wu W. Trio-WES reveals a novel de novo missense mutation of KMT2A in a Chinese patient with Wiedemann-Steiner syndrome: A case report. Mol Genet Genomic Med 2020; 9:e1533. [PMID: 33325147 PMCID: PMC7963408 DOI: 10.1002/mgg3.1533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Wiedemann-Steiner Syndrome (WSS) is an autosomal dominant genetic condition caused by mutations in the KMT2A gene. Lysine methyltransferase, encoded by KMT2A, plays critical roles in the regulation of gene expression during early development. METHODS Trio-based whole exome sequencing (Trio-WES) was performed on a 15 months old Chinese girl and her two parents by MyGenostics (Beijing, China) using the Illumina HiSeq X ten system. Variants were confirmed with Sanger sequencing. She exhibited mild/moderate intellectual disability (ID), hypotonia, hypertrichosis cubiti, hypertrichosis on the back, dysmorphic facies, psychomotor retardation, growth delay, small and puffy hands, fat pads anterior to calcanei, and palmar/plantar grooves. RESULTS Trio-WES revealed a novel de novo mutation of KMT2A gene (NM_001197104.1: c.3566G>T, p.Cys1189Phe). WSS was diagnosed based on WES and clinical features. CONCLUSION Our findings expand the phenotypic and mutation spectra of WSS.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guijiao Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang X, Zhang A, Huang M, Chen L, Hu Q, Lu Y, Cheng L. Genetic and Clinical Characteristics of Patients With Hereditary Spherocytosis in Hubei Province of China. Front Genet 2020; 11:953. [PMID: 33014018 PMCID: PMC7461774 DOI: 10.3389/fgene.2020.00953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Hereditary spherocytosis (HS) is an inherited disorder characterized by anemia, splenomegaly, and spherical-shaped erythrocytes, caused by mutations in erythrocyte membrane Protein Genes (ANK1, SPTB, SLC4A1, SPTA1, and EPB42). We investigated molecular spectrum and genotype-phenotype correlation in HS patients in Hubei province, central China. Twenty-three patients with HS were included. A next-generation sequencing (NGS) panel targeting ANK1, SPTB, SLC4A1, SPTA1, and EPB42 genes was used to screen potential variants. Sanger sequencing was applied to validate variants. Of the twenty-three patients, thirteen patients carried ANK1 variants, and ten patients harbored SPTB variants, including ten non-sense, six indel, four splice site, one start-loss, and one missense variant. Four out of twenty-two variants in our study were known, and eighteen variants were novel. Most ANK1 and SPTB variants were indel (5/12) or non-sense (7/10), respectively. Family member analysis in thirteen families showed that six variants were de novo. Variable expressivities were observed in a pair of twins with ANK1 c.341C > T variant, and two unrelated patients both carried ANK1 c.2T > A variant. Genotype-phenotype analysis found no significant difference between ANK1 and SPTB regarding the levels of Hb, RBC, MCV, MCH, and MCHC. However, variants in the ANK1 death domain were associated with lower levels of MCV and MCH compared to other ANK1 domains. In conclusion, NGS is a fast way to provide a molecular HS diagnosis. We also identified unique genetic and clinical characteristics of patients with HS in Hubei Province, China. However, a large sample size is needed to further investigate the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Iolascon A, Andolfo I, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol 2019; 187:13-24. [PMID: 31364155 DOI: 10.1111/bjh.16126] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hereditary erythrocyte membrane disorders are caused by mutations in genes encoding various transmembrane or cytoskeletal proteins of red blood cells. The main consequences of these genetic alterations are decreased cell deformability and shortened erythrocyte survival. Red blood cell membrane defects encompass a heterogeneous group of haemolytic anaemias caused by either (i) altered membrane structural organisation (hereditary spherocytosis, hereditary elliptocytosis, hereditary pyropoikilocytosis and Southeast Asian ovalocytosis) or (ii) altered membrane transport function (overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis or xerocytosis, familial pseudohyperkalaemia and cryohydrocytosis). Herein we provide a comprehensive review of the recent literature on the molecular genetics of erythrocyte membrane defects and their reported clinical consequences. We also describe the effect of low-expression genetic variants on the high inter- and intra-familial phenotype variability of erythrocyte structural defects.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
6
|
Happle R. Gonosomal versus somatogonadal mosaicism: What is in a name? Am J Med Genet A 2019; 179:1678. [DOI: 10.1002/ajmg.a.61204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/06/2019] [Accepted: 05/09/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Rudolf Happle
- Department of DermatologyMedical Center–University of Freiburg Freiburg Germany
| |
Collapse
|
7
|
Fan LL, Liu JS, Huang H, Du R, Xiang R. Whole exome sequencing identified a novel mutation (p.Ala1884Pro) of β-spectrin in a Chinese family with hereditary spherocytosis. J Gene Med 2019; 21:e3073. [PMID: 30690801 DOI: 10.1002/jgm.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hereditary spherocytosis (HS) is an inherited disorder of erythrocyte. The typical feature of HS is the presence of spherical-shaped erythrocytes on the peripheral blood smear. According to previous studies, more than five candidate genes, such as ANK1, SPTB, SPTA1, SLC4A1 and EPB42 have been identified in HS patients. METHODS In the present study, a Chinese HS family was investigated. The proband suffered from pathologic jaundice and splenomegaly. A blood test and peripheral blood smear experiment further confirmed the diagnosis of HS. We selected the proband to perform the whole exome sequencing. RESULTS After data filtering and co-segregation analysis, we identified 12 mutations in affected members that were absent in healthy members. In consideration of the inheritance pattern, Online Mendelian Inheritance in Man clinical phenotypes, Toppgene function and American College of Medical Genetics classification, we considered the novel mutation (c.5650G > C/p.Ala1884Pro) of β-spectrin (SPTB) to be the genetic lesion in this family. The novel mutation, resulting in a substitution of alanine by proline, may lead to transformation of the SPTB protein structure, which affects the binding between SPTB and ankyrin. CONCLUSIONS The present study confirmed the hereditary red blood cell membrane disorders at a molecular level and expanded the spectrum of SPTB mutations. This may contribute to the clinical management and genetic counseling with respect to HS.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Huang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China.,Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Wang X, Liu A, Lu Y, Hu Q. Novel compound heterozygous mutations in the SPTA1 gene, causing hereditary spherocytosis in a neonate with Coombs‑negative hemolytic jaundice. Mol Med Rep 2019; 19:2801-2807. [PMID: 30816434 PMCID: PMC6423610 DOI: 10.3892/mmr.2019.9947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Hereditary spherocytosis (HS) is a common heterogeneous type of inherited hemolytic anemia characterized by jaundice and splenomegaly. Diagnosis of HS in neonates is considered unreliable, and is generally based on positive family history, spherocytes in peripheral smears, increased osmotic fragility, and jaundice. In the present study, routine laboratory tests, next‑generation sequencing, and Sanger sequencing were applied to diagnose a neonatal patient with Coombs‑negative hemolytic jaundice. The neonate had no family history of HS; however, spherocytes were observed in peripheral smears, and the patient exhibited Coombs‑negative and severe hemolytic jaundice, normal mean corpuscular hemoglobin concentration (MCHC) and mean corpuscular volume (MCV), normal glucose‑6‑phosphate dehydrogenase activity, negative thalassemia genetic mutation screening results, and negative autoimmune antibody tests. Novel compound heterozygous mutations in the spectrin‑α, erythrocytic 1 (SPTA1) gene (c.3897‑1G>C and c.5029G>A) were identified. The SPTA1 c.3897‑1G>C mutation in intron 27‑1, which disrupted the consensus splice site, was inherited from his asymptomatic mother, and the SPTA1 c.5029G>A (p.Gly1677Arg) mutation in trans with the SPTA1 c.3897‑1G>C mutation was inherited from his asymptomatic father. Sanger sequencing of mRNA reverse transcribed into cDNA identified a deletion of the first 10 nucleotides of exon 28, confirming the splicing mutation. In conclusion, the present study reports a rare case of autosomal‑recessive HS with a severe clinical phenotype, but normal MCHC and MCV.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
Wang X, Tang N, Wang X, Lu Y, Yang J. PROS1 IVS10+5G>A mutation causes hereditary protein S deficiency in a Chinese patient with pulmonary embolism and venous thromboembolism. Thromb Res 2018; 174:1-4. [PMID: 30543986 DOI: 10.1016/j.thromres.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/08/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jun Yang
- Division of Vascular Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|