1
|
Lima Oliveira M, Lima NS, Khara Renaud G, Estrada A, Buitrago D, Hamm A, Nadeem S, Naylor KB, Chen Z, Yanez B, Booms E, Searcy J, Biggers A, Tussing-Humphreys LM. Design of a mindfulness intervention to reduce risk factors for colorectal cancer among at-risk Black women in Chicago. J Appl Physiol (1985) 2024; 137:1484-1493. [PMID: 39417824 PMCID: PMC11573258 DOI: 10.1152/japplphysiol.00608.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic stress can directly and indirectly promote carcinogenesis through immune, metabolic, and microbial pathways. Our overarching hypothesis is that reducing chronic stress will have important implications for colorectal cancer (CRC) risk reduction among vulnerable and high-risk populations. A promising approach for reducing chronic stress is mindfulness. Mindfulness is a meditation-based technique that achieves a state of mind that is used to experience higher awareness or consciousness. Existing small studies suggest mindfulness can positively regulate stress response in a way that translates to anticancer effects, including reduced systemic inflammation. We propose to evaluate an 8-wk mindfulness intervention delivered in a hybrid format (synchronous and asynchronous sessions) among 40 Black women at elevated risk of CRC who reside in vulnerable communities and who report moderate to high perceived stress. At baseline and postintervention, participants will provide blood, hair, and stool; undergo body composition analysis; and complete mood and lifestyle-related surveys. The specific aims are to assess the feasibility and acceptability of the intervention and explore changes on stress, weight, fasting glucose, inflammation markers, and the gut microbiota-risk markers and risk pathways associated with CRC. The data generated through this project will inform if mindfulness is a feasible option for CRC risk reduction among high-risk individuals.NEW & NOTEWORTHY We propose to evaluate an 8-wk mindfulness intervention delivered in a hybrid format (synchronous and asynchronous sessions) among 40 Black women at elevated risk of CRC who reside in vulnerable communities and who report moderate to high perceived stress. The specific aims are to assess the feasibility and acceptability of the intervention and explore changes on stress, weight, fasting glucose, inflammation markers, and the gut microbiota-risk markers and risk pathways associated with CRC.
Collapse
Affiliation(s)
- Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
- University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Natalia Salvatierra Lima
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | | | - Andy Estrada
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Diana Buitrago
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Alyshia Hamm
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Saba Nadeem
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Keith B Naylor
- University of Illinois Cancer Center, Chicago, Illinois, United States
- College of Medicine, University of Illinois Chicago, Illinois, United States
| | - Zhengjia Chen
- University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Betina Yanez
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Emily Booms
- Biology Department, Northeastern Illinois University, Chicago, Illinois, United States
| | - Jasmin Searcy
- Department of Psychology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Alana Biggers
- College of Medicine, University of Illinois Chicago, Illinois, United States
| | - Lisa Marie Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
- University of Illinois Cancer Center, Chicago, Illinois, United States
| |
Collapse
|
2
|
Lyu SI, Simon AG, Jung JO, Fretter C, SchrÖder W, Bruns CJ, Schmidt T, Quaas A, Knipper K. Hexokinase 2 as an independent risk factor for worse patient survival in esophageal adenocarcinoma and as a potential therapeutic target protein: A retrospective, single‑center cohort study. Oncol Lett 2024; 28:495. [PMID: 39211305 PMCID: PMC11358717 DOI: 10.3892/ol.2024.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer cells exhibit a distinct metabolic profile that features an upregulation of less efficient glycolysis accompanied by lactate production for energy generation, in contract to the characteristic metabolism of normal cells. Consequently, cancer research has focused on the enzymes that participate in these cancer metabolic pathways. Among them, hexokinase 2 (HK2) has an important position as the initial enzyme in the glycolytic pathway. Increased expression levels of HK2 have been correlated with an increased risk of poor patient outcomes and advanced tumor stages in a number of malignant tumors, such as gastric carcinoma. The present study aimed to investigate the specific role of HK2 in patients diagnosed with esophageal adenocarcinoma. A total of 643 patients with esophageal adenocarcinoma were included. Immunohistochemical staining and HK2 mRNA in situ probes were used to investigate the association of HK2 expression levels with clinical and molecular tumor characteristics. Patients who exhibited high HK2 expression levels demonstrated significantly reduced overall survival (OS) times compared with patients who exhibited low HK2 expression levels (29.6 vs. 39.9 months, respectively; P=0.027). Furthermore, high HK2 expression levels were demonstrated to be an independent risk factor for reduced patient survival (hazard ratio, 1.65; 95% CI, 1.09-2.50; P=0.018). Significantly reduced patient survival was also demonstrated in the subgroups of male patients, patients with primarily resected tumors, patients with HER2-negative tumors and patients with tumors exhibiting Y chromosome loss. Elevated expression of HK2 was identified as a risk factor for unfavorable patient survival in esophageal adenocarcinoma. This revelation suggests the potential for future diagnostic and therapeutic avenues tailored to this specific patient subset. Identifying patients with high HK2 expression may pinpoint a higher-risk cohort, paving the way for comprehensive prospective studies that could advocate for intensified monitoring and more aggressive therapeutic regimens. Furthermore, the targeted inhibition of HK2 could hold promise as a strategy to potentially enhance patient outcomes.
Collapse
Affiliation(s)
- Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Jin-On Jung
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Wolfgang SchrÖder
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, D-50937 Cologne, Germany
| | - Karl Knipper
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital of Cologne, University of Cologne, D-50937 Cologne, Germany
| |
Collapse
|
3
|
Saha S, Bapat S, Vijayasarathi D, Vyas R. Exploring potential biomarkers and lead molecules in gastric cancer by network biology, drug repurposing and virtual screening strategies. Mol Divers 2024:10.1007/s11030-024-10995-6. [PMID: 39348085 DOI: 10.1007/s11030-024-10995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Gastric cancer poses a significant global health challenge, necessitating innovative approaches for biomarker discovery and therapeutic intervention. This study employs a multifaceted strategy integrating network biology, drug repurposing, and virtual screening to elucidate and expand the molecular landscape of gastric cancer. We identified and prioritized key genes implicated in gastric cancer by utilizing data from diverse databases and text-mining techniques. Network analysis underscored intricate gene interactions, emphasizing potential therapeutic targets such as CTNNB1, BCL2, TP53, etc, and highlighted ACTB among the top hub genes crucial in disease progression. Drug repurposing on 626 FDA-approved drugs for digestive system-related cancers revealed Norgestimate and Nimesulide as likely top candidates for gastric cancer, validated by molecular docking and dynamics simulations. Further, combinatorial synthesis of scaffold libraries derived from known chemotypes generated 56,160 virtual compounds, of which 76 new compounds were prioritized based on promising binding affinities and interactions at critical residues. Hotspot residue analysis identified GLU 214 and others as essential for ligand binding stability, enhancing compound efficacy and specificity. These findings support the therapeutic potential of targeting beta-actin protein in gastric cancer treatment, suggesting a future for further experimental validation and clinical translation. In conclusion, this study highlights the potential of repurposable drugs and virtual screening which can be used in combination with existing anti-gastric cancer drugs for gastric cancer therapy, emphasizing the role of computational methodologies in drug discovery.
Collapse
Affiliation(s)
- Sagarika Saha
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Sanket Bapat
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Durairaj Vijayasarathi
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Renu Vyas
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
5
|
Nair SG, Benny S, Jose WM, Aneesh T P. Beta-blocker adjunct therapy as a prospective anti-metastatic with cardio-oncologic regulation. Clin Exp Metastasis 2024; 41:9-24. [PMID: 38177715 DOI: 10.1007/s10585-023-10258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The prevailing treatment stratagem in cancer therapy still challenges the dilemma of a probable metastatic spread following an initial diagnosis. Including an anti-metastatic agent demands a significant focus to overrule the incidence of treatment failures. Adrenergic stimulation underlying the metastatic spread paved the way for beta blockers as a breakthrough in repurposing as an anti-metastatic agent. However, the current treatment approach fails to fully harness the versatile potential of the drug in inhibiting probable metastasis. The beta blockers were seen to show a myriad of grip over the pro-metastatic and prognostic parameters of the patient. Novel interventions in immune therapy, onco-hypertension, surgery-induced stress, induction of apoptosis and angiogenesis inhibition have been used as evidence to interpret our objective of discussing the potential adjuvant role of the drug in the existing anti-cancer regimens. Adding weight to the relative incidence of onco-hypertension as an unavoidable side effect from chemotherapy, the slot for an anti-hypertensive agent is necessitated, and we try to suggest beta-blockers to fill this position. However, pointing out the paucity in the clinical study, we aim to review the current status of beta blockers under this interest to state how the drug should be included as a drug of choice in every patient undergoing cancer treatment.
Collapse
Affiliation(s)
- Sachin G Nair
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Wesley M Jose
- Department of Medical Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, AIMS PO, Kochi, Kerala, 682041, India.
| | - Aneesh T P
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
6
|
Jongerius C, Vermeulen L, van Egmond M, Evers AWM, Buffart LM, Lenos KJ. Behavioral factors to modulate immunotherapy efficacy in cancer. Front Immunol 2022; 13:1066359. [PMID: 36591246 PMCID: PMC9800824 DOI: 10.3389/fimmu.2022.1066359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Immune checkpoint inhibitors, including anti-PD-1 and anti-CTLA-4 therapies, are used to (re)activate the immune system to treat cancer. Despite promising results, a large group of patients does not respond to checkpoint inhibition. In the vulnerability-stress model of behavioral medicine, behavioral factors, such as stress, exercise and classical pharmacological conditioning, predict cancer incidence, recurrence and the efficacy of conventional cancer treatments. Given the important role of the immune system in these processes, certain behavior may be promising to complement immune checkpoint inhibition therapy. Here, we discuss the preliminary evidence and suitability of three behavioral mechanisms, i.e. stress modulation, exercise and classical pharmacological conditioning for the benefit of immunotherapy. It is crucial to study the potential beneficial effects of behavioral strategies that support immunotherapeutic anti-tumor effects with rigorous experimental evidence, to exploit behavioral mechanisms in improving checkpoint inhibition efficacy.
Collapse
Affiliation(s)
- C. Jongerius
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands,*Correspondence: C. Jongerius,
| | - L. Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands
| | - M. van Egmond
- Department of Molecular Cell Biology & Immunology, Amsterdam UMC, Location VU University, Amsterdam, Netherlands,Department of Surgery, Amsterdam UMC, Location VU University, Amsterdam, Netherlands
| | - A. W. M. Evers
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, Netherlands
| | - L. M. Buffart
- Department of Physiology, Radboudumc, Nijmegen, Netherlands
| | - K. J. Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers location University of Amsterdam, Amsterdam, Netherlands,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands,Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
7
|
Embaby A, van Merendonk L, Steeghs N, Beijnen J, Huitema A. Beta-adrenergic receptor blockade in angiosarcoma: Which beta-blocker to choose? Front Oncol 2022; 12:940582. [PMID: 36185303 PMCID: PMC9520289 DOI: 10.3389/fonc.2022.940582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Beta-blockers are currently studied to improve therapeutic options for patients with angiosarcoma. However, most of these patients have no cardiovascular co-morbidity and it is therefore crucial to discuss the most optimal pharmacological properties of beta-blockers for this population. To maximize the possible effectiveness in angiosarcoma, the use of a non-selective beta-blocker is preferred based on in vitro data. To minimize the risk of cardiovascular adverse events a beta-blocker should ideally have intrinsic sympathomimetic activity or vasodilator effects, e.g. labetalol, pindolol or carvedilol. However, except for one case of carvedilol, only efficacy data of propranolol is available. In potential follow-up studies labetalol, pindolol or carvedilol can be considered to reduce the risk of cardiovascular adverse events.
Collapse
Affiliation(s)
- Alaa Embaby
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
- *Correspondence: Alaa Embaby,
| | - Lisanne van Merendonk
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Jos Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Alwin Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Solernó LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vásquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep 2022; 12:15058. [PMID: 36075937 PMCID: PMC9458647 DOI: 10.1038/s41598-022-18324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is still associated with limited response to standard-of-care therapy and alarmingly elevated mortality rates, especially in low- and middle-income countries. Despite multiple efforts to repurpose β-blocker propranolol in oncology, its potential application in osteosarcoma management remains largely unexplored. Considering the unsatisfied clinical needs of this aggressive disease, we evaluated the antitumoral activity of propranolol using different in vitro and in vivo osteosarcoma preclinical models, alone or in addition to chemotherapy. Propranolol significantly impaired cellular growth in β2-adrenergic receptor-expressing MG-63 and U-2OS cells, and was capable of blocking growth-stimulating effects triggered by catecholamines. siRNA-mediated ADRB2 knockdown in MG-63 cells was associated with decreased cell survival and a significant attenuation of PPN anti-osteosarcoma activity. Direct cytostatic effects of propranolol were independent of apoptosis induction and were associated with reduced mitosis, G0/G1 cell cycle arrest and a significant down-regulation of cell cycle regulator Cyclin D1. Moreover, colony formation, 3D spheroid growth, cell chemotaxis and capillary-like tube formation were drastically impaired after propranolol treatment. Interestingly, anti-migratory activity of β-blocker was associated with altered actin cytoskeleton dynamics. In vivo, propranolol treatment (10 mg/kg/day i.p.) reduced the early angiogenic response triggered by MG-63 cells in nude mice. Synergistic effects were observed in vitro after combining propranolol with chemotherapeutic agent cisplatin. Sustained administration of propranolol (10 mg/kg/day i.p., five days a week), alone and especially in addition to low-dose metronomic cisplatin (2 mg/kg/day i.p., three times a week), markedly reduced xenograft progression. After histological analysis, propranolol and cisplatin combination resulted in low tumor mitotic index and increased tumor necrosis. β-blockade using propranolol seems to be an achievable and cost-effective therapeutic approach to modulate osteosarcoma aggressiveness. Further translational studies of propranolol repurposing in osteosarcoma are warranted.
Collapse
Affiliation(s)
- Luisina M Solernó
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Natasha T Sobol
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - María F Gottardo
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Carla S Capobianco
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomedicine Research Institute of Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima, Perú
| | - Daniel F Alonso
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina. .,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina. .,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
10
|
Tavakoli M, Farshami MJ, Torabinia N, Yaghini J, Shams S. Evaluating systemic administration effect of propranolol on osseointegration around titanium implants: A histomorphometric study in dogs. Dent Res J (Isfahan) 2022; 19:37. [PMID: 35669606 PMCID: PMC9164661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/27/2021] [Accepted: 07/01/2021] [Indexed: 10/26/2022] Open
Abstract
Background Dental implants are known as a widely accepted and predictable method to replace missing teeth. Many factors, including using a class of drugs, such as β-blockers, can improve the osseointegration of dental implants. This study aimed to investigate the relationship between administrating propranolol and osseointegration in dental implants. Materials and Methods This experimental animal study was performed on four native male street dogs of 11-13 kg of weight and 16-20 months of age. The specimens underwent teeth extraction. After that, the dogs were randomly divided into two groups. The first group contains two control dogs which would receive oral saline. The second contains two dogs which would receive oral tablets of propranolol daily. After a period of healing, three titanium implants were inserted in each of speciments' left mandibular quadrant, and treatment was resumed with propranolol and saline administration in case and control group, respectively. After 4 weeks, one of control group dogs and one of case group were anesthetized, and dental implants were removed alongside the peripheral bone marrow using a trephine drill. Meanwhile, the other two dogs (1 control and 1 propranolol administered dogs) were anesthetized after 9 weeks of implant placement, and the same procedure was carried out. Results Due to the histomorphometric assessment, the mean score of bone implant contact (BIC) in week 4 was significantly higher in case group compared to control one (68.33% vs. 20.22%). In week 9, the mean BIC score was higher in case group compared to control group (68.60% vs. 50.17%); meanwhile, in contrast to week 4, it was not statistically significant. In both case and control groups, the formation of woven and lamellar bone was more significant in week 4 rather than week 9. Conclusion Administration of systemic β-blockers can improve dental implants osseointegration process.
Collapse
Affiliation(s)
- Mohammad Tavakoli
- Dental Implant Research Center, Department of Periodontology, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafari Farshami
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nakisa Torabinia
- Dental Materials Research Center, Department of Oral and Maxillofacial Pathology, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Dental Implant Research Center, Department of Periodontology, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Jaber Yaghini, Department of Periodontology, Dental Implant Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Samaneh Shams
- Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
12
|
Fjæstad KY, Rømer AMA, Goitea V, Johansen AZ, Thorseth ML, Carretta M, Engelholm LH, Grøntved L, Junker N, Madsen DH. Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment. Oncogene 2022; 41:1364-1375. [PMID: 35017664 PMCID: PMC8881216 DOI: 10.1038/s41388-021-02170-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.
Collapse
Affiliation(s)
- Klaire Yixin Fjæstad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Victor Goitea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Astrid Zedlitz Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Marco Carretta
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Lars Henning Engelholm
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Cheng HY, Lin HC, Lin HL, Uang YS, Keller JJ, Wang LH. Association Between Nonselective Beta-Blocker Use and Hepatocellular Carcinoma in Patients With Chronic Hepatitis B Without Cirrhosis and Decompensation. Front Pharmacol 2022; 12:805318. [PMID: 35069216 PMCID: PMC8777254 DOI: 10.3389/fphar.2021.805318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Nonselective beta-blockers (NSBBs) can reduce the incidence or mortality of certain types of cancers, and NSBBs exert a protective effect on hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the potential preventive effect of NSBBs has not yet been investigated in patients with chronic hepatitis B (CHB) who have a high HCC risk regardless of the presence of underlying cirrhosis. Aim: This study evaluated the association between NSBB use and HCC incidence in patients with CHB without cirrhosis and decompensation. Methods: From the 2000 Longitudinal Generation Tracking Database, we enrolled patients who were newly diagnosed as having CHB from January 2001 to December 2011 and then followed them up for at least 5 years. To estimate the causal effect of NSBBs on the time-to-event outcomes of HCC, a marginal Cox proportional hazards model was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: After adjustment, no significant benefit of HCC risk reduction was observed between the NSBB users and nonusers (adjusted HR, 0.82; 95% CI, 0.52–1.31). The cumulative defined daily dose (cDDD) analysis revealed no significant dose correlation among the three groups [adjusted HR (95% CI): 1.08, (0.56–2.05), 0.54 (0.17–1.77), and 0.76 (0.40–1.42) in the <90 cDDD, 90 to <180 cDDD, and ≥180 cDDD groups, respectively]. Duration-dependent associations were not observed. Multivariable stratified analysis results demonstrated that HCC risk markedly decreased in the patients aged >55 years (adjusted HR, 0.49; 95% CI, 0.25–0.96; p = 0.04). Conclusion: NSBB did not significantly prevent HCC in the patients with CHB infection without cirrhosis and decompensation. This study provided one of valuable results that it is not clinically required to use NSBBs as recommended chemoprevention for HCC in high-risk patients who have CHB.
Collapse
Affiliation(s)
- He-Yun Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsiu C Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsiu L Lin
- Department of Neurology, General Cathay Hospital, New Taipei City, Taiwan
| | - Yow S Uang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Joseph J Keller
- College of Medicine, Ohio State University, Columbus, OH, United States
| | - Li H Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Vincent-Chong VK, Seshadri M. Adrenergic-Angiogenic Crosstalk in Head and Neck Cancer: Mechanisms and Therapeutic Implications. FRONTIERS IN ORAL HEALTH 2021; 2. [PMID: 34790909 PMCID: PMC8594278 DOI: 10.3389/froh.2021.689482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are loco-regionally aggressive tumors that often lead to debilitating changes in appearance, speech, swallowing and respiratory function in patients. It is therefore critical to develop novel targeted treatment strategies that can effectively target multiple components within the tumor microenvironment. In this regard, there has been an increased recognition of the role of neural signaling networks as mediators of disease progression in HNSCC. Here, we summarize the current knowledge on the mechanisms of adrenergic signaling in HNSCC specifically focusing on neurovascular crosstalk and the potential of targeting the adrenergic-angiogenic axis through repurposing of FDA-approved drugs against HNSCC.
Collapse
Affiliation(s)
| | - Mukund Seshadri
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Dentistry and Maxillofacial Prosthetics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
15
|
The Adrenergic Nerve Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:271-294. [PMID: 34664245 DOI: 10.1007/978-3-030-73119-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The central and autonomic nervous systems interact and converge to build up an adrenergic nerve network capable of promoting cancer. While a local adrenergic sympathetic innervation in peripheral solid tumors influences cancer and stromal cell behavior, the brain can participate to the development of cancer through an intermixed dysregulation of the sympathoadrenal system, adrenergic neurons, and the hypothalamo-pituitary-adrenal axis. A deeper understanding of the adrenergic nerve circuitry within the brain and tumors and its interactions with the microenvironment should enable elucidation of original mechanisms of cancer and novel therapeutic strategies.
Collapse
|
16
|
Munro MJ, Peng L, Wickremesekera SK, Tan ST. Colon adenocarcinoma-derived cells possessing stem cell function can be modulated using renin-angiotensin system inhibitors. PLoS One 2021; 16:e0256280. [PMID: 34428252 PMCID: PMC8384197 DOI: 10.1371/journal.pone.0256280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
The cancer stem cell (CSC) concept proposes that cancer recurrence and metastasis are driven by CSCs. In this study, we investigated whether cells from colon adenocarcinoma (CA) with a CSC-like phenotype express renin-angiotensin system (RAS) components, and the effect of RAS inhibitors on CA-derived primary cell lines. Expression of RAS components was interrogated using immunohistochemical and immunofluorescence staining in 6 low-grade CA (LGCA) and 6 high-grade CA (HGCA) tissue samples and patient-matched normal colon samples. Primary cell lines derived from 4 HGCA tissues were treated with RAS inhibitors to investigate their effect on cellular metabolism, tumorsphere formation and transcription of pluripotency genes. Immunohistochemical and immunofluorescence staining showed expression of AT2R, ACE2, PRR, and cathepsins B and D by cells expressing pluripotency markers. β-blockers and AT2R antagonists reduced cellular metabolism, pluripotency marker expression, and tumorsphere-forming capacity of CA-derived primary cell lines. This study suggests that the RAS is active in CSC-like cells in CA, and further investigation is warranted to determine whether RAS inhibition is a viable method of targeting CSCs.
Collapse
Affiliation(s)
- Matthew J. Munro
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Lifeng Peng
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | - Susrutha K. Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Upper Gastrointestinal, Hepatobiliary & Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Critical role of Aquaporin-1 and telocytes in infantile hemangioma response to propranolol beta blockade. Proc Natl Acad Sci U S A 2021; 118:2018690118. [PMID: 33558238 DOI: 10.1073/pnas.2018690118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Propranolol, a nonselective β-adrenergic receptor (ADRB) antagonist, is the first-line therapy for severe infantile hemangiomas (IH). Since the incidental discovery of propranolol efficacy in IH, preclinical and clinical investigations have shown evidence of adjuvant propranolol response in some malignant tumors. However, the mechanism for propranolol antitumor effect is still largely unknown, owing to the absence of a tumor model responsive to propranolol at nontoxic concentrations. Immunodeficient mice engrafted with different human tumor cell lines were treated with anti-VEGF bevacizumab to create a model sensitive to propranolol. Proteomics analysis was used to reveal propranolol-mediated protein alteration correlating with tumor growth inhibition, and Aquaporin-1 (AQP1), a water channel modulated in tumor cell migration and invasion, was identified. IH tissues and cells were then functionally investigated. Our functional protein association networks analysis and knockdown of ADRB2 and AQP1 indicated that propranolol treatment and AQP1 down-regulation trigger the same pathway, suggesting that AQP1 is a major driver of beta-blocker antitumor response. Examining AQP1 in human hemangioma samples, we found it exclusively in a perivascular layer, so far unrecognized in IH, made of telocytes (TCs). Functional in vitro studies showed that AQP1-positive TCs play a critical role in IH response to propranolol and that modulation of AQP1 in IH-TC by propranolol or shAQP1 decreases capillary-like tube formation in a Matrigel-based angiogenesis assay. We conclude that IH sensitivity to propranolol may rely, at least in part, on a cross talk between lesional vascular cells and stromal TCs.
Collapse
|
18
|
Archer M, Dogra N, Dovey Z, Ganta T, Jang HS, Khusid JA, Lantz A, Mihalopoulos M, Stockert JA, Zahalka A, Björnebo L, Gaglani S, Noh MR, Kaplan SA, Mehrazin R, Badani KK, Wiklund P, Tsao K, Lundon DJ, Mohamed N, Lucien F, Padanilam B, Gupta M, Tewari AK, Kyprianou N. Role of α- and β-adrenergic signaling in phenotypic targeting: significance in benign and malignant urologic disease. Cell Commun Signal 2021; 19:78. [PMID: 34284799 PMCID: PMC8290582 DOI: 10.1186/s12964-021-00755-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
The urinary tract is highly innervated by autonomic nerves which are essential in urinary tract development, the production of growth factors, and the control of homeostasis. These neural signals may become dysregulated in several genitourinary (GU) disease states, both benign and malignant. Accordingly, the autonomic nervous system is a therapeutic target for several genitourinary pathologies including cancer, voiding dysfunction, and obstructing nephrolithiasis. Adrenergic receptors (adrenoceptors) are G-Protein coupled-receptors that are distributed throughout the body. The major function of α1-adrenoceptors is signaling smooth muscle contractions through GPCR and intracellular calcium influx. Pharmacologic intervention of α-and β-adrenoceptors is routinely and successfully implemented in the treatment of benign urologic illnesses, through the use of α-adrenoceptor antagonists. Furthermore, cell-based evidence recently established the antitumor effect of α1-adrenoceptor antagonists in prostate, bladder and renal tumors by reducing neovascularity and impairing growth within the tumor microenvironment via regulation of the phenotypic epithelial-mesenchymal transition (EMT). There has been a significant focus on repurposing the routinely used, Food and Drug Administration-approved α1-adrenoceptor antagonists to inhibit GU tumor growth and angiogenesis in patients with advanced prostate, bladder, and renal cancer. In this review we discuss the current evidence on (a) the signaling events of the autonomic nervous system mediated by its cognate α- and β-adrenoceptors in regulating the phenotypic landscape (EMT) of genitourinary organs; and (b) the therapeutic significance of targeting this signaling pathway in benign and malignant urologic disease. Video abstract.
Collapse
Affiliation(s)
- M. Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - N. Dogra
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Z. Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - T. Ganta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - H.-S. Jang
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - J. A. Khusid
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Lantz
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - M. Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J. A. Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Zahalka
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - L. Björnebo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - S. Gaglani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. R. Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - S. A. Kaplan
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - R. Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. K. Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - P. Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. Tsao
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - D. J. Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - F. Lucien
- Department of Urology, Mayo Clinic, Rochester, MN USA
| | - B. Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
19
|
Brohée L, Crémer J, Colige A, Deroanne C. Lipin-1, a Versatile Regulator of Lipid Homeostasis, Is a Potential Target for Fighting Cancer. Int J Mol Sci 2021; 22:ijms22094419. [PMID: 33922580 PMCID: PMC8122924 DOI: 10.3390/ijms22094419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
The rewiring of lipid metabolism is a major adaptation observed in cancer, and it is generally associated with the increased aggressiveness of cancer cells. Targeting lipid metabolism is therefore an appealing therapeutic strategy, but it requires a better understanding of the specific roles played by the main enzymes involved in lipid biosynthesis. Lipin-1 is a central regulator of lipid homeostasis, acting either as an enzyme or as a co-regulator of transcription. In spite of its important functions it is only recently that several groups have highlighted its role in cancer. Here, we will review the most recent research describing the role of lipin-1 in tumor progression when expressed by cancer cells or cells of the tumor microenvironment. The interest of its inhibition as an adjuvant therapy to amplify the effects of anti-cancer therapies will be also illustrated.
Collapse
|
20
|
Repositioning metformin and propranolol for colorectal and triple negative breast cancers treatment. Sci Rep 2021; 11:8091. [PMID: 33854147 PMCID: PMC8047046 DOI: 10.1038/s41598-021-87525-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.
Collapse
|
21
|
Phase II study of propranolol feasibility with neoadjuvant chemotherapy in patients with newly diagnosed breast cancer. Breast Cancer Res Treat 2021; 188:427-432. [PMID: 33837871 DOI: 10.1007/s10549-021-06210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Propranolol regulates angiogenesis in pre-clinical models and reduces distant breast cancer (BC) metastases in observational studies. We assessed the feasibility of combining propranolol with neoadjuvant chemotherapy (NAC) in patients with BC. METHODS Women with clinical stage II-III BC undergoing NAC [weekly paclitaxel × 12, followed by dose-dense adriamycin/cyclophosphamide (AC) × 4] started propranolol 20 mg PO BID with paclitaxel #1, and increased to 80 mg extended release (ER) PO daily, as tolerated. The primary endpoint was to assess feasibility, defined as at least 75% of patients having at least 80% adherence to propranolol as prescribed. Secondary endpoints included identifying safety, rate of dose holds and modification, and rate of reaching 80 mg ER daily. The proposed sample size was 20 patients. RESULTS From November 2012 to September 2015, ten patients were enrolled. Median age was 50.5 years (range, 44-67). All patients had hormone receptor-positive/HER2-negative breast cancer. Three women had grade I bradycardia that resulted in a 1-week delay in increasing the propranolol dose. Ninety percent of women reached the target propranolol dosing of 80 mg ER daily, and 70% took the target propranolol dose until the night before surgery. Of the 4 women who dose-reduced propranolol, 1 increased to the target propranolol dose. Mean adherence to propranolol dosing was 96% (range: 91-100%). All patients went to surgery. CONCLUSION Our results support the feasibility of combining propranolol (up to 80 mg ER) with neoadjuvant taxane/anthracycline-based chemotherapy.
Collapse
|
22
|
Jain P, Jain SK, Jain M. Harnessing Drug Repurposing for Exploration of New Diseases: An Insight to Strategies and Case Studies. Curr Mol Med 2021; 21:111-132. [PMID: 32560606 DOI: 10.2174/1566524020666200619125404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traditional drug discovery is time consuming, costly, and risky process. Owing to the large investment, excessive attrition, and declined output, drug repurposing has become a blooming approach for the identification and development of new therapeutics. The method has gained momentum in the past few years and has resulted in many excellent discoveries. Industries are resurrecting the failed and shelved drugs to save time and cost. The process accounts for approximately 30% of the new US Food and Drug Administration approved drugs and vaccines in recent years. METHODS A systematic literature search using appropriate keywords were made to identify articles discussing the different strategies being adopted for repurposing and various drugs that have been/are being repurposed. RESULTS This review aims to describe the comprehensive data about the various strategies (Blinded search, computational approaches, and experimental approaches) used for the repurposing along with success case studies (treatment for orphan diseases, neglected tropical disease, neurodegenerative diseases, and drugs for pediatric population). It also inculcates an elaborated list of more than 100 drugs that have been repositioned, approaches adopted, and their present clinical status. We have also attempted to incorporate the different databases used for computational repurposing. CONCLUSION The data presented is proof that drug repurposing is a prolific approach circumventing the issues poised by conventional drug discovery approaches. It is a highly promising approach and when combined with sophisticated computational tools, it also carries high precision. The review would help researches in prioritizing the drugrepositioning method much needed to flourish the drug discovery research.
Collapse
Affiliation(s)
- Priti Jain
- Department of Pharmaceutical Chemistry and Computational Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule (425405) Maharashtra, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Munendra Jain
- SVKM's Department of Sciences, Narsee Monjee Institute of Management Studies, Indore, Madhya Pradesh, India
| |
Collapse
|
23
|
Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, Morales-Pacheco M, Trujillo-Bornios SI, Rodríguez-Dorantes M. New Approaches in Oncology for Repositioning Drugs: The Case of PDE5 Inhibitor Sildenafil. Front Oncol 2021; 11:627229. [PMID: 33718200 PMCID: PMC7952883 DOI: 10.3389/fonc.2021.627229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
The use of already-approved drugs to treat new or alternative diseases has proved to be beneficial in medicine, because it reduces both drug development costs and timelines. Most drugs can be used to treat different illnesses, due their mechanisms of action are not restricted to one molecular target, organ or illness. Diverging from its original intent offers an opportunity to repurpose previously approved drugs to treat other ailments. This is the case of sildenafil (Viagra), a phosphodiesterase-5 (PDE5) inhibitor, which was originally designed to treat systemic hypertension and angina but is currently commercialized as erectile dysfunction treatment. Sildenafil, tadalafil, and vardenafil are PDE5 inhibitors and potent vasodilators, that extend the physiological effects of nitric oxide and cyclic guanosine monophosphate (cGMP) signaling. Although most of the biological implications of these signaling regulations remain unknown, they offer a large therapeutic potential for several diseases. In addition, some PDE5 inhibitors' molecular effects seem to play a key role in different illnesses such as kidney disease, diabetes mellitus, and cancer. In this review, we discuss the molecular effects of PDE5 inhibitors and their therapeutic repurposing in different types of cancer.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Alberto Losada-Garcia
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | | | | |
Collapse
|
24
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:E3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
25
|
Nandakumar R, Dinu V. Developing a machine learning model to identify protein–protein interaction hotspots to facilitate drug discovery. PeerJ 2020; 8:e10381. [PMID: 33354416 PMCID: PMC7727375 DOI: 10.7717/peerj.10381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 02/01/2023] Open
Abstract
Throughout the history of drug discovery, an enzymatic-based approach for identifying new drug molecules has been primarily utilized. Recently, protein–protein interfaces that can be disrupted to identify small molecules that could be viable targets for certain diseases, such as cancer and the human immunodeficiency virus, have been identified. Existing studies computationally identify hotspots on these interfaces, with most models attaining accuracies of ~70%. Many studies do not effectively integrate information relating to amino acid chains and other structural information relating to the complex. Herein, (1) a machine learning model has been created and (2) its ability to integrate multiple features, such as those associated with amino-acid chains, has been evaluated to enhance the ability to predict protein–protein interface hotspots. Virtual drug screening analysis of a set of hotspots determined on the EphB2-ephrinB2 complex has also been performed. The predictive capabilities of this model offer an AUROC of 0.842, sensitivity/recall of 0.833, and specificity of 0.850. Virtual screening of a set of hotspots identified by the machine learning model developed in this study has identified potential medications to treat diseases caused by the overexpression of the EphB2-ephrinB2 complex, including prostate, gastric, colorectal and melanoma cancers which are linked to EphB2 mutations. The efficacy of this model has been demonstrated through its successful ability to predict drug-disease associations previously identified in literature, including cimetidine, idarubicin, pralatrexate for these conditions. In addition, nadolol, a beta blocker, has also been identified in this study to bind to the EphB2-ephrinB2 complex, and the possibility of this drug treating multiple cancers is still relatively unexplored.
Collapse
|
26
|
Impairment of Hypoxia-Induced CA IX by Beta-Blocker Propranolol-Impact on Progression and Metastatic Potential of Colorectal Cancer Cells. Int J Mol Sci 2020; 21:ijms21228760. [PMID: 33228233 PMCID: PMC7699498 DOI: 10.3390/ijms21228760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
The coexistence of cancer and other concomitant diseases is very frequent and has substantial implications for treatment decisions and outcomes. Beta-blockers, agents that block the beta-adrenergic receptors, have been related also to cancers. In the model of multicellular spheroids formed by colorectal cancer cells we described a crosstalk between beta-blockade by propranolol and tumour microenvironment. Non-selective beta-blocker propranolol decreased ability of tumour cells to adapt to hypoxia by reducing levels of HIF1α and carbonic anhydrase IX in 3D spheroids. We indicated a double action of propranolol in the tumour microenvironment by inhibiting the stability of HIF1α, thus mediating decrease of CA IX expression and, at the same time, by its possible effect on CA IX activity by decreasing the activity of protein kinase A (PKA). Moreover, the inhibition of β-adrenoreceptors by propranolol enhanced apoptosis, decreased number of mitochondria and lowered the amount of proteins involved in oxidative phosphorylation (V-ATP5A, IV-COX2, III-UQCRC2, II-SDHB, I-NDUFB8). Propranolol reduced metastatic potential, viability and proliferation of colorectal cancer cells cultivated in multicellular spheroids. To choose the right treatment strategy, it is extremely important to know how the treatment of concomitant diseases affects the superior microenvironment that is directly related to the efficiency of anti-cancer therapy
Collapse
|
27
|
Li B, Dai C, Wang L, Deng H, Li Y, Guan Z, Ni H. A novel drug repurposing approach for non-small cell lung cancer using deep learning. PLoS One 2020; 15:e0233112. [PMID: 32525938 PMCID: PMC7289363 DOI: 10.1371/journal.pone.0233112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Drug repurposing is an attractive and pragmatic way offering reduced risks and development time in the complicated process of drug discovery. In the past, drug repurposing has been largely accidental and serendipitous. The most successful examples so far have not involved a systematic approach. Nowadays, remarkable advances in drugs, diseases and bioinformatic knowledge are offering great opportunities for designing novel drug repurposing approach through comprehensive understanding of drug information. In this study, we introduced a novel drug repurposing approach based on transcriptomic data and chemical structures using deep learning. One strong candidate for repurposing has been identified. Pimozide is an anti-dyskinesia agent that is used for the suppression of motor and phonic tics in patients with Tourette's Disorder. However, our pipeline proposed it as a strong candidate for treating non-small cell lung cancer. The cytotoxicity of pimozide against A549 cell lines has been validated.
Collapse
Affiliation(s)
- Bingrui Li
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
| | - Chan Dai
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
| | - Lijun Wang
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
| | - Hailong Deng
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
| | - Yingying Li
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
- * E-mail: (YL); (ZG); (HN)
| | - Zheng Guan
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
- * E-mail: (YL); (ZG); (HN)
| | - Haihong Ni
- Beijing Deep Intelligent Pharma Technologies Co., Ltd, Beijing, China
- * E-mail: (YL); (ZG); (HN)
| |
Collapse
|
28
|
Coelho M, Imperatori A, Chiaravalli AM, Franzi F, Castiglioni M, Rasini E, Luini A, Legnaro M, Marino F, Ribeiro L, Cosentino M. Beta1- and Beta2-Adrenoceptors Expression Patterns in Human Non-small Cell Lung Cancer: Relationship with Cancer Histology. J Neuroimmune Pharmacol 2019; 14:697-708. [PMID: 31620969 DOI: 10.1007/s11481-019-09879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/27/2019] [Indexed: 02/04/2023]
Abstract
Assessment of Beta-AR protein expression on tumour tissues might be a plausible strategy to select cancer patients who can benefit from Beta-blockers therapy. The aim of this study is to evaluate the differences between resected tissue specimens from primary lung cancer (adenocarcinoma (ADC) and squamous cell carcinoma (SCC)) in terms of expression pattern of Beta1- and Beta2-AR in both tumour and adjacent surrounding non-tumour tissue. This retrospective study was based on the analysis of 80 patients with histologically confirmed diagnosis of primary Non-Small Cell Lung Cancer (NSCLC) who received surgical treatment. The cases were carefully selected in order to obtain the most homogeneous sample in terms of histologic subtype (40 ADCs and 40 SCCs) and clinical stage (10 each). Beta1- and Beta2-AR expression was determined by immunohistochemistry and the staining evaluated by semi-quantitative scoring using the H-score method. In our NSCLC series, Beta1- and Beta2-AR are differentially expressed. Beta1-AR expression is present at low levels in both SCC and ADC. Likewise, when compared with the matched surrounding non-tumour tissues, Beta1-AR expression level was significantly lower in both histologic subtypes. Conversely, Beta2-AR is highly expressed in both histologic subtypes, but clearly highly expressed in ADC when compared with SCC and with their matched surrounding non-tumour tissue. Overall, this clinicopathological study highlights the differential expression of Beta1- and Beta2-AR in ADC and SCC. Repurposing non-selective Beta-blockers in oncologic setting might be a suitable therapeutic strategy for lung ADC. Graphical abstract.
Collapse
MESH Headings
- A549 Cells
- Adrenergic beta-1 Receptor Agonists/pharmacology
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Aged
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Receptors, Adrenergic, beta-1/biosynthesis
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/genetics
- Retrospective Studies
- S Phase/drug effects
- S Phase/physiology
Collapse
Affiliation(s)
- Marisa Coelho
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, s/n, 4200-450, Porto, Portugal.
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy.
| | - Andrea Imperatori
- Center for Thoracic Surgery, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Guicciardini 9, 21100, Varese, Italy
| | - Anna Maria Chiaravalli
- Unit of Pathology, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Rossi 9, 21100, Varese, Italy
| | - Francesca Franzi
- Unit of Pathology, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Rossi 9, 21100, Varese, Italy
| | - Massimo Castiglioni
- Center for Thoracic Surgery, Department of Medicine and Surgery, ASST Sette Laghi, University of Insubria, via Guicciardini 9, 21100, Varese, Italy
| | - Emanuela Rasini
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Alessandra Luini
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Massimiliano Legnaro
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| | - Laura Ribeiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, s/n, 4200-450, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Monte Generoso 71, 21100, Varese, Italy
| |
Collapse
|
29
|
Roth IM, Wickremesekera AC, Wickremesekera SK, Davis PF, Tan ST. Therapeutic Targeting of Cancer Stem Cells via Modulation of the Renin-Angiotensin System. Front Oncol 2019; 9:745. [PMID: 31440473 PMCID: PMC6694711 DOI: 10.3389/fonc.2019.00745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are proposed to be the cells that initiate tumorigenesis and maintain tumor development due to their self-renewal and multipotency properties. CSCs have been identified in many cancer types and are thought to be responsible for treatment resistance, metastasis, and recurrence. As such, targeting CSCs specifically should result in durable cancer treatment. One potential option for targeting CSCs is by manipulation of the renin-angiotensin system (RAS) and pathways that converge on the RAS with numerous inexpensive medications currently in common clinical use. In addition to its crucial role in cardiovascular and body fluid homeostasis, the RAS is vital for stem cell maintenance and differentiation and plays a role in tumorigenesis and cancer prevention, suggesting that these roles may converge and result in modulation of CSC function by the RAS. In support of this, components of the RAS have been shown to be expressed in many cancer types and have been more recently localized to the CSCs in some tumors. Given these roles of the RAS in tumor development, clinical trials using RAS inhibitors either singly or in combination with other therapies are underway in different cancer types. This review outlines the roles of the RAS, with respect to CSCs, and suggests that the presence of components of the RAS in CSCs could offer an avenue for therapeutic targeting using RAS modulators. Due to the nature of the RAS and its crosstalk with numerous other signaling pathways, a systems approach using traditional RAS inhibitors in combination with inhibitors of bypass loops of the RAS and other signaling pathways that converge on the RAS may offer a novel therapeutic approach to cancer treatment.
Collapse
Affiliation(s)
- Imogen M Roth
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Agadha C Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Upper Gastrointestinal, Hepatobiliary and Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
30
|
Abdelaleem M, Ezzat H, Osama M, Megahed A, Alaa W, Gaber A, Shafei A, Refaat A. Prospects for repurposing CNS drugs for cancer treatment. Oncol Rev 2019; 13:411. [PMID: 31044029 PMCID: PMC6478007 DOI: 10.4081/oncol.2019.411] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023] Open
Abstract
Drug repurposing is the idea of using an already approved drug for another disease or disorder away from its initial use. This new approach ensures the reduction in high cost required for developing a new drug in addition to the time consumed, especially in the tumor disorders that show an unceasing rising rate with an unmet success rate of new anticancer drugs. In our review, we will review the anti-cancer effect of some CNS drugs, including both therapeutic and preventive, by searching the literature for preclinical or clinical evidence for anticancer potential of central nervous system drugs over the last 8 years period (2010-2018) and including only evidence from Q1 journals as indicated by Scimago website (www.scimagojr.com). We concluded that Some Central Nervous system drugs show a great potential as anti-cancer in vitro, in vivo and clinical trials through different mechanisms and pathways in different types of cancer that reveal a promising evidence for the repurposing of CNS drugs for new indications.
Collapse
Affiliation(s)
| | - Hossam Ezzat
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | | | - Adel Megahed
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Waleed Alaa
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ahmed Gaber
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Ayman Shafei
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Alaa Refaat
- Armed Forces College of Medicine (AFCM), Cairo, Egypt.,Research Center, Misr International University (MIU), Cairo, Egypt.,Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
31
|
Jha A, de Luna K, Balili CA, Millo C, Paraiso CA, Ling A, Gonzales MK, Viana B, Alrezk R, Adams KT, Tena I, Chen A, Neuzil J, Raygada M, Kebebew E, Taieb D, O'Dorisio MS, O'Dorisio T, Civelek AC, Stratakis CA, Mercado-Asis L, Pacak K. Clinical, Diagnostic, and Treatment Characteristics of SDHA-Related Metastatic Pheochromocytoma and Paraganglioma. Front Oncol 2019; 9:53. [PMID: 30854332 PMCID: PMC6395427 DOI: 10.3389/fonc.2019.00053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Pheochromocytoma and paraganglioma (PHEO/PGL) are rare neuroendocrine tumors which may cause potentially life-threatening complications, with about a third of cases found to harbor specific gene mutations. Thus, early diagnosis, treatment, and meticulous monitoring are of utmost importance. Because of low incidence of succinate dehydrogenase complex subunit A (SDHA)-related metastatic PHEO/PGL, currently there exists insufficient clinical information, especially with regards to its diagnostic and treatment characteristics. Methods: Ten patients with SDHA-related metastatic PHEO/PGL were followed-up prospectively and/or retrospectively between January 2010–July 2018. They underwent biochemical tests (n = 10), 123I-MIBG (n = 9) scintigraphy, and multiple whole-body positron emission tomography/computed tomography (PET/CT) scans with 68Ga-DOTATATE (n = 10), 18F-FDG (n = 10), and 18F-FDOPA (n = 6). Results: Our findings suggest that these tumors can occur early and at extra-adrenal locations, behave aggressively, and have a tendency to develop metastatic disease within a short period of time. None of our patients had a family history of PHEO/PGL, making them appear sporadic. Nine out of 10 patients showed abnormal PHEO/PGL-specific biochemical markers with predominantly noradrenergic and/or dopaminergic phenotype, suggesting their utility in diagnosing and monitoring the disease. Per patient detection rates of 68Ga-DOTATATE (n = 10/10), 18F-FDG (n = 10/10), 18F-FDOPA (n = 5/6) PET/CT, and 123I-MIBG (n = 7/9) scintigraphy were 100, 100, 83.33, and 77.77%, respectively. Five out of 7 123I-MIBG positive patients had minimal 123I-MIBG avidity or detected very few lesions compared to widespread metastatic disease on 18F-FDG PET/CT, implying that diagnosis and treatment with 123/131I-MIBG is not a good option. 68Ga-DOTATATE PET/CT was found to be superior or equal to 18F-FDG PET/CT in 7 out of 10 patients and hence, is recommended for evaluation and follow-up of these patients. All 7 out of 7 patients who received conventional therapies (chemotherapy, somatostatin analog therapy, radiation therapy, 131I-MIBG, peptide receptor radionuclide therapy) in addition to surgery showed disease progression. Conclusion: In our cohort of patients, SDHA-related metastatic PHEO/PGL followed a disease-course similar to that of SDHB-related metastatic PHEO/PGL, showing highly aggressive behavior, similar imaging and biochemical phenotypes, and suboptimal response to conventional therapies. Therefore, we recommend careful surveillance of the affected patients and a search for effective therapies.
Collapse
Affiliation(s)
- Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kristine de Luna
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Charlene Ann Balili
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cecilia Angela Paraiso
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Alexander Ling
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Melissa K Gonzales
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Bruna Viana
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rami Alrezk
- Clinical Endocrine Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Karen T Adams
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alice Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Margarita Raygada
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Electron Kebebew
- Endocrine Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - M Sue O'Dorisio
- Department of Pediatrics, RJ and LA Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas O'Dorisio
- Neuroendocrine Tumor Program, Division of Endocrinology and Metabolism, Department of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Ali Cahid Civelek
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Nuclear Medicine, Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Leilani Mercado-Asis
- Section of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Santo Tomas Hospital, Manila, Philippines
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Reyes-Corral M, Sørensen NM, Thrasivoulou C, Dasgupta P, Ashmore JF, Ahmed A. Differential Free Intracellular Calcium Release by Class II Antiarrhythmics in Cancer Cell Lines. J Pharmacol Exp Ther 2019; 369:152-162. [PMID: 30655298 DOI: 10.1124/jpet.118.254375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Class II antiarrhythmics or β-blockers are antisympathetic nervous system agents that act by blocking β-adrenoceptors. Despite their common clinical use, little is known about the effects of β-blockers on free intracellular calcium (Ca2+ i), an important cytosolic second messenger and a key regulator of cell function. We investigated the role of four chemical analogs, commonly prescribed β-blockers (atenolol, metoprolol, propranolol, and sotalol), on Ca2+ i release and whole-cell currents in mammalian cancer cells (PC3 prostate cancer and MCF7 breast cancer cell lines). We discovered that only propranolol activated free Ca2+ i release with distinct kinetics, whereas atenolol, metoprolol, and sotalol did not. The propranolol-induced Ca2+ i release was significantly inhibited by the chelation of extracellular calcium with ethylene glycol tetraacetic acid (EGTA) and by dantrolene, an inhibitor of the endoplasmic reticulum (ER) ryanodine receptor channels, and it was completely abolished by 2-aminoethoxydiphenyl borate, an inhibitor of the ER inositol-1,4,5-trisphosphate (IP3) receptor channels. Exhaustion of ER stores with 4-chloro-m-cresol, a ryanodine receptor activator, or thapsigargin, a sarco/ER Ca2+ ATPase inhibitor, precluded the propranolol-induced Ca2+ i release. Finally, preincubation of cells with sotalol or timolol, nonselective blockers of β-adrenoceptors, also reduced the Ca2+ i release activated by propranolol. Our results show that different β-blockers have differential effects on whole-cell currents and free Ca2+ i release and that propranolol activates store-operated Ca2+ i release via a mechanism that involves calcium-induced calcium release and putative downstream transducers such as IP3 The differential action of class II antiarrhythmics on Ca2+ i release may have implications on the pharmacology of these drugs.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Naja M Sørensen
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Prokar Dasgupta
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine (M.R.-C., A.A.) and MRC Centre for Transplantation (P.D.), King's College London, London, United Kingdom; Sophion Bioscience A/S, Ballerup, Denmark (N.M.S.); and Departments of Cell and Developmental Biology (C.T.) and Neuroscience, Physiology and Pharmacology, and The Ear Institute (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
33
|
Propranolol Promotes Glucose Dependence and Synergizes with Dichloroacetate for Anti-Cancer Activity in HNSCC. Cancers (Basel) 2018; 10:cancers10120476. [PMID: 30513596 PMCID: PMC6316475 DOI: 10.3390/cancers10120476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor’s ability to compensate by using other metabolic pathways to meet energy and growth demands. Thus, it is critical to identify novel combinations of metabolism-targeting drugs to improve therapeutic efficacy in the face of compensatory cellular response mechanisms. Our lab has previously identified that the anti-cancer activity of propranolol, a non-selective beta-blocker, is associated with inhibition of mitochondrial metabolism in head and neck squamous cell carcinoma (HNSCC). In response to propranolol, however, HNSCC exhibits heightened glycolytic activity, which may limit the effectiveness of propranolol as a single agent. Thus, we hypothesized that propranolol’s metabolic effects promote a state of enhanced glucose dependence, and that propranolol together with glycolytic inhibition would provide a highly effective therapeutic combination in HNSCC. Here, we show that glucose deprivation synergizes with propranolol for anti-cancer activity, and that the rational combination of propranolol and dichloroacetate (DCA), a clinically available glycolytic inhibitor, dramatically attenuates tumor cell metabolism and mTOR signaling, inhibits proliferation and colony formation, and induces apoptosis. This therapeutic combination displays efficacy in both human papillomavirus-positive (HPV(+)) and HPV(−) HNSCC cell lines, as well as a recurrent/metastatic model, while leaving normal tonsil epithelial cells relatively unaffected. Importantly, the combination significantly delays tumor growth in vivo with no evidence of toxicity. Additionally, the combination of propranolol and DCA enhances the effects of chemoradiation and sensitizes resistant cells to cisplatin and radiation. This novel therapeutic combination represents a promising treatment strategy which may overcome some of the limitations of targeting individual metabolic pathways in cancer.
Collapse
|
34
|
Lucido CT, Callejas-Valera JL, Colbert PL, Vermeer DW, Miskimins WK, Spanos WC, Vermeer PD. β 2-Adrenergic receptor modulates mitochondrial metabolism and disease progression in recurrent/metastatic HPV(+) HNSCC. Oncogenesis 2018; 7:81. [PMID: 30297705 PMCID: PMC6175933 DOI: 10.1038/s41389-018-0090-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV[ + ] HNSCC) is rapidly increasing. Although clinical management of primary HPV( + ) HNSCC is relatively successful, disease progression, including recurrence and metastasis, is often fatal. Moreover, patients with progressive disease face limited treatment options and significant treatment-associated morbidity. These clinical data highlight the need to identify targetable mechanisms that drive disease progression in HPV( + ) HNSCC to prevent and/or treat progressive disease. Interestingly, β-adrenergic signaling has recently been associated with pro-tumor processes in several disease types. Here we show that an aggressive murine model of recurrent/metastatic HPV( + ) HNSCC upregulates β2-adrenergic receptor (β2AR) expression, concordant with significantly heightened mitochondrial metabolism, as compared with the parental model from which it spontaneously derived. β-Adrenergic blockade effectively inhibits in vitro proliferation and migratory capacity in this model, effects associated with an attenuation of hyperactive mitochondrial respiration. Importantly, propranolol, a clinically available nonselective β-blocker, significantly slows primary tumor growth, inhibits metastatic development, and shows additive benefit alongside standard-of-care modalities in vivo. Further, via CRISPR/Cas9 technology, we show that the hyperactive mitochondrial metabolic profile and aggressive in vivo phenotype of this recurrent/metastatic model are dependent on β2AR expression. These data implicate β2AR as a modulator of mitochondrial metabolism and disease progression in HPV( + ) HNSCC, and warrant further investigation into the use of β-blockers as low cost, relatively tolerable, complementary treatment options in the clinical management of this disease.
Collapse
Affiliation(s)
- Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Juan L Callejas-Valera
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - W Keith Miskimins
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St North, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
35
|
Jamieson LE, Wetherill C, Faulds K, Graham D. Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugs. Chem Sci 2018; 9:6935-6943. [PMID: 30258563 PMCID: PMC6128370 DOI: 10.1039/c8sc02312c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
De novo lipid synthesis is upregulated in cancer cells and inhibiting these pathways has displayed anti-tumour activity. Here we use Raman spectroscopy, focusing solely on high wavenumber spectra, to detect changes in lipid composition in single cells in response to drugs targeting de novo lipid synthesis. Unexpectedly, the beta-blocker propranolol showed selectively towards cancerous PC3 compared to non-cancerous PNT2 prostate cells, demonstrating the potential of this approach to identify new anti-cancer drug leads. A unique and simple ratiometric approach for intracellular lipid investigation is reported using statistical analysis to create phenotypic 'barcodes', a globally applicable strategy for Raman drug-cell studies. High wavenumber spectral analysis is compatible with low cost glass substrates, easily translatable into the cytological work stream. The analytical strength of this technique could have a significant impact on cancer treatment through vastly improved understanding of cancer cell metabolism, and thus guide drug design and enhance personalised medicine strategies.
Collapse
Affiliation(s)
- Lauren E Jamieson
- Centre for Molecular Nanometrology , WestCHEM , Department of Pure and Applied Chemistry, Technology and Innovation Centre , University of Strathclyde , 99 George Street , Glasgow , G1 1RD , UK .
| | - Corinna Wetherill
- Centre for Molecular Nanometrology , WestCHEM , Department of Pure and Applied Chemistry, Technology and Innovation Centre , University of Strathclyde , 99 George Street , Glasgow , G1 1RD , UK .
| | - Karen Faulds
- Centre for Molecular Nanometrology , WestCHEM , Department of Pure and Applied Chemistry, Technology and Innovation Centre , University of Strathclyde , 99 George Street , Glasgow , G1 1RD , UK .
| | - Duncan Graham
- Centre for Molecular Nanometrology , WestCHEM , Department of Pure and Applied Chemistry, Technology and Innovation Centre , University of Strathclyde , 99 George Street , Glasgow , G1 1RD , UK .
| |
Collapse
|
36
|
Pantziarka P, Bryan BA, Crispino S, Dickerson EB. Propranolol and breast cancer-a work in progress. Ecancermedicalscience 2018; 12:ed82. [PMID: 30034523 PMCID: PMC6027968 DOI: 10.3332/ecancer.2018.ed82] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/28/2022] Open
Abstract
The non-selective beta-blocker propranolol is a leading candidate for repurposing as a novel anti-cancer agent. Emerging evidence, including human data, suggests that there are multiple mechanisms of action particularly relevant to breast cancer. This editorial reviews a number of recent studies that show it has anti-metastatic activity that warrants clinical investigation, including investigation as a potential perioperative therapy in breast cancer.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium.,The George Pantziarka TP53 Trust, London, UK
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | | | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
37
|
Knight JM, Kerswill SA, Hari P, Cole SW, Logan BR, D’Souza A, Shah NN, Horowitz MM, Stolley MR, Sloan EK, Giles KE, Costanzo ES, Hamadani M, Chhabra S, Dhakal B, Rizzo JD. Repurposing existing medications as cancer therapy: design and feasibility of a randomized pilot investigating propranolol administration in patients receiving hematopoietic cell transplantation. BMC Cancer 2018; 18:593. [PMID: 29793446 PMCID: PMC5968588 DOI: 10.1186/s12885-018-4509-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Repurposing existing medications for antineoplastic purposes can provide a safe, cost-effective, and efficacious means to further augment available cancer care. Clinical and preclinical studies suggest a role for the ß-adrenergic antagonist (ß-blocker) propranolol in reducing rates of tumor progression in both solid and hematologic malignancies. In patients undergoing hematopoietic cell transplantation (HCT), the peri-transplant period is a time of increased activity of the ß-adrenergically-mediated stress response. METHODS We conducted a proof-of-concept randomized controlled pilot study assessing the feasibility of propranolol administration to patients between ages 18-75 who received an autologous HCT for multiple myeloma. Feasibility was assessed by enrollment rate, tolerability, adherence, and retention. RESULTS One hundred fifty-four patients underwent screening; 31 (20%) enrolled in other oncology trials that precluded dual trial enrollment and 9 (6%) declined to enroll in the current trial. Eighty-nine (58%) did not meet eligibility requirements and 25 (16%) were eligible; of the remaining eligible patients, all were successfully enrolled and randomized. The most common reasons for ineligibility were current ß-blocker use, age, logistics, and medical contraindications. 92% of treatment arm patients tolerated and remained on propranolol for the study duration; 1 patient discontinued due to hypotension. Adherence rate in assessable patients (n = 10) was 94%. Study retention was 100%. CONCLUSIONS Findings show that it is feasible to recruit and treat multiple myeloma patients with propranolol during HCT, with the greatest obstacle being other competing oncology trials. These data support further studies examining propranolol and other potentially repurposed drugs in oncology populations. TRIAL REGISTRATION This randomized controlled trial was registered at clinicaltrials.gov with the identifier NCT02420223 on April 17, 2015.
Collapse
Affiliation(s)
- Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | | | - Parameswaran Hari
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Steve W. Cole
- Department of Medicine, Division of Hematology-Oncology, and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Brent R. Logan
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
- Division of Biostatistics, Institute for Health & Society, Medical College of Wisconsin, Milwaukee, USA
| | - Anita D’Souza
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| | - Nirav N. Shah
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Mary M. Horowitz
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| | | | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, UCLA, Los Angeles, CA USA
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC Australia
| | | | - Erin S. Costanzo
- Carbone Cancer Center and Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Mehdi Hamadani
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| | - Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Binod Dhakal
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| | - J. Douglas Rizzo
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
- Center for International Blood and Marrow Transplant Research; Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
38
|
Propranolol sensitizes prostate cancer cells to glucose metabolism inhibition and prevents cancer progression. Sci Rep 2018; 8:7050. [PMID: 29728578 PMCID: PMC5935740 DOI: 10.1038/s41598-018-25340-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 02/04/2023] Open
Abstract
Propranolol, a widely used non-selective beta-adrenergic receptor blocker, was recently shown to display anticancer properties. Its potential to synergize with certain drugs has been also outlined. However, it is necessary to take into account all the properties of propranolol to select a drug that could be efficiently combined with. Propranolol was reported to block the late phase of autophagy. Hence, we hypothesized that in condition enhancing autophagy flux, cancer cells should be especially sensitive to propranolol. 2DG, a glycolysis inhibitor, is an anti-tumor agent having limited effect in monotherapy notably due to induction of pro-survival autophagy. Here, we report that treatment of cancer cells with propranolol in combination with the glycolysis inhibitor 2DG induced a massive accumulation of autophagosome due to autophagy blockade. The propranolol +2DG treatment efficiently prevents prostate cancer cell proliferation, induces cell apoptosis, alters mitochondrial morphology, inhibits mitochondrial bioenergetics and aggravates ER stress in vitro and also suppresses tumor growth in vivo. Our study underlines for the first time the interest to take advantage of the ability of propranolol to inhibit autophagy to design new anti-cancer therapies.
Collapse
|
39
|
Mong EF, Akat KM, Canfield J, Lockhart J, VanWye J, Matar A, Tsibris JCM, Wu JK, Tuschl T, Totary-Jain H. Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arterioscler Thromb Vasc Biol 2018; 38:1321-1332. [PMID: 29724816 DOI: 10.1161/atvbaha.118.310908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infantile hemangiomas (IHs) are the most common benign vascular neoplasms of infancy, characterized by a rapid growth phase followed by a spontaneous involution, or triggered by propranolol treatment by poorly understood mechanisms. LIN28/let-7 axis plays a central role in the regulation of stem cell self-renewal and tumorigenesis. However, the role of LIN28B/let-7 signaling in IH pathogenesis has not yet been elucidated. APPROACH AND RESULTS LIN28B is highly expressed in proliferative IH and is less expressed in involuted and in propranolol-treated IH samples as measured by immunofluorescence staining and quantitative RT-PCR. Small RNA sequencing analysis of IH samples revealed a decrease in microRNAs that target LIN28B, including let-7, and an increase in microRNAs in the mir-498(46) cistron. Overexpression of LIN28B in HEK293 cells induced the expression of miR-516b in the mir-498(46) cistron. Propranolol treatment of induced pluripotent stem cells, which express mir-498(46) endogenously, reduced the expression of both LIN28B and mir-498(46) and increased the expression of let-7. Furthermore, propranolol treatment reduced the proliferation of induced pluripotent stem cells and induced epithelial-mesenchymal transition. CONCLUSIONS This work uncovers the role of the LIN28B/let-7 switch in IH pathogenesis and provides a novel mechanism by which propranolol induces IH involution. Furthermore, it provides therapeutic implications for cancers in which the LIN28/let-7 pathway is imbalanced.
Collapse
Affiliation(s)
- Ezinne Francess Mong
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Kemal Marc Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - John Canfield
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John Lockhart
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Jeffrey VanWye
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Andrew Matar
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John C M Tsibris
- Department of Obstetrics and Gynecology (J.C.M.T.), Morsani College of Medicine, University of South Florida, Tampa
| | - June K Wu
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York (J.K.W.)
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - Hana Totary-Jain
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| |
Collapse
|
40
|
Amaya CN, Perkins M, Belmont A, Herrera C, Nasrazadani A, Vargas A, Khayou T, Montoya A, Ballou Y, Galvan D, Rivas A, Rains S, Patel L, Ortega V, Lopez C, Chow W, Dickerson EB, Bryan BA. Non-selective beta blockers inhibit angiosarcoma cell viability and increase progression free- and overall-survival in patients diagnosed with metastatic angiosarcoma. Oncoscience 2018; 5:109-119. [PMID: 29854879 PMCID: PMC5978448 DOI: 10.18632/oncoscience.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with metastatic angiosarcoma undergoing chemotherapy, radiation, and/or surgery experience a median progression free survival of less than 6 months and a median overall survival of less than 12 months. Given the aggressive nature of this cancer, angiosarcoma clinical responses to chemotherapy or targeted therapeutics are generally very poor. Inhibition of beta adrenergic receptor (β-AR) signaling has recently been shown to decrease angiosarcoma tumor cell viability, abrogate tumor growth in mouse models, and decrease proliferation rates in preclinical and clinical settings. In the current study we used cell and animal tumor models to show that β-AR antagonism abrogates mitogenic signaling and reduces angiosarcoma tumor cell viability, and these molecular alterations translated into patient tumors. We demonstrated that non-selective β-AR antagonists are superior to selective β-AR antagonists at inhibiting angiosarcoma cell viability. A prospective analysis of non- selective β-AR antagonists in a single arm clinical study of metastatic angiosarcoma patients revealed that incorporation of either propranolol or carvedilol into patients' treatment regimens leads to a median progression free and overall survival of 9 and 36 months, respectively. These data suggest that incorporation of non-selective β-AR antagonists into existing therapies against metastatic angiosarcoma can enhance clinical outcomes.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Mariah Perkins
- Department of Biochemistry, Baylor University, Waco, TX, USA
| | - Andres Belmont
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Connie Herrera
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Arezo Nasrazadani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alejandro Vargas
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Thuraieh Khayou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Department of Biology, University of Texas, El Paso, TX, USA
| | - Yessenia Ballou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Dana Galvan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexandria Rivas
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven Rains
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Luv Patel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Vanessa Ortega
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Christopher Lopez
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - William Chow
- Mohs Micrographic Surgery and Cutaneous Oncology, San Leandro, CA, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
41
|
Pantziarka P, Sukhatme V, Crispino S, Bouche G, Meheus L, Sukhatme VP. Repurposing drugs in oncology (ReDO)-selective PDE5 inhibitors as anti-cancer agents. Ecancermedicalscience 2018; 12:824. [PMID: 29743944 PMCID: PMC5931815 DOI: 10.3332/ecancer.2018.824] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
Selective phosphodiesterase 5 inhibitors, including sildenafil, tadalafil and vardenafil, are widely-used in the treatment of erectile dysfunction and pulmonary arterial hypertension. They are also well-known as examples of successful drug repurposing in that they were initially developed for angina and only later developed for erectile dysfunction. However, these drugs may also be effective cancer treatments. A range of evidentiary sources are assessed in this paper and the case made that there is pre-clinical and clinical evidence that these drugs may offer clinical benefit in a range of cancers. In particular, evidence is presented that these drugs have potent immunomodulatory activity that warrants clinical study in combination with check-point inhibition.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium.,The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | | | | | | | - Lydie Meheus
- Anticancer Fund, Brussels, Strombeek-Bever 1853, Belgium
| | - Vikas P Sukhatme
- GlobalCures Inc., Newton, MA 02459, USA.,Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
43
|
Wang F, Liu H, Wang F, Xu R, Wang P, Tang F, Zhang X, Zhu Z, Lv H, Han T. Propranolol suppresses the proliferation and induces the apoptosis of liver cancer cells. Mol Med Rep 2018; 17:5213-5221. [PMID: 29393410 PMCID: PMC5865987 DOI: 10.3892/mmr.2018.8476] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
An increasing amount of evidence indicates that the inhibition of β adrenergic signaling can result in the inhibition of tumor growth. However, the role of propranolol in liver cancer and the underlying mechanism remain to be elucidated. The present study aimed to investigate the role of propranolol in liver cancer cell lines and provide evidence for further clinical study. Propranolol was added at different concentrations to HepG2 and HepG2.2.15 liver cancer cells and HL-7702 normal human liver cells. The proliferation of the cell lines was monitored by live-cell imaging at a range of time intervals. Immunofluorescence using DAPI and Hoechst 33342/propidium iodide (PI) staining, Annexin V-FITC/PI double-staining flow cytometry, western blotting and reverse transcription-quantitative polymerase chain reaction were used to investigate the effect of propranolol on liver cancer cell apoptosis. The proliferation of HepG2 and HepG2.2.15 cells was inhibited by 40 and 80 µmol/l propranolol. However, the proliferation of HL-7702 cells was not affected by <160 µmol/l propranolol. Propranolol treatment decreased the expression of adrenergic receptor β-2 to a greater extent than adrenergic receptor β-1, and induced apoptosis in the liver cancer cells. The apoptotic rates of HepG2 and HepG2.2.15 cells increased following treatment with propranolol, while the apoptotic rate of HL-7702 cells was not affected. Propranolol promoted poly (ADP-ribose) polymerase cleavage and decreased the expression of full-length caspase-3 in liver cancer cell lines; it induced S-phase arrest in HepG2 and HepG2.2.15 cell lines, while HL-7702 cells were arrested at the G0/G1 phase of the cell cycle. Thus, it was demonstrated that propranolol inhibited proliferation, promoted apoptosis and induced S-phase arrest in HepG2 and HepG2.2.15 cells.
Collapse
Affiliation(s)
- Fang Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, P.R. China
| | - Hui Liu
- Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, P.R. China
| | - Fengmei Wang
- Department of Gastroenterology and Hepatology of Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| | - Ruicheng Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Tianjin 300170, P.R. China
| | - Peng Wang
- Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, P.R. China
| | - Fei Tang
- Department of Gastroenterology and Hepatology of Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| | - Xu Zhang
- Department of Gastroenterology and Hepatology of Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| | - Zhengyan Zhu
- Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, P.R. China
| | - Hongmin Lv
- Department of Gastroenterology and Hepatology of Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| | - Tao Han
- Department of Gastroenterology and Hepatology of Tianjin Third Central Hospital, Tianjin 300170, P.R. China
| |
Collapse
|
44
|
Kast RE, Skuli N, Cos S, Karpel-Massler G, Shiozawa Y, Goshen R, Halatsch ME. The ABC7 regimen: a new approach to metastatic breast cancer using seven common drugs to inhibit epithelial-to-mesenchymal transition and augment capecitabine efficacy. BREAST CANCER-TARGETS AND THERAPY 2017; 9:495-514. [PMID: 28744157 PMCID: PMC5513700 DOI: 10.2147/bctt.s139963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer metastatic to bone has a poor prognosis despite recent advances in our understanding of the biology of both bone and breast cancer. This article presents a new approach, the ABC7 regimen (Adjuvant for Breast Cancer treatment using seven repurposed drugs), to metastatic breast cancer. ABC7 aims to defeat aspects of epithelial-to-mesenchymal transition (EMT) that lead to dissemination of breast cancer to bone. As add-on to current standard treatment with capecitabine, ABC7 uses ancillary attributes of seven already-marketed noncancer treatment drugs to stop both the natural EMT process inherent to breast cancer and the added EMT occurring as a response to current treatment modalities. Chemotherapy, radiation, and surgery provoke EMT in cancer generally and in breast cancer specifically. ABC7 uses standard doses of capecitabine as used in treating breast cancer today. In addition, ABC7 uses 1) an older psychiatric drug, quetiapine, to block RANK signaling; 2) pirfenidone, an anti-fibrosis drug to block TGF-beta signaling; 3) rifabutin, an antibiotic to block beta-catenin signaling; 4) metformin, a first-line antidiabetic drug to stimulate AMPK and inhibit mammalian target of rapamycin, (mTOR); 5) propranolol, a beta-blocker to block beta-adrenergic signaling; 6) agomelatine, a melatonergic antidepressant to stimulate M1 and M2 melatonergic receptors; and 7) ribavirin, an antiviral drug to prevent eIF4E phosphorylation. All these block the signaling pathways - RANK, TGF-beta, mTOR, beta-adrenergic receptors, and phosphorylated eIF4E - that have been shown to trigger EMT and enhance breast cancer growth and so are worthwhile targets to inhibit. Agonism at MT1 and MT2 melatonergic receptors has been shown to inhibit both breast cancer EMT and growth. This ensemble was designed to be safe and augment capecitabine efficacy. Given the expected outcome of metastatic breast cancer as it stands today, ABC7 warrants a cautious trial.
Collapse
Affiliation(s)
| | - Nicolas Skuli
- INSERM, Centre de Recherches en Cancérologie de Toulouse - CRCT, UMR1037 Inserm/Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Valdecilla Research Institute (IDIVAL), Santander, Spain
| | | | - Yusuke Shiozawa
- Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ran Goshen
- Eliaso Consulting Ltd., Tel Aviv-Yafo, Israel
| | | |
Collapse
|
45
|
Perroud HA, Scharovsky OG, Rozados VR, Alasino CM. Clinical response in patients with ovarian cancer treated with metronomic chemotherapy. Ecancermedicalscience 2017; 11:723. [PMID: 28275392 PMCID: PMC5336390 DOI: 10.3332/ecancer.2017.723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer (OC) is the leading cause of death from gynaecological cancer. It is extremely hard to diagnose in the early stages and around 70% of patients present with advanced disease. Metronomic chemotherapy (MCT) is described as the chronic administration of, generally low, equally spaced, doses of chemotherapeutic drugs with therapeutic efficacy and low toxicity. This is an effective and low-cost way to treat several types of tumours, including ovarian cancer. Here, we present six cases of advanced ovarian cancer treated with MCT with low doses of cyclophosphamide, which showed clinical response and stable disease.
Collapse
Affiliation(s)
- Herman Andrés Perroud
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina; National Scientific and Technical Research Council (CONICET), Rosario 2000, Argentina.; Italian Hospital of Rosario, Department of Clinical Oncology, Rosario 2000, Argentina
| | - O Graciela Scharovsky
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina; National Scientific and Technical Research Council (CONICET), Rosario 2000, Argentina.; Research Council of the National University of Rosario (CIUNR), Rosario 2000, Argentina
| | - Viviana Rosa Rozados
- Experimental Oncology Section, Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Rosario 2000, Argentina
| | - Carlos María Alasino
- Italian Hospital of Rosario, Department of Clinical Oncology, Rosario 2000, Argentina; Institute of Oncology of Rosario, Rosario 2000, Argentina
| |
Collapse
|