1
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
2
|
Li YJ, Geng WL, Li CC, Wu JH, Gao F, Wang Y. Progress of CCL20-CCR6 in the airways: a promising new therapeutic target. J Inflamm (Lond) 2024; 21:54. [PMID: 39731176 DOI: 10.1186/s12950-024-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling. Numerous studies have demonstrated that therapeutic interventions targeting CCL20 and CCR6, including antibodies and antagonists, have the potential to mitigate disease progression. Despite the promising research prospects surrounding the CCL20-CCR6 chemokine axis, the precise mechanisms underlying its action in respiratory diseases remain largely elusive. In this review, we delve into the potential roles of the CCL20-CCR6 axis within the respiratory system by synthesizing and analyzing current research findings. Our objective is to provide a comprehensive understanding of the CCL20-CCR6 axis and its implications for respiratory health and disease. And we aspire to propel research endeavors in this domain and furnish valuable insights for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ya -Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jia-Hao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
3
|
Yoon SE, Kim WS. New insights on Epstein-Barr virus-induced lymphomagenesis. Sci Bull (Beijing) 2024; 69:3478-3479. [PMID: 39370357 DOI: 10.1016/j.scib.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| |
Collapse
|
4
|
Tam H, Xu Y, An J, Schöneberg T, Schulz A, Muppidi JR, Cyster JG. Phosphatidylserine phospholipase A1 enables GPR34-dependent immune cell accumulation in the peritoneal cavity. J Exp Med 2024; 221:e20240992. [PMID: 39412501 PMCID: PMC11488134 DOI: 10.1084/jem.20240992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The peritoneal cavity (PerC) is an important site for immune responses to infection and cancer metastasis. Yet few ligand-receptor axes are known to preferentially govern immune cell accumulation in this compartment. GPR34 is a lysophosphatidylserine (lysoPS)-responsive receptor that frequently harbors gain-of-function mutations in mucosa-associated B cell lymphoma. Here, we set out to test the impact of a GPR34 knock-in (KI) allele in the B-lineage. We report that GPR34 KI promotes the PerC accumulation of plasma cells (PC) and memory B cells (MemB). These KI cells migrate robustly to lysoPS ex vivo, and the KI allele synergizes with a Bcl2 transgene to promote MemB but not PC accumulation. Gene expression and labeling studies reveal that GPR34 KI enhances PerC MemB proliferation. Both KI PC and MemB are specifically enriched at the omentum, a visceral adipose tissue containing fibroblasts that express the lysoPS-generating PLA1A enzyme. Adoptive transfer and chimera experiments revealed that KI PC and MemB maintenance in the PerC is dependent on stromal PLA1A. These findings provide in vivo evidence that PLA1A produces lysoPS that can regulate GPR34-mediated immune cell accumulation at the omentum.
Collapse
Affiliation(s)
- Hanson Tam
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Xu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jinping An
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jagan R. Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Saraswathi KK, Santhi R, Kim U, Vanniarajan A. Investigating the frequency of somatic MYD88 L265P mutation in primary ocular adnexal B cell lymphoma. Mol Biol Rep 2024; 51:973. [PMID: 39249595 DOI: 10.1007/s11033-024-09903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Ocular adnexal B cell lymphoma is the most common orbital malignancy in adults. Large chromosomal translocations and alterations in cell-signaling pathways were frequently reported in lymphomas. Among the altered pathways, perturbations of NFκB signaling play a significant role in lymphomagenesis. Specifically, the MYD88 L265P mutation, an activator of NFκB signaling, is extensively studied in intraocular lymphoma but not at other sites. Therefore, this study aims to screen the MYD88 L265P mutation in Ocular adnexal B cell lymphoma tumors and assess its clinical significance. METHODS AND RESULTS Our study of twenty Ocular adnexal B cell lymphoma tumor samples by Allele-Specific Polymerase Chain Reaction identified two samples positive for the MYD88 L265P mutation. Subsequent Sanger sequencing confirmed the presence of the heterozygous mutation in those two samples tested positive in Allele-Specific Polymerase Chain Reaction. A comprehensive review of MYD88 L265P mutation in Ocular adnexal B cell lymphoma revealed variable frequencies, ranging from 0 to 36%. The clinical, pathological, and prognostic features showed no differences between patients with and without the MYD88 L265P mutation. CONCLUSION The present study indicates that the MYD88 L265P mutation is relatively infrequent in our cohort, underscoring the need for further validation in additional cohorts.
Collapse
Affiliation(s)
- Karuvel Kannan Saraswathi
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Usha Kim
- Department of Orbit, Oculoplasty, Ocular Oncology and Ocular Prosthesis, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, Tamil Nadu, India.
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
6
|
Bende RJ, Donner N, Wormhoudt TA, Beentjes A, Scantlebery A, Grobben M, Tejjani K, Chandler F, Sikkema RS, Langerak AW, Guikema JE, van Noesel CJ. Distinct groups of autoantigens as drivers of ocular adnexal MALT lymphoma pathogenesis. Life Sci Alliance 2024; 7:e202402841. [PMID: 38977312 PMCID: PMC11231493 DOI: 10.26508/lsa.202402841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic B-cell receptor signals incited by cognate antigens are believed to play a crucial role in the pathogenesis of mucosa-associated lymphoid tissue lymphomas. We have explored the immunoglobulin variable regions (IGHV) expressed by 124 ocular adnexal MALT lymphomas (OAML) and tested the in vitro reactivity of recombinant IgM derived from 23 OAMLs. Six of 124 OAMLs (5%) were found to express a high-affinity stereotyped rheumatoid factor. OAMLs have a biased IGHV4-34 usage, which confers intrinsic super auto-antigen reactivity with poly-N-acetyllactosamine (NAL) epitopes, present on cell surface glycoproteins of erythrocytes and B cells. Twenty-one OAMLs (17%) expressed IGHV4-34-encoded B-cell receptors. Five of the 23 recombinant OAML IgMs expressed IGHV4-34, four of which bound to the linear NAL i epitope expressed on B cells but not to the branched NAL I epitope on erythrocytes. One non-IGHV4-34-encoded OAML IgM was also reactive with B cells. Interestingly, three of the 23 OAML IgMs (13%) specifically reacted with proteins of U1-/U-snRNP complexes, which have been implicated as cognate-antigens in various autoimmune diseases such as systemic lupus erythematosus and mixed connective tissue disease. The findings indicate that local autoimmune reactions are instrumental in the pathogenesis of a substantial fraction of OAMLs.
Collapse
MESH Headings
- Humans
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Autoantigens/immunology
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Eye Neoplasms/immunology
- Eye Neoplasms/genetics
- Female
- Middle Aged
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Male
- Aged
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Aged, 80 and over
- Epitopes/immunology
- Adult
- Rheumatoid Factor/immunology
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| | - Naomi Donner
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| | - Anna Beentjes
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Angelique Scantlebery
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | | | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, Netherlands
- Cancer Center Amsterdam (CCA), Amsterdam, Netherlands
| |
Collapse
|
7
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
8
|
Li A, Yi H, Deng S, Ruan M, Xu P, Huo Y, Lu H, Shen X, Ouyang B, Cai M, Xu H, Wang Z, Zhang L, Zhu L, Peng Q, Gu Y, Xie J, Wang Y, Dong L, Liu Z, Wang C. The genetic landscape of histologically transformed marginal zone lymphomas. Cancer 2024; 130:1246-1256. [PMID: 37941429 DOI: 10.1002/cncr.35072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Marginal zone lymphomas (MZLs) comprise a diverse group of indolent lymphoproliferative disorders; however, some patients develop histologic transformation (HT) with rapid progression to aggressive lymphoma. METHODS Forty-three MZLs with HT (HT-MZLs), 535 MZLs, and 174 de novo diffuse large B-cell lymphomas (DLBCLs) without rearrangements of MYC, BCL2, and BCL6 were collected. Among these, 22 HT-MZLs, 39 MZLs, and 174 DLBCLs were subjected to 148-gene targeted exome sequencing. The clinicopathologic features of patients who had HT-MZL and their genetic alterations were compared with those of patients who had MZLs and DLBCLs. RESULTS All 43 HT-MZLs corresponded to DLBCLs. No HT-MZLs harbored BCL2 and MYC and/or BCL6 rearrangements. Bone marrow involvement and higher levels of lactate dehydrogenase were significantly more common in HT-MZLs than in MZLs. Furthermore, upregulated BCL6, MUM1, C-MYC, and Ki-67 expression was observed more frequently in HT-MZLs than in MZLs. TBL1XR1 was the most frequently altered gene (63.6%) in HT-MZLs, followed by CCND3 (31.8%), CARD11, ID3, and TP53 (22.7%). A trend toward worse progression-free survival in patients with TBL1XR1 mutations was observed. Compared with MZLs and non-germinal center B-cell (GCB) type DLBCLs, significantly higher frequencies of TBL1XR1 and ID3 mutations were identified in HT-MZLs. PIM1 mutations frequently occurred in DLBCLs and were significantly associated with TBL1XR1 mutations but were mutated less in HT-MZLs that had TBL1XR1 mutations. CONCLUSIONS The current findings reveal the clinicopathologic and genetic features of HT-MZLs, suggesting that these tumors might constitute a group distinct from MZL and de novo non-GCB type DLBCL. TBL1XR1 mutations may be considered a predictor of HT in MZL.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Deng
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Ruan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujia Huo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyang Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Shen
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binsen Ouyang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingci Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyan Zhu
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Peng
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zebing Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Grau M, López C, Martín-Subero JI, Beà S. Cytogenomics of B-cell non-Hodgkin lymphomas: The "old" meets the "new". Best Pract Res Clin Haematol 2023; 36:101513. [PMID: 38092483 DOI: 10.1016/j.beha.2023.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 12/18/2023]
Abstract
For the routine diagnosis of haematological neoplasms an integrative approach is used considering the morphology, and the immunophenotypic, and molecular features of the tumor sample, along with clinical information. The identification and characterization of recurrent chromosomal aberrations mainly detected by conventional and molecular cytogenetics in the tumor cells has a major impact on the classification of lymphoid neoplasms. Some of the B-cell non-Hodgkin lymphomas are characterized by particular chromosomal aberrations, highlighting the relevance of conventional and molecular cytogenetic studies in their diagnosis and prognosis. In the current genomics era, next generation sequencing provides relevant information as the mutational profiles of haematological malignancies, improving their classification and also the clinical management of the patients. In addition, other new technologies have emerged recently, such as the optical genome mapping, which can overcome some of the limitations of conventional and molecular cytogenetics and may become more widely used in the cytogenetic laboratories in the upcoming years. Moreover, epigenetic alterations may complement genetic changes for a deeper understanding of the pathogenesis underlying B-cell neoplasms and a more precise risk-based patient stratification. Overall, here we describe the current state of the genomic data integrating chromosomal rearrangements, copy number alterations, and somatic variants, as well as a succinct overview of epigenomic changes, which altogether constitute a comprehensive diagnostic approach in B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Marta Grau
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina López
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain
| | - José Ignacio Martín-Subero
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Sílvia Beà
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Universitat de Barcelona, Spain; Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Raderer M, Kiesewetter B, Du MQ. Clinical relevance of molecular aspects in extranodal marginal zone lymphoma: a critical appraisal. Ther Adv Med Oncol 2023; 15:17588359231183565. [PMID: 37389189 PMCID: PMC10302523 DOI: 10.1177/17588359231183565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT lymphoma) is among the more common types of lymphoma accounting for up to 8% of newly diagnosed lymphoma cases. As opposed to other B-cell lymphomas, however, no predominant genetic hallmark has been defined in MALT lymphoma, but different localizations appear to be affected by different, sometimes distinct changes. Nonetheless, a high proportion of these genetic changes reported in MALT lymphomas dysregulate the pathways leading to NF-kB activation. t(11;18)(q21;q21)/BIRC3::MALT1 appears to be MALT lymphoma specific and is found in 24% of gastric and 40% of pulmonary MALT lymphomas. The translocation is associated with more disseminated disease in gastric MALT lymphoma and is found in a large percentage of patients whose lymphoma is unresponsive to antibiotic eradication of Helicobacter pylori. In addition to t(11;18)(q21;q21), nuclear expression of BCL10 or NF-kB appears to be highly associated with lymphoma cell survival independence of H. pylori-mediated stimulations. Antibiotic eradication, however, is the recommended therapy of choice irrespective of genetic findings, and molecular analysis is not required before initiation of therapy. The influence of genetic translocations including t(11;18)(q21;q21) on systemic therapies, however, is less clearly defined. While small series have shown no influence on the outcome for treatment with the anti-CD20 antibody rituximab (R) or treatment with cladribine (2-CdA), conflicting data have been reported for alkylating agents, especially chlorambucil and the combination of R + chlorambucil. None of other genetic changes seen in MALT lymphoma to date has discernible value in routine clinical applications, but recent data suggest that changes in TNFAIP3(A20), KMTD2 and CARD11 might be associated with response to Bruton kinase inhibitors.
Collapse
Affiliation(s)
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Alderuccio JP, Lossos IS. Enhancing prognostication and personalizing treatment of extranodal marginal zone lymphoma. Expert Rev Hematol 2023; 16:333-348. [PMID: 37086394 PMCID: PMC10183153 DOI: 10.1080/17474086.2023.2206557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/20/2023] [Indexed: 04/23/2023]
Abstract
INTRODUCTION Extranodal marginal zone lymphoma (EMZL) of mucosa-associated lymphoid tissue is an indolent lymphoma originating from marginal zone B-cells and associated with chronic inflammation. EMZL demonstrates distinct genomic alterations according to the primary extranodal site of disease but commonly affects signaling pathways including NF-ĸB, B-cell receptor, and NOTCH. Treatment with radiation therapy is commonly implemented in localized diseases, and multiple agents are available for patients with advanced-stage diseases in need of therapy. Bendamustine with rituximab is a frontline platform associated with high efficacy. AREAS COVERED Clinical features, diagnosis, genomics, models enabling risk stratification, treatment options, and future directions. EXPERT OPINION The lack of consistent genotyping profile in EMZL precludes the development of tissue and circulatory biomarkers for the diagnosis, risk stratification, and monitoring of minimal residual disease. Furthermore, the biological heterogeneity observed in extranodal sites associated with overall limited genomic data prevents the testing of druggable pathways aiming for a personalized treatment approach. Future clinical trials should focus on EMZL considering the unique clinical characteristics in the eligibility criteria and response assessment to better inform efficacy of novel agents and delineate sequences of therapies.
Collapse
Affiliation(s)
| | - Izidore S. Lossos
- Department of Medicine, Division of Hematology
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Bende RJ, Slot LM, Kwakkenbos MJ, Wormhoudt TA, Jongejan A, Verstappen GM, van Kampen AC, Guikema JE, Kroese FG, van Noesel CJ. Lymphoma-associated mutations in autoreactive memory B cells of patients with Sjögren's syndrome. J Pathol 2023; 259:264-275. [PMID: 36426826 PMCID: PMC10108009 DOI: 10.1002/path.6039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
We recently demonstrated that normal memory B lymphocytes carry a substantial number of de novo mutations in the genome. Here, we performed exome-wide somatic mutation analyses of bona fide autoreactive rheumatoid factor (RF)-expressing memory B cells retrieved from patients with Sjӧgren's syndrome (SS). The amount and repertoire of the de novo exome mutations of RF B cells were found to be essentially different from those detected in healthy donor memory B cells. In contrast to the mutation spectra of normal B cells, which appeared random and non-selected, the mutations of the RF B cells were greater in number and enriched for mutations in genes also found mutated in B-cell non-Hodgkin lymphomas. During the study, one of the SS patients developed a diffuse large B-cell lymphoma (DLBCL) out of an RF clone that was identified 2 years earlier in an inflamed salivary gland biopsy. The successive oncogenic events in the RF precursor clone and the DLBCL were assessed. In conclusion, our findings of enhanced and selected genomic damage in growth-regulating genes in RF memory B cells of SS patients together with the documented transformation of an RF-precursor clone into DLBCL provide unique novel insight into the earliest stages of B-cell derailment and lymphomagenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Richard J Bende
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Linda M Slot
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | | | - Thera Am Wormhoudt
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwenny M Verstappen
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Antoine Cm van Kampen
- Bioinformatics Laboratory, Epidemiology & Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Biosystems Data analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Ej Guikema
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Frans Gm Kroese
- Department of Rheumatology and Clinical Immunology, UMC Groningen, University of Groningen, Groningen, The Netherlands
| | - Carel Jm van Noesel
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center (LYMMCARE), Amsterdam, The Netherlands.,Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| |
Collapse
|
14
|
Carlsen ED, Davis AR, Cook JR, Swerdlow SH. The Distinctive Nature of Thyroid MALT Lymphomas Including IRTA1 Expression. Am J Surg Pathol 2023; 47:370-378. [PMID: 36729757 DOI: 10.1097/pas.0000000000002005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphomas often express IgM and IRTA1 with only a minority demonstrating plasmacytic differentiation. However, like primary cutaneous marginal zone lymphoproliferative disorders (PCMZLPD), thyroid MALT lymphomas (T-MALT-L) frequently show plasmacytic differentiation and IgG positivity. Whether T-MALT-L share other features with PCMZLPD, including frequent IgG4 positivity and infrequent IRTA1 expression, and how IRTA1 staining compares to that in Hashimoto thyroiditis (HT) are unknown. Therefore, the clinicopathologic features of 18 T-MALT-L were assessed, and their IRTA1 expression compared with that in 5 HT cases. All T-MALT-L cases included a B-lymphoid component. Plasmacytic differentiation was present in 15 cases and was extensive in 12. Fourteen cases were IgG+ including 2 IgG4+ (12 κ+, 2 κ-/λ-). One case was IgAλ+. Plasmacytic cells were uniformly CD19+/CD56- but CD138- in 7/15 cases. IRTA1+ cells were present in 16/16 cases, ranging from scattered cells to >50%. They were often concentrated in "MALT ball"-type lymphoepithelial lesions, perifollicular regions, and sometimes in germinal centers. IRTA1 positivity was also present in all HT cases, although it was never very extensive and often had a perifollicular distribution, occasionally with sparse aggregates and positive cells within rare thyroid follicles. Thus, T-MALT-L share some features with PCMZLPD but are more similar to noncutaneous MALT lymphomas, with prominent lymphoepithelial lesions, ubiquitous although variable IRTA1 positivity, and infrequent IgG4 positivity. Plasmacytic differentiation is also common although CD138 loss is frequent and light chain staining may be absent. IRTA1 staining may help in the differential diagnosis with HT, although there is some overlap in staining patterns.
Collapse
Affiliation(s)
- Eric D Carlsen
- Department of Pathology, Duke University Medical Center, Durham, NC
| | | | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Steven H Swerdlow
- Department of Pathology, UPMC
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
15
|
Alderuccio JP, Habermann T, Kuker R, Moskowitz CH, Zelenetz AD, Lossos IS. A roadmap for clinical trial design in marginal zone lymphoma. Am J Hematol 2022; 97:1398-1403. [PMID: 36030403 PMCID: PMC9561038 DOI: 10.1002/ajh.26706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 01/28/2023]
Abstract
Marginal zone lymphoma (MZL) is commonly underrepresented in clinical trials collectively studying mostly nodal indolent lymphomas.In this manuscript we propose new inclusion and response criteria defined by MZL subtype and disease location for those with extranodal MZL. Progression of disease within 24 months is associated with poor outcomes in MZL and future studies should assess the efficacy of novel agents in this population.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Russ Kuker
- Division of Nuclear Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Craig H. Moskowitz
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew D. Zelenetz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Izidore S. Lossos
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Predisposing Factors, Clinical Picture, and Outcome of B-Cell Non-Hodgkin’s Lymphoma in Sjögren’s Syndrome. IMMUNO 2022. [DOI: 10.3390/immuno2040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Among other systemic autoimmune diseases, primary Sjögren syndrome (pSS) bears the highest risk for lymphoma development. In pSS, chronic antigenic stimulation gradually drives the evolution from polyclonal B-cell expansion to oligoclonal/monoclonal B-cell predominance to malignant B-cell transformation. Thus, most pSS-related lymphomas are B-cell non-Hodgkin lymphomas (NHLs), with mucosa-associated lymphoid tissue (MALT) lymphomas predominating, followed by diffuse large B-cell lymphomas (DLBCLs) and nodal marginal zone lymphomas (NMZLs). Since lymphomagenesis is one of the most serious complications of pSS, affecting patients’ survival, a plethora of possible predisposing factors has been studied over the years, ranging from classical clinical, serological, hematological, and histological, to the more recently proposed genetic and molecular, allowing clinicians to timely detect and to closely follow-up the subgroup of pSS patients with increased risk for lymphoma development. Overall predisposing factors for pSS-related lymphomagenesis reflect the status of B-cell hyperactivity. Different clinical features have been described for each of the distinct pSS-related B-cell NHL subtypes. While generally pSS patients developing B-cell NHLs display a fairly good prognosis, outcomes in terms of treatment response and survival rates seem to differ depending on the lymphoma subtype, with MALT lymphomas being characterized by a rather indolent course and DLBCLs gravely affecting patients’ survival.
Collapse
|
17
|
Ono S, Goto M, Miyabe S, Makihara H, Kubo K, Nagao T. MALT lymphoma of the sublingual gland: A case report with current overview of diagnostic and therapeutic strategies. Clin Case Rep 2022; 10:e6293. [PMID: 36237943 PMCID: PMC9536502 DOI: 10.1002/ccr3.6293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is a low-grade B-cell lymphoma. MALT lymphomas involving the sublingual gland are extremely rare. Herein, we report a case of MALT lymphoma of the sublingual gland. Additionally, we discuss challenging diagnostic aspects as well as current treatment strategies.
Collapse
Affiliation(s)
- Shoya Ono
- Department of Maxillofacial SurgeryAichi Gakuin University School of DentistryAichiJapan
| | - Mitsuo Goto
- Department of Maxillofacial SurgeryAichi Gakuin University School of DentistryAichiJapan
| | - Satoru Miyabe
- Department of Maxillofacial SurgeryAichi Gakuin University School of DentistryAichiJapan
| | - Hiroyuki Makihara
- Department of Oral and Maxillofacial SurgeryDaiyukai General HospitalAichiJapan
| | - Katsutoshi Kubo
- Department of Oral Pathology/Forensic OdontologyAichi Gakuin University School of DentistryAichiJapan
| | - Toru Nagao
- Department of Maxillofacial SurgeryAichi Gakuin University School of DentistryAichiJapan
| |
Collapse
|
18
|
Clonal relationship of extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT lymphoma) involving multiple organ systems with review of the literature. J Hematop 2022. [DOI: 10.1007/s12308-022-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
19
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36:1720-1748. [PMID: 35732829 PMCID: PMC9214472 DOI: 10.1038/s41375-022-01620-2] [Citation(s) in RCA: 1476] [Impact Index Per Article: 492.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
Collapse
|
20
|
Genomic landscape of Epstein-Barr virus-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue. Mod Pathol 2022; 35:938-945. [PMID: 34952945 DOI: 10.1038/s41379-021-01002-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus (EBV)-positive extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas) were initially described in solid organ transplant recipients, and, more recently, in other immunodeficiency settings. The overall prevalence of EBV-positive MALT lymphomas has not been established, and little is known with respect to their genomic characteristics. Eight EBV-positive MALT lymphomas were identified, including 1 case found after screening a series of 88 consecutive MALT lymphomas with EBER in situ hybridization (1%). The genomic landscape was assessed in 7 of the 8 cases with a targeted high throughput sequencing panel and array comparative genomic hybridization. Results were compared to published data for MALT lymphomas. Of the 8 cases, 6 occurred post-transplant, 1 in the setting of primary immunodeficiency, and 1 case was age-related. Single pathogenic/likely pathogenic mutations were identified in 4 of 7 cases, including mutations in IRF8, BRAF, TNFAIP3, and SMARCA4. Other than TNFAIP3, these genes are mutated in <3% of EBV-negative MALT lymphomas. Copy number abnormalities were identified in 6 of 7 cases with a median of 6 gains and 2 losses per case, including 4 cases with gains in regions encompassing several IRF family or interacting genes (IRF2BP2, IRF2, and IRF4). There was no evidence of trisomies of chromosomes 3 or 18. In summary, EBV-positive MALT lymphomas are rare and, like other MALT lymphomas, are usually genetically non-complex. Conversely, while EBV-negative MALT lymphomas typically show mutational abnormalities in the NF-κB pathway, other than the 1 TNFAIP3-mutated case, no other NF-κB pathway mutations were identified in the EBV-positive cases. EBV-positive MALT lymphomas often have either mutations or copy number abnormalities in IRF family or interacting genes, suggesting that this pathway may play a role in these lymphomas.
Collapse
|
21
|
Dreyling M, André M, Gökbuget N, Tilly H, Jerkeman M, Gribben J, Ferreri A, Morel P, Stilgenbauer S, Fox C, Maria Ribera J, Zweegman S, Aurer I, Bödör C, Burkhardt B, Buske C, Dollores Caballero M, Campo E, Chapuy B, Davies A, de Leval L, Doorduijn J, Federico M, Gaulard P, Gay F, Ghia P, Grønbæk K, Goldschmidt H, Kersten MJ, Kiesewetter B, Landman-Parker J, Le Gouill S, Lenz G, Leppä S, Lopez-Guillermo A, Macintyre E, Mantega MVM, Moreau P, Moreno C, Nadel B, Okosun J, Owen R, Pospisilova S, Pott C, Robak T, Spina M, Stamatopoulos K, Stary J, Tarte K, Tedeschi A, Thieblemont C, Trappe RU, Trümper LH, Salles G. The EHA Research Roadmap: Malignant Lymphoid Diseases. Hemasphere 2022; 6:e726. [PMID: 35620592 PMCID: PMC9126526 DOI: 10.1097/hs9.0000000000000726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Marc André
- Université Catholique de Louvain, CHU UcL Namur, Yvoir, Belgium
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Hervé Tilly
- INSERM U1245, Department of Hematology, Centre Henri Becquerel and Université de Rouen, France
| | | | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Andrés Ferreri
- Lymphoma Unit, Department of Onco-hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Pierre Morel
- Service Hematologie Clinique Therapie Cellulaire, CHU Amiens Picardie, Amiens, France
| | - Stephan Stilgenbauer
- Comprehensive Cancer Center Ulm (CCCU), Sektion CLL Klinik für Innere Medizin III, Universität Ulm, Germany
| | - Christopher Fox
- School of Medicine, University of Nottingham, United Kingdom
| | - José Maria Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Badalona, Spain
| | - Sonja Zweegman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, the Netherlands
| | - Igor Aurer
- University Hospital Centre Zagreb and Medical School, University of Zagreb, Croatia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Birgit Burkhardt
- Experimentelle und Translationale päd. Hämatologie u Onkologie, Leitung der Bereiche Lymphome und Stammzelltransplantation, Universitätsklinikum Münster (UKM), Klinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und Onkologie, Munich, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, CCC Ulm, University Hospital Ulm, Germany
| | - Maria Dollores Caballero
- Clinical and Transplant Unit, University Hospital of Salamanca, Spain
- Department of Medicine at the University of Salamanca, Spain
- El Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bjoern Chapuy
- Department of Hematology, Oncology and Tumor Immunology, Charité, University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Andrew Davies
- Southampton NCRI/UK Experimental Cancer Medicines Centre, Faculty of Medicine, University of Southampton, United Kingdom
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jeanette Doorduijn
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Philippe Gaulard
- Département de Pathologie, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Francesca Gay
- Clinical Trial Unit, Division of Hematology 1, AOU Città Della Salute e Della Scienza, University of Torino, Italy
| | - Paolo Ghia
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Hartmut Goldschmidt
- University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marie-Jose Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, the Netherlands
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria
| | - Judith Landman-Parker
- Pediatric Hematology Oncology, Sorbonne Université APHP/hôpital A Trousseau, Paris, France
| | - Steven Le Gouill
- Service d’Hématologie, Clinique du Centre Hospitalier Universitaire (CHU) de Nantes, France
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Germany
| | - Sirpa Leppä
- University of Helsinki and Helsinki University Hospital Comprehensive Cancer Centre, Helsinki, Finland
| | | | - Elizabeth Macintyre
- Onco-hematology, Université de Paris and Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, France
| | | | - Philippe Moreau
- Hematology Department, University Hospital Hotel-Dieu, Nantes, France
| | - Carol Moreno
- Hospital de la Santa Creu I Sant Pau, Autonomous University of Barcelona, Spain
| | - Bertrand Nadel
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Roger Owen
- St James’s Institute of Oncology, Leeds, United Kingdom
| | - Sarka Pospisilova
- Department of Internal Medicine—Hematology and Oncology and Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Christiane Pott
- Klinisch-experimentelle Hämatologie, Medizinische Klinik II, Hämatologie und Internistische Onkologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Germany
| | | | - Michelle Spina
- Division of Medical Oncology and Immune-related Tumors, National Cancer Institute, Aviano, Italy
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Jan Stary
- Department of Pediatric Hematology and Oncology 2nd Faculty of Medicine, Charles University Prague University Hospital, Prague, Czech Republic
| | - Karin Tarte
- Immunology and Cell Therapy Lab at Rennes University Hospital, Rennes, France
| | | | - Catherine Thieblemont
- Department of Hemato-Oncology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ralf Ulrich Trappe
- Department of Internal Medicine II: Haematology and Oncology, DIAKO Hospital Bremen, Germany
| | - Lorenz H. Trümper
- Hematology and Medical Oncology, University Medicine Goettingen, Germany
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
22
|
Korona B, Korona D, Zhao W, Wotherspoon AC, Du MQ. CCR6 activation links innate immune responses to mucosa-associated lymphoid tissue lymphoma development. Haematologica 2022; 107:1384-1396. [PMID: 35142152 PMCID: PMC9152962 DOI: 10.3324/haematol.2021.280067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
The genesis of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by oncogenic co-operation among immunological stimulations and acquired genetic changes. We previously identified recurrent CCR6 mutations in MALT lymphoma, with majority predicted to result in truncated proteins lacking the phosphorylation motif important for receptor desensitization. Functional consequences of these mutational changes, the molecular mechanisms of CCR6 activation and how this receptor signaling contributes to MALT lymphoma development remain to be investigated. In the present study, we demonstrated that these mutations impaired CCR6 receptor internalization and were activating changes, being more potent in apoptosis resistance, malignant transformation, migration and intracellular signaling, particularly in the presence of the ligands CCL20, HBD2 (human b defensin 2) and HD5 (human a defensin 5). CCR6 was highly expressed in malignant B cells irrespective of the lymphoma sites. HBD2 and CCL20 were constitutively expressed by the duct epithelial cells of salivary glands, and also those involved in lymphoepithelial lesions (LEL) in salivary gland MALT lymphoma. While in the gastric setting, HBD2, and HD5, to a less extent CCL20, were highly expressed in epithelial cells of pyloric and intestinal metaplasia respectively including those involved in LEL, which are adaptive responses to chronic Helicobacter pylori infection. These findings suggest that CCR6 signaling is most likely active in MALT lymphoma, independent of its mutation status. The observations explain why the emergence of malignant B cells and their clonal expansion in MALT lymphoma are typically around LEL, linking the innate immune responses to lymphoma genesis.
Collapse
Affiliation(s)
- Boguslawa Korona
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, Cambridge
| | - Wanfeng Zhao
- The Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | | | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge.
| |
Collapse
|
23
|
Turning up the heat on salivary gland MALT lymphoma. Blood 2022; 139:2094-2096. [PMID: 35389438 DOI: 10.1182/blood.2021012624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
|
24
|
Zhao A, Wu F, Wang Y, Li J, Xu W, Liu H. Analysis of Genetic Alterations in Ocular Adnexal Mucosa-Associated Lymphoid Tissue Lymphoma With Whole-Exome Sequencing. Front Oncol 2022; 12:817635. [PMID: 35359413 PMCID: PMC8962736 DOI: 10.3389/fonc.2022.817635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing studies on ocular adnexal marginal zone lymphoma of mucosa-associated lymphoid tissue (OAML) have to date revealed several targets of genetic aberrations. However, most of our current understanding of the pathogenesis and prognosis of OAML is primarily based on studies conducted in populations from Europe and the US. Furthermore, the majority were based on formalin-fixed paraffin-embedded (FFPE) tissue, which generally has poor integrity and creates many sequencing artifacts. To better investigate the coding genome landscapes of OAML, especially in the Chinese population, we performed whole-exome sequencing of 21 OAML cases with fresh frozen tumor tissue and matched peripheral blood samples. IGLL5, as a novel recurrently mutated gene, was found in 24% (5/21) of patients, with a higher relapse rate (P=0.032). In addition, mutations of MSH6, DIS3, FAT1, and TMEM127 were found in 10% of cases. These novel somatic mutations indicate the existence of additional/alternative lymphomagenesis pathways in OAML. Moreover, the difference between our and previous studies suggests genetic heterogeneity of OAML between Asian and Western individuals.
Collapse
Affiliation(s)
- Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Fangtian Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Wang
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University Jiangsu Province Hospital, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
- *Correspondence: Hu Liu, ; Wei Xu, ; Jianyong Li,
| |
Collapse
|
25
|
Ferry JA. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Hematolymphoid Proliferations and Neoplasia. Head Neck Pathol 2022; 16:101-109. [PMID: 35312979 PMCID: PMC9018906 DOI: 10.1007/s12105-022-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/31/2021] [Indexed: 10/18/2022]
Abstract
In the 5th edition of the World Health Organization (WHO) Classification of Head and Neck Tumours, the discussion of hematolymphoid proliferations is substantially reorganized and expanded in comparison to the prior edition. The 5th edition includes, in addition to hematolymphoid neoplasms, reactive lymphoid proliferations. Much more information on hematolymphoid proliferations that commonly affect cervical lymph nodes, in addition to those affecting extranodal sites in the head and neck, is included. For the first time, there are dedicated sections on multiple entities, including recently described lymphoproliferative disorders such as EBV+ mucocutaneous ulcer and pediatric-type follicular lymphoma, and several types of histiocytic neoplasms. Tremendous advances have been made in understanding the genetic features that underlie the pathogenesis of hematolymphoid neoplasms, and these have been incorporated into the WHO Classification.
Collapse
Affiliation(s)
- Judith A Ferry
- Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, 02114, MA, USA.
| |
Collapse
|
26
|
Johansson P, Eckstein A, Küppers R. The Biology of Ocular Adnexal Marginal Zone Lymphomas. Cancers (Basel) 2022; 14:1264. [PMID: 35267569 PMCID: PMC8908984 DOI: 10.3390/cancers14051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
This review focuses on the biology of ocular adnexal marginal zone B-cell lymphomas of the mucosa-associated lymphatic tissue (MALT) (OAMZL) subtype. The ocular adnexa includes all structures and tissues within the orbit except for the eye bulb. In the region of the ocular adnexa, MALT lymphomas represent the most common subtype of lymphoma, accounting for around 8% of all non-Hodgkin lymphomas. These lymphomas are often preceded by inflammatory precursor lesions. Either autoantigens or infectious antigens may lead to disease development by functioning as continuous antigenic triggers. This triggering leads to a constitutive activation of the NF-κB signaling pathway. The role of antigenic stimulation in the pathogenesis of OAMZL is supported by the detection of somatic mutations (partially with further intraclonal diversity) in their rearranged immunoglobulin V genes; hence, their derivation from germinal-center-experienced B cells, by a restricted IGHV gene usage, and the validation of autoreactivity of the antibodies in selected cases. In the established lymphomas, NF-κB activity is further enforced by mutations in various genes regulating NF-κB activity (e.g., TNFAIP3, MYD88), as well as recurrent chromosomal translocations affecting NF-κB pathway components in a subset of cases. Further pathogenetic mechanisms include mutations in genes of the NOTCH pathway, and of epigenetic regulators. While gene expression and sequencing studies are available, the role of differential methylation of lymphoma cells, the role of micro-RNAs, and the contribution of the microenvironment remain largely unexplored.
Collapse
Affiliation(s)
- Patricia Johansson
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anja Eckstein
- Molecular Ophthalmology Group, Department of Ophthalmology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
27
|
Low Mutational Burden of Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue in Patients with Primary Sjogren’s Syndrome. Cancers (Basel) 2022; 14:cancers14041010. [PMID: 35205758 PMCID: PMC8870522 DOI: 10.3390/cancers14041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with primary Sjogren’s syndrome (pSS) are at risk of developing extranodal marginal zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) in the parotid glands. The genetic mechanism underlying development of MALT lymphoma in the context of pSS is unknown. The aim of our study was to define the genomic landscape of pSS-associated MALT lymphoma. For 17 localized pSS-associated MALT lymphomas, we analyzed the presence of nonsynonymous mutations, copy number alterations (CNAs) and MALT1 translocations. pSS-associated MALT lymphomas were characterized by a low mutational load (median number of nonsynonymous somatic variants per case was 7, range 2–78) and a limited number of CNAs. Unlike the recurrent genomic aberrations observed in MALT lymphoma, which were not associated with pSS, pSS-associated MALT lacked a clear lymphoma-related profile. The data suggest that localized pSS-associated MALT lymphomas are a distinct type of ENMZL, which are genomically stable and most likely depend on a stimulatory micro-environment. Abstract Patients with primary Sjogren’s syndrome (pSS) are at risk of developing extranodal marginal zone lymphoma (ENMZL) of the mucosa-associated lymphoid tissue (MALT) in the parotid glands. Unlike recurrent genomic aberrations observed in MALT lymphoma, which were not associated with pSS (non-pSS), it is unknown which somatic aberrations underlie the development of pSS-associated MALT lymphomas. Whole-exome sequencing was performed on 17 pSS-associated MALT lymphomas. In total, 222 nonsynonymous somatic variants affecting 182 genes were identified across the 17 cases. The median number of variants was seven (range 2–78), including three cases with a relatively high mutational load (≥24/case). Out of 16 recurrently mutated genes, ID3, TBL1XR1, PAX5, IGLL5 and APC are known to be associated with lymphomagenesis. A total of 18 copy number alterations were detected in eight cases. MALT1 translocations were not detected. With respect to outcome, only two cases relapsed outside of the salivary glands. Both had a high mutational load, suggesting a more advanced stage of lymphoma. The low mutational load and lack of a clear lymphoma-related mutation profile suggests that localized pSS-associated MALT lymphomas are genomically more stable than non-pSS MALT lymphomas and most likely depend on a stimulatory micro-environment.
Collapse
|
28
|
Affiliation(s)
- Davide Rossi
- From the International Extranodal Lymphoma Study Group, Bellinzona; the Institute of Oncology Research, Bellinzona; the Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona; and the Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano - all in Switzerland
| | - Francesco Bertoni
- From the International Extranodal Lymphoma Study Group, Bellinzona; the Institute of Oncology Research, Bellinzona; the Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona; and the Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano - all in Switzerland
| | - Emanuele Zucca
- From the International Extranodal Lymphoma Study Group, Bellinzona; the Institute of Oncology Research, Bellinzona; the Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona; and the Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano - all in Switzerland
| |
Collapse
|
29
|
Vela V, Juskevicius D, Dirnhofer S, Menter T, Tzankov A. Mutational landscape of marginal zone B-cell lymphomas of various origin: organotypic alterations and diagnostic potential for assignment of organ origin. Virchows Arch 2022; 480:403-413. [PMID: 34494161 PMCID: PMC8986713 DOI: 10.1007/s00428-021-03186-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
This meta-analysis aims to concisely summarize the genetic landscape of splenic, nodal and extranodal marginal zone lymphomas (MZL) in the dura mater, salivary glands, thyroid, ocular adnexa, lung, stomach and skin with respect to somatic variants. A systematic PubMed search for sequencing studies of MZL was executed. All somatic mutations of the organs mentioned above were combined, uniformly annotated, and a dataset containing 25 publications comprising 6016 variants from 1663 patients was created. In splenic MZL, KLF2 (18%, 103/567) and NOTCH2 (16%, 118/725) were the most frequently mutated genes. Pulmonary and nodal MZL displayed recurrent mutations in chromatin-modifier-encoding genes, especially KMT2D (25%, 13/51, and 20%, 20/98, respectively). In contrast, ocular adnexal, gastric, and dura mater MZL had mutations in genes encoding for NF-κB pathway compounds, in particular TNFAIP3, with 39% (113/293), 15% (8/55), and 45% (5/11), respectively. Cutaneous MZL frequently had FAS mutations (63%, 24/38), while MZL of the thyroid had a higher prevalence for TET2 variants (61%, 11/18). Finally, TBL1XR1 (24%, 14/58) was the most commonly mutated gene in MZL of the salivary glands. Mutations of distinct genes show origin-preferential distribution among nodal and splenic MZL as well as extranodal MZL at/from different anatomic locations. Recognition of such mutational distribution patterns may help assigning MZL origin in difficult cases and possibly pave the way for novel more tailored treatment concepts.
Collapse
Affiliation(s)
- Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Darius Juskevicius
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland.
| |
Collapse
|
30
|
Uhl B, Prochazka KT, Fechter K, Pansy K, Greinix HT, Neumeister P, Deutsch AJA. Impact of the microenvironment on the pathogenesis of mucosa-associated lymphoid tissue lymphomas. World J Gastrointest Oncol 2022; 14:153-162. [PMID: 35116108 PMCID: PMC8790412 DOI: 10.4251/wjgo.v14.i1.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Approximately 8% of all non-Hodgkin lymphomas are extranodal marginal zone B cell lymphomas of mucosa-associated lymphoid tissue (MALT), also known as MALT lymphomas. These arise at a wide range of different extranodal sites, with most cases affecting the stomach, the lung, the ocular adnexa and the thyroid. The small intestine is involved in a lower percentage of cases. Lymphoma growth in the early stages is associated with long-lasting chronic inflammation provoked by bacterial infections (e.g., Helicobacter pylori or Chlamydia psittaci infections) or autoimmune conditions (e.g., Sjögren’s syndrome or Hashimoto thyroiditis). While these inflammatory processes trigger lymphoma cell proliferation and/or survival, they also shape the microenvironment. Thus, activated immune cells are actively recruited to the lymphoma, resulting in either direct lymphoma cell stimulation via surface receptor interactions and/or indirect lymphoma cell stimulation via secretion of soluble factors like cytokines. In addition, chronic inflammatory conditions cause the acquisition of genetic alterations resulting in autonomous lymphoma cell growth. Recently, novel agents targeting the microenvironment have been developed and clinically tested in MALT lymphomas as well as other lymphoid malignancies. In this review, we aim to describe the composition of the microenvironment of MALT lymphoma, the interaction of activated immune cells with lymphoma cells and novel therapeutic approaches in MALT lymphomas using immunomodulatory and/or microenvironment-targeting agents.
Collapse
Affiliation(s)
- Barbara Uhl
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | | - Karoline Fechter
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | | - Peter Neumeister
- Division of Hematology, Medical University of Graz, Graz 8036, Austria
| | | |
Collapse
|
31
|
Recent Advances in the Genetic of MALT Lymphomas. Cancers (Basel) 2021; 14:cancers14010176. [PMID: 35008340 PMCID: PMC8750177 DOI: 10.3390/cancers14010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Mucosa-associated lymphoid tissue (MALT) lymphoma is the most common subtype of marginal zone lymphomas. These B-cell neoplasms may arise from many organs and usually have an indolent behavior. Recurrent chromosomal translocations and cytogenetic alterations are well characterized, some of them being associated to specific sites. Through next-generation sequencing technologies, the mutational landscape of MALT lymphomas has been explored and available data to date show that there are considerable variations in the incidence and spectrum of mutations among MALT lymphoma of different sites. Interestingly, most of these mutations affect several common pathways and some of them are potentially targetable. Gene expression profile and epigenetic studies have also added new information, potentially useful for diagnosis and treatment. This article provides a comprehensive review of the genetic landscape in MALT lymphomas. Abstract Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.
Collapse
|
32
|
McGuire Sams C, Shepp K, Pugh J, Bishop MR, Merner ND. Rare and potentially pathogenic variants in hydroxycarboxylic acid receptor genes identified in breast cancer cases. BMC Med Genomics 2021; 14:284. [PMID: 34852802 PMCID: PMC8638184 DOI: 10.1186/s12920-021-01126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Three genes clustered together on chromosome 12 comprise a group of hydroxycarboxylic acid receptors (HCARs): HCAR1, HCAR2, and HCAR3. These paralogous genes encode different G-protein coupled receptors responsible for detecting glycolytic metabolites and controlling fatty acid oxidation. Though better known for regulating lipid metabolism in adipocytes, more recently, HCARs have been functionally associated with breast cancer proliferation/survival; HCAR2 has been described as a tumor suppressor and HCAR1 and HCAR3 as oncogenes. Thus, we sought to identify germline variants in HCAR1, HCAR2, and HCAR3 that could potentially be associated with breast cancer risk. METHODS Two different cohorts of breast cancer cases were investigated, the Alabama Hereditary Cancer Cohort and The Cancer Genome Atlas, which were analyzed through nested PCRs/Sanger sequencing and whole-exome sequencing, respectively. All datasets were screened for rare, non-synonymous coding variants. RESULTS Variants were identified in both breast cancer cohorts, some of which appeared to be associated with breast cancer BC risk, including HCAR1 c.58C > G (p.P20A), HCAR2 c.424C > T (p.R142W), HCAR2 c.517_518delinsAC (p.G173T), HCAR2 c.1036A > G (p.M346V), HCAR2 c.1086_1090del (p.P363Nfs*26), HCAR3 c.560G > A (p.R187Q), and HCAR3 c.1117delC (p.Q373Kfs*82). Additionally, HCAR2 c.515C > T (p.S172L), a previously identified loss-of-function variant, was identified. CONCLUSIONS Due to the important role of HCARs in breast cancer, it is vital to understand how these genetic variants play a role in breast cancer risk and proliferation and their consequences on treatment strategies. Additional studies will be needed to validate these findings. Nevertheless, the identification of these potentially pathogenic variants supports the need to investigate their functional consequences.
Collapse
Affiliation(s)
- Cierla McGuire Sams
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 165 Greene Hall, Auburn, AL, 36849, USA
| | - Kasey Shepp
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 165 Greene Hall, Auburn, AL, 36849, USA
| | - Jada Pugh
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 165 Greene Hall, Auburn, AL, 36849, USA
| | - Madison R Bishop
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 165 Greene Hall, Auburn, AL, 36849, USA
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 165 Greene Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
33
|
Raderer M, Kiesewetter B. What you always wanted to know about gastric MALT-lymphoma: a focus on recent developments. Ther Adv Med Oncol 2021; 13:17588359211033825. [PMID: 34621332 PMCID: PMC8491302 DOI: 10.1177/17588359211033825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
The stomach is the most common site of origin for extranodal lymphomas,
with extranodal marginal zone B-cell of the mucosa associated lymphoid
tissue (MALT-lymphoma) being the predominant subtype. MALT-lymphoma
develops in mucosa associated lymphoid structures acquired by
infection or chronic antigenic stimuli and may therefore arise in
almost any organ of the human body. In spite of histopathologic
similarities between various organs upon first glance, recent findings
suggest pronounced differences between different sites, with a variety
of features specific to gastric MALT-lymphoma. The objective of this
review is to sum up the current knowledge on pathogenesis, molecular
pathology, clinical presentation and therapeutic approaches to gastric
MALT-lymphoma with in-depth discussion of recent developments.
Collapse
Affiliation(s)
- Markus Raderer
- Division of Oncology, Internal Medicine I, Medical University of Vienna, Waehringer Guertel 18 - 20, Vienna, A 1090, Austria
| | - Barbara Kiesewetter
- Division of Oncology, Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Wang X, Miao Y, Cao Z, Zheng S, Xue X, Feng X. Characterization of molecular genetics and clinicopathology in thymic MALT lymphoma. Ann Hematol 2021; 101:91-97. [PMID: 34605949 DOI: 10.1007/s00277-021-04671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) lymphoma is a type of low-grade malignant B-cell lymphoma. The aim of this study was to investigate the clinicopathological characteristics of thymic MALT lymphoma. We analyzed the clinical, morphological, immunophenotypical, cytogenetic, and molecular characteristics of 11 cases of thymic MALT lymphoma. The relevant literature was also reviewed. The median age of the 11 patients was 50 (range: 33-60). There was a female predominance with a female-to-male ratio of 10:1. Three patients presented with Sjögren syndrome, autoimmune thrombocytopenia purpura, and type B1 thymoma, respectively. Microscopically, thymic MALT lymphoma was characterized by epithelium-lined cysts that were surrounded by small lymphocytes, centrocyte-like cells, and monocytoid B-cells. Plasmacytic differentiation was observed in two cases. The tumor cells expressed CD20, CD79α, and BCL2. Clonal immunoglobulin genes were detected in all 8 examined cases. Fluorescence in situ hybridization (FISH) for 18q21 was performed in 7 cases, and no translocations involving 18q21 were found. Targeted gene sequencing was performed in five cases with available DNA samples, and TNFAIP3, CARD11, IGLL5, and CCND3 mutations were identified. Thymic MALT lymphoma is a rare type of B cell malignancy with a female predominance and excellent clinical outcomes. Molecular aberrations involving the NF-κB pathway are frequent in thymic MALT lymphoma, suggesting that dysregulation of the NF-κB pathway is an important mechanism underlying the pathogenesis of thymic MALT lymphoma.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nan Li, Chaoyang District, Beijing, 100021, China
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nan Li, Chaoyang District, Beijing, 100021, China
| | - Shan Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nan Li, Chaoyang District, Beijing, 100021, China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nan Li, Chaoyang District, Beijing, 100021, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nan Li, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
35
|
Magistri M, Happ LE, Ramdial J, Lu X, Stathias V, Kunkalla K, Agarwal N, Jiang X, Schürer SC, Dubovy SR, Chapman JR, Vega F, Dave S, Lossos IS. The Genetic Landscape of Ocular Adnexa MALT Lymphoma Reveals Frequent Aberrations in NFAT and MEF2B Signaling Pathways. CANCER RESEARCH COMMUNICATIONS 2021; 1:1-16. [PMID: 35528192 PMCID: PMC9075502 DOI: 10.1158/2767-9764.crc-21-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
A comprehensive constellation of somatic non-silent mutations and copy number (CN) variations in ocular adnexa marginal zone lymphoma (OAMZL) is unknown. By utilizing whole-exome sequencing in 69 tumors we define the genetic landscape of OAMZL. Mutations and CN changes in CABIN1 (30%), RHOA (26%), TBL1XR1 (22%), and CREBBP (17%) and inactivation of TNFAIP3 (26%) were among the most common aberrations. Candidate cancer driver genes cluster in the B-cell receptor (BCR), NFkB, NOTCH and NFAT signaling pathways. One of the most commonly altered genes is CABIN1, a calcineurin inhibitor acting as a negative regulator of the NFAT and MEF2B transcriptional activity. CABIN1 deletions enhance BCR-stimulated NFAT and MEF2B transcriptional activity, while CABIN1 mutations enhance only MEF2B transcriptional activity by impairing binding of mSin3a to CABIN1. Our data provide an unbiased identification of genetically altered genes that may play a role in the molecular pathogenesis of OAMZL and serve as therapeutic targets.
Collapse
Affiliation(s)
- Marco Magistri
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Lanie E. Happ
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Jeremy Ramdial
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - XiaoQing Lu
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Kranthi Kunkalla
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Nitin Agarwal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Xiaoyu Jiang
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Sander R. Dubovy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jennifer R. Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Izidore S. Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
36
|
Genetic Characterization and Clinical Features of Helicobacter pylori Negative Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. Cancers (Basel) 2021; 13:cancers13122993. [PMID: 34203889 PMCID: PMC8232676 DOI: 10.3390/cancers13122993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The pathogenesis of H. pylori-associated gastric MALT lymphoma has been well characterized, but the genetic basis and clinical features of H. pylori negative gastric cases remain elusive. In the present study, we investigated the genetic profiles of a large series of H. pylori negative gastric MALT lymphoma by targeted sequencing for a panel of genes specifically designed for marginal zone lymphoma, together with assessment of common translocations and comprehensive clinical data. Targeted sequencing confirmed that NF-κB activation is a major driver in the pathogenesis of H. pylori negative MALT lymphoma, as shown by frequent TNFAIP3 inactivating mutations and also by translocations of MALT1/IGH. This study adds new insights into the genetic background of H. pylori negative MALT lymphoma and will potentially allow us to more specifically target the underlying molecular pathways in future therapeutic concepts. Abstract Background: In Western countries, the prevalence of gastric mucosa-associated lymphoid tissue (MALT) lymphoma has declined over the last three decades. Contemporaneously, H. pylori negative gastric MALT lymphoma is increasingly encountered, and their genetic basis and clinical features remain elusive. Methods: A total of 57 cases of H. pylori negative gastric MALT lymphoma were reviewed and investigated for chromosome translocation by fluorescence in-situ hybridization and for somatic mutations by the targeted sequencing of 93 genes. Results: MALT1 translocation, most likely t(11;18)(q21;q21)/BIRC3-MALT1, was detected in 39% (22/57) cases, and IGH translocation was further seen in 12 MALT1-negative cases, together accounting for 60% of the cohort. Targeted sequencing was successful in 35 cases, and showed frequent mutations in NF-κB signaling pathways (TNFAIP3 = 23%, CARD11 = 9%, MAP3K14 = 9%), together affecting 14 cases (40%). The NF-κB pathway mutations were mutually exclusive from MALT1, albeit not IGH translocation, altogether occurring in 86% of cases. There was no significant correlation between the genetic changes and clinicopathological parameters. The patients showed a median of progression-free survival (PFS) of 66.3 months, and a significant superior PFS when treated with systemic versus antibiotic therapy (p = 0.004). Conclusion: H. pylori negative gastric MALT lymphoma is characterized by highly frequent genetic changes in the NF-κB signaling pathways.
Collapse
|
37
|
GPR34 activation potentially bridges lymphoepithelial lesion to genesis of salivary gland MALT lymphoma. Blood 2021; 139:2186-2197. [PMID: 34086889 DOI: 10.1182/blood.2020010495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
GPR34 translocation and mutation are specifically associated with salivary gland MALT lymphoma (SG-MALT-Lymphoma). Majority of GPR34 mutations are clustered in its C-terminus, resulting in truncated proteins lacking the phosphorylation motif important for receptor desensitization. It is unclear why GPR34 genetic changes associate with SG-MALT-Lymphoma and how these mutations contribute to the lymphoma development. We generated isogenic Flp-InTRex293 cell lines that stably expressed a single copy of GPR34 or its various mutants, and performed a range of in vitro assays. We showed that the GPR34 Q340X truncation, but not R84H and D151A mutants conferred a significantly increased resistance to apoptosis, and greater transforming potential than the GPR34 wild type. The GPR34 truncation mutant had a significantly delayed internalization than the wild type following ligand (lysophosphatidylserine) stimulation. Among 9 signaling pathways examined, the GPR34 Q340X truncation, to a lesser extent the D151A mutant, significantly activated CRE, NFkB and AP1 reporter activities, particularly in the presence of ligand stimulation. We further demonstrated enhanced activities of phospholipase-A1/2 in the culture supernatant of Flp-InTRex293 cells that expressed the GPR34 Q340X mutant, and their potential to catalyze the synthesis of lysophosphatidylserine from phosphatidylserine. Importantly, phospholipase-A1 was abundantly expressed in the duct epithelium of salivary glands and those involved in lymphoepithelial lesions (LELs). Our findings advocate a model of paracrine stimulation of malignant B-cells via GPR34, in which PLA is released by LELs, and hydrolyzes the phosphatidylserine exposed on apoptotic cells, generating lysophosphatidylserine, the ligand for GPR34. Thus, GPR34 activation potentially bridges LELs to genesis of SG-MALT-Lymphoma.
Collapse
|
38
|
Gebauer N, Künstner A, Ketzer J, Witte HM, Rausch T, Benes V, Zimmermann J, Gebauer J, Merz H, Bernard V, Harder L, Ratjen K, Gesk S, Peter W, Busch Y, Trojok P, von Bubnoff N, Biersack H, Busch H, Feller AC. Genomic insights into the pathogenesis of Epstein-Barr virus-associated diffuse large B-cell lymphoma by whole-genome and targeted amplicon sequencing. Blood Cancer J 2021; 11:102. [PMID: 34039950 PMCID: PMC8155002 DOI: 10.1038/s41408-021-00493-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr virus (EBV)-associated diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) constitute a distinct clinicopathological entity in the current World Health Organization (WHO) classification. However, its genomic features remain sparsely characterized. Here, we combine whole-genome sequencing (WGS), targeted amplicon sequencing (tNGS), and fluorescence in situ hybridization (FISH) from 47 EBV + DLBCL (NOS) cases to delineate the genomic landscape of this rare disease. Integrated WGS and tNGS analysis clearly distinguished this tumor type from EBV-negative DLBCL due to frequent mutations in ARID1A (45%), KMT2A/KMT2D (32/30%), ANKRD11 (32%), or NOTCH2 (32%). WGS uncovered structural aberrations including 6q deletions (5/8 patients), which were subsequently validated by FISH (14/32 cases). Expanding on previous reports, we identified recurrent alterations in CCR6 (15%), DAPK1 (15%), TNFRSF21 (13%), CCR7 (11%), and YY1 (6%). Lastly, functional annotation of the mutational landscape by sequential gene set enrichment and network propagation predicted an effect on the nuclear factor κB (NFκB) pathway (CSNK2A2, CARD10), IL6/JAK/STAT (SOCS1/3, STAT3), and WNT signaling (FRAT1, SFRP5) alongside aberrations in immunological processes, such as interferon response. This first comprehensive description of EBV + DLBCL (NOS) tumors substantiates the evidence of its pathobiological independence and helps stratify the molecular taxonomy of aggressive lymphomas in the effort for future therapeutic strategies.
Collapse
Affiliation(s)
- Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany. .,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| | - Axel Künstner
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Julius Ketzer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,Department of Pediatrics, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Hanno M Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,Department of Hematology and Oncology, Federal Armed Hospital Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany
| | - Tobias Rausch
- EMBL, European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Vladimir Benes
- EMBL, European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Jürgen Zimmermann
- EMBL, European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Judith Gebauer
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Lana Harder
- Institut für Tumorgenetik Nord, Steenbeker Weg 23, 24106, Kiel, Germany
| | - Katharina Ratjen
- Institut für Tumorgenetik Nord, Steenbeker Weg 23, 24106, Kiel, Germany
| | - Stefan Gesk
- Institut für Tumorgenetik Nord, Steenbeker Weg 23, 24106, Kiel, Germany
| | - Wolfgang Peter
- HLA Typing Laboratory of the Stefan-Morsch-Foundation, 557565, Birkenfeld, Germany.,Institut für Tranfusionsmedizin, Universitätsklinikum Köln. Kerpenerstr. 62, 50937, Köln, Germany
| | - Yannik Busch
- HLA Typing Laboratory of the Stefan-Morsch-Foundation, 557565, Birkenfeld, Germany
| | - Peter Trojok
- HLA Typing Laboratory of the Stefan-Morsch-Foundation, 557565, Birkenfeld, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Harald Biersack
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Hauke Busch
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.,Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Alfred C Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| |
Collapse
|
39
|
Thyroid MALT lymphoma: self-harm to gain potential T-cell help. Leukemia 2021; 35:3497-3508. [PMID: 34021249 PMCID: PMC8632687 DOI: 10.1038/s41375-021-01289-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
The development of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by chronic inflammatory responses and acquired genetic changes. To investigate its genetic bases, we performed targeted sequencing of 93 genes in 131 MALT lymphomas including 76 from the thyroid. We found frequent deleterious mutations of TET2 (86%), CD274 (53%), TNFRSF14 (53%), and TNFAIP3 (30%) in thyroid MALT lymphoma. CD274 was also frequently deleted, together with mutation seen in 68% of cases. There was a significant association between CD274 mutation/deletion and TNFRSF14 mutation (p = 0.001). CD274 (PD-L1) and TNFRSF14 are ligands for the co-inhibitory receptor PD1 and BTLA on T-helper cells, respectively, their inactivation may free T-cell activities, promoting their help to malignant B-cells. In support of this, both the proportion of activated T-cells (CD4+CD69+/CD4+) within the proximity of malignant B-cells, and the level of transformed blasts were significantly higher in cases with CD274/TNFRSF14 genetic abnormalities than those without these changes. Both CD274 and TNFRSF14 genetic changes were significantly associated with Hashimoto’s thyroiditis (p = 0.01, p = 0.04, respectively), and CD274 mutation/deletion additionally associated with increased erythrocyte sedimentation rate (p = 0.0001). In conclusion, CD274/TNFRSF14 inactivation in thyroid MALT lymphoma B-cells may deregulate their interaction with T-cells, promoting co-stimulations and impairing peripheral tolerance.
Collapse
|
40
|
Kiesewetter B, Raderer M. How can we assess and measure prognosis for MALT lymphoma? A review of current findings and strategies. Expert Rev Hematol 2021; 14:391-399. [PMID: 33764848 DOI: 10.1080/17474086.2021.1909468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION : MALT (mucosa associated lymphoid tissue) lymphoma is a distinct type of B-cell lymphoma characterized by extranodal manifestation and an indolent clinical course with 10-year survival rates up to 90%. However, transformation to aggressive lymphoma may occur and treatment is indicated in case of symptomatic or progressive disease. AREAS COVERED : This review covers clinical and biological features potentially related to prognosis and outcome of MALT lymphoma patients, as well as available prognostic tools and risk stratification systems with a focus on the MALT-IPI (international prognostic index) and the POD24 (progression of disease at 24 months) cohort. In addition, we address the role of watch-and-wait, the importance of defining the optimal time point for treatment initiation and the relevance of depth of remission, which appear to be some of the central questions for physicians involved in the care of MALT lymphoma patients. A computerized database search using PubMed® was performed to identify available publications on prognostic factors and risk stratification tools in MALT lymphoma. EXPERT OPINION : Despite the development of disease-specific risk stratification systems, there is no clear concept how to measure prognosis and tailor treatment. Careful observation of the individual clinical course is essential to assess the optimal time point of treatment initiation and avoid overtreatment, particularly in patients with disseminated disease. In addition, early detection of patients with histological transformation is necessary, as these patients face a poor prognosis.
Collapse
Affiliation(s)
- Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Zhang C, Xia R, Gu T, Wang L, Tian Z, Zhu L, Han J, Hu Y, Wang Y, Sun J, Li J. Clinicopathological aspects of primary mucosa-associated lymphoid tissue lymphoma of the salivary gland: A retrospective single-center analysis of 72 cases. J Oral Pathol Med 2021; 50:723-730. [PMID: 33730431 DOI: 10.1111/jop.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Salivary gland extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue lymphoma (MALT lymphoma) is uncommon and has not been studied extensively. We aimed to investigate the features of clinicopathological and molecular changes of salivary MALT lymphoma. METHODS Seventy-two cases of primary salivary MALT lymphoma that had clinicopathological information available were utilized in this study. MALT1 gene translocation, trisomy 3, and trisomy 18 were detected by interphase fluorescence in situ hybridization (FISH). The data were analyzed using SPSS 17.0 software package. RESULTS The ratio of male to female was 1:2.8, and the median age was 57.0 years. 12.5% (9/72) of the patients presented with multiple swellings. Among the others with solitary mass, the parotid gland was involved most frequently (47/63,74.6%), followed by the palate (7/63, 11.1%). 34.7% of patients had an autoimmune disease, with Sjögren syndrome (SS) being the most common. Among the 70 cases successfully performed, it was identified that trisomy 3 was the most frequent molecular change (41/70, 58.6%), followed by trisomy 18 (7/70, 10%) and MALT1 translocation (5/70, 7.1%). The tumor tissue tended to exhibit trisomy 3 in patients without SS (p = 0.038). The 5-year overall survival was 94.1%, and the 5-year disease-free survival was 85.3% (mean follow-up time: 104.7 months). The patients without SS and trisomy 18 had a prolonged recurrence-free survival (p = 0.015, p = 0.001 respectively). CONCLUSION Salivary gland MALT lymphoma is associated with autoimmune diseases, and trisomy 3 is the most common genetic change. Trisomy 18 can be used to predict the possibility of tumor relapse.
Collapse
Affiliation(s)
- Chunye Zhang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Ronghui Xia
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Ting Gu
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Lizhen Wang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Zhen Tian
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Ling Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai, China
| | - Jing Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Hu
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Yu Wang
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Jingjing Sun
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| | - Jiang Li
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Pathology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai, China
| |
Collapse
|
42
|
Vela V, Juskevicius D, Prince SS, Cathomas G, Dertinger S, Diebold J, Bubendorf L, Horcic M, Singer G, Zettl A, Dirnhofer S, Tzankov A, Menter T. Deciphering the genetic landscape of pulmonary lymphomas. Mod Pathol 2021; 34:371-379. [PMID: 32855441 DOI: 10.1038/s41379-020-00660-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Pulmonary lymphoid malignancies comprise various entities, 80% of them are pulmonary marginal zone B-cell lymphomas (PMZL). So far, little is known about point mutations in primary pulmonary lymphomas. We characterized the genetic landscape of primary pulmonary lymphomas using a customized high-throughput sequencing gene panel covering 146 genes. Our cohort consisted of 28 PMZL, 14 primary diffuse large B-cell lymphomas (DLBCL) of the lung, 7 lymphomatoid granulomatoses (LyG), 5 mature small B-cell lymphomas and 16 cases of reactive lymphoid lesions. Mutations were detected in 22/28 evaluable PMZL (median 2 mutation/case); 14/14 DLBCL (median 3 mutations/case) and 4/7 LyG (1 mutation/case). PMZL showed higher prevalence for mutations in chromatin modifier-encoding genes (44% of mutant genes), while mutations in genes related to the NF-κB pathway were less common (24% of observed mutations). There was little overlap between mutations in PMZL and DLBCL. MALT1 rearrangements were more prevalent in PMZL than BCL10 aberrations, and both were absent in DLBCL. LyG were devoid of gene mutations associated with immune escape. The mutational landscape of PMZL differs from that of extranodal MZL of other locations and also from splenic MZL. Their landscape resembles more that of nodal MZL, which also show a predominance of mutations of chromatin modifiers. The different mutational composition of pulmonary DLBCL compared to PMZL suggests that the former probably do not present transformations. DLBCL bear more mutations/case and immune escape gene mutations compared to LyG, suggesting that EBV infection in LyG may substitute for mutations.
Collapse
Affiliation(s)
- Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Darius Juskevicius
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Spasenija Savic Prince
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | | | - Joachim Diebold
- Institute of Pathology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | - Lukas Bubendorf
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Milo Horcic
- Institute for Histologic und Cytologic Diagnostics AG, Aarau, Switzerland
| | - Gad Singer
- Institute of Pathology, Cantonal Hospital Baden, Baden, Switzerland
| | - Andreas Zettl
- Institute of Pathology, Viollier AG, Allschwil, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Foukas PG, Bisig B, de Leval L. Recent advances upper gastrointestinal lymphomas: molecular updates and diagnostic implications. Histopathology 2020; 78:187-214. [PMID: 33382495 DOI: 10.1111/his.14289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Approximately one-third of extranodal non-Hodgkin lymphomas involve the gastrointestinal (GI) tract, with the vast majority being diagnosed in the stomach, duodenum, or proximal small intestine. A few entities, especially diffuse large B-cell lymphoma and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue, represent the majority of cases. In addition, there are diseases specific to or characteristic of the GI tract, and any type of systemic lymphoma can present in or disseminate to these organs. The recent advances in the genetic and molecular characterisation of lymphoid neoplasms have translated into notable changes in the classification of primary GI T-cell neoplasms and the recommended diagnostic approach to aggressive B-cell tumours. In many instances, diagnoses rely on morphology and immunophenotype, but there is an increasing need to incorporate molecular genetic markers. Moreover, it is also important to take into consideration the endoscopic and clinical presentations. This review gives an update on the most recent developments in the pathology and molecular pathology of upper GI lymphoproliferative diseases.
Collapse
Affiliation(s)
- Periklis G Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurence de Leval
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|
44
|
Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. ANNALS OF LYMPHOMA 2020; 4:7. [PMID: 34667996 PMCID: PMC7611845 DOI: 10.21037/aol-20-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marginal zone lymphoma (MZL) represents a group of three distinct though overlapping lymphoid malignancies that includes extranodal, nodal and splenic marginal lymphoma. MZL patients usually present an indolent clinical course, although the disease remains largely incurable, save early stage disease that might be irradiated. Therapeutic advances have been limited due to the small patient population, and have largely been adapted from other indolent lymphomas. Here, we discuss the numerous targets and pathways which may offer the prospect of directly inhibiting the mechanisms identified promoting and sustaining marginal zone lymphomagenesis. In particular, we focus on the agents that may have at least a theoretical application in the disease. Various dysregulated pathways converge to produce an overarching stimulation of nuclear factor κB (NF-κB) and the MYD88-IRAK4 axis, which can be thus leveraged or targeting B-cell receptor signaling through BTK inhibitors (such as ibrutinib, zanubrutinib, acalabrutinib) and PI3K inhibitors (such as idelalisib, copanlisib, duvelisib umbralisib) or via more novel agents in development such as MALT1 inhibitors, SMAC mimetics, NIK inhibitors, IRAK4 or MYD88 inhibitors. NOTCH signaling is also crucial for marginal zone cells, but no clinical data are available with NOTCH inhibitors such as the γ-secretase inhibitor PF-03084014 or the NICD inhibitor CB-103. The hypermethylation phenotype, the overexpression of the PRC2-complex or the presence of TET2 mutations reported in MZL subsets make epigenetic agents (demethylating agents, EZH2 inhibitors, HDAC inhibitors) also potential therapeutic tools for MZL patients.
Collapse
Affiliation(s)
- Jennifer K. Lue
- Division of Hematology-Oncology, Department of Medicine, Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Owen A. O’Connor
- Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Francesco Bertoni
- institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|
45
|
|
46
|
Johansson P, Klein-Hitpass L, Budeus B, Kuhn M, Lauber C, Seifert M, Roeder I, Pförtner R, Stuschke M, Dührsen U, Eckstein A, Dürig J, Küppers R. Identifying Genetic Lesions in Ocular Adnexal Extranodal Marginal Zone Lymphomas of the MALT Subtype by Whole Genome, Whole Exome and Targeted Sequencing. Cancers (Basel) 2020; 12:cancers12040986. [PMID: 32316399 PMCID: PMC7225979 DOI: 10.3390/cancers12040986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
The pathogenesis of ocular adnexal marginal zone lymphomas of mucosa-associated lymphatic tissue-type (OAML) is not fully understood. We performed whole genome sequencing (WGS) and/or whole exome sequencing (WES) for 13 cases of OAML and sequenced 38 genes selected from this analysis in a large cohort of 82 OAML. Besides confirmation of frequent mutations in the genes transducin beta like 1 X-linked receptor 1 (TBL1XR1) and cAMP response element binding protein (CREBBP), we newly identifed JAK3 as a frequently mutated gene in OAML (11% of cases). In our retrospective cohort, JAK3 mutant cases had a shorter progression-free survival compared with unmutated cases. Other newly identified genes recurrently mutated in 5-10% of cases included members of the collagen family (collagen type XII alpha 1/2 (COL12A1, COL1A2)) and DOCK8. Evaluation of the WGS data of six OAML did not reveal translocations or a current infection of the lymphoma cells by viruses. Evaluation of the WGS data for copy number aberrations confirmed frequent loss of TNFAIP3, and revealed recurrent gains of the NOTCH target HES4, and of members of the CEBP transcription factor family. Overall, we identified several novel genes recurrently affected by point mutations or copy number alterations, but our study also indicated that the landscape of frequently (>10% of cases) mutated protein-coding genes in OAML is now largely known.
Collapse
Affiliation(s)
- Patricia Johansson
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.D.); (J.D.)
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
- Correspondence: ; Tel.: +49-201-723-85845
| | - Ludger Klein-Hitpass
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
| | - Matthias Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Chris Lauber
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany; (M.K.); (C.L.); (M.S.); (I.R.)
| | - Roman Pförtner
- Department of Oral and Cranio-Maxillofacial Surgery, Kliniken Essen-Mitte, Evang. Huyssens-Stiftung/Knappschaft GmbH, University Hospital of Essen, 45136 Essen, Germany;
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, 45147 Essen, Germany;
| | - Ulrich Dührsen
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.D.); (J.D.)
| | - Anja Eckstein
- Department of Ophthalmology, Molecular Ophthalmology Group, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Jan Dürig
- Department of Hematology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (U.D.); (J.D.)
- German Cancer Consortium (DKTK), 45147 Essen, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (L.K.-H.); (B.B.); (R.K.)
- German Cancer Consortium (DKTK), 45147 Essen, Germany
| |
Collapse
|
47
|
Swerdlow SH, Cook JR. As the world turns, evolving lymphoma classifications–past, present and future. Hum Pathol 2020; 95:55-77. [DOI: 10.1016/j.humpath.2019.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 12/20/2022]
|
48
|
Cascione L, Rinaldi A, Bruscaggin A, Tarantelli C, Arribas AJ, Kwee I, Pecciarini L, Mensah AA, Spina V, Chung EYL, di Bergamo LT, Dirnhofer S, Tzankov A, Miranda RN, Young KH, Traverse-Glehen A, Gaidano G, Swerdlow SH, Gascoyne R, Rabadan R, Ponzoni M, Bhagat G, Rossi D, Zucca E, Bertoni F. Novel insights into the genetics and epigenetics of MALT lymphoma unveiled by next generation sequencing analyses. Haematologica 2019; 104:e558-e561. [PMID: 31018978 DOI: 10.3324/haematol.2018.214957] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Luciano Cascione
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Chiara Tarantelli
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alberto J Arribas
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ivo Kwee
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland
| | | | - Afua A Mensah
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Valeria Spina
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Elaine Y L Chung
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Lodovico Terzi di Bergamo
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | | | - Raul Rabadan
- Department of Systems Biology, Department of Biomedical Informatics, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | | | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
49
|
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Many B cell lymphomas require B cell antigen receptor expression, and in several instances, chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Many B cell malignancies derive from germinal center B cells, most likely because of the high proliferation rate of these cells and the high activity of mutagenic processes.
Collapse
|
50
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|