1
|
Shenoy N, Srinivasan S, Menon G, Kurupath R. Surgical treatment of epilepsy - Initial experience from a comprehensive epilepsy program in coastal South India. J Neurosci Rural Pract 2023; 14:488-494. [PMID: 37692803 PMCID: PMC10483204 DOI: 10.25259/jnrp_116_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives The objectives of this study were to share our initial experience with epilepsy surgery and provide an overview on the surgical treatments of epilepsies. Materials and Methods This was a retrospective analysis of the demographics and clinical and investigative features of patients who underwent epilepsy surgery between January 2016 and August 2021. Postoperative seizure outcome was categorized according to modified Engel's classification, and the minimum period of follow-up was 1 year. Results The study group included 30 patients with an age ranging from 6 years to 45 years (mean: 22.28 years, median: 20 years) and a male: female ratio of 20:10. The epilepsy duration before surgery ranged from 3 years to 32 years (median: 7 years). Majority of our patients underwent resective surgeries (28/30 = 93.3%), and disconnection procedures were done in two patients. This included one functional hemispherotomy and one posterior quadrantic disconnection. Temporal lobe resective surgery was the most common procedure (16/30 = 53.3%), followed by eight frontal lobe and two parietal lobe surgeries. Among resective surgeries, majority were lesional surgeries and the pathologies included mesial temporal sclerosis (4), dysembryoplastic neuroepithelial tumor (8), ganglioglioma (6), cavernoma (4), focal cortical dysplasia (2), gliosis (1), and one case of hypothalamic hamartoma. Intraoperative electrocorticography was used in all cases for optimizing surgical resection/disconnection. Nearly two-thirds of our patients (66.6%) had an Engel's Class I outcome, five patients had Engel's Class II outcome, three patients had Class III outcome, and one patient did not have any worthwhile improvement. Temporal lobe surgery patients had a better seizure outcome compared to extratemporal surgeries (84% vs. 74%). Overall, complications were minimal and short lasting, and comprised meningitis in three patients (5.6%) and transient worsening of hemiparesis following hemispherotomy in two patients. There was no mortality or long-lasting major morbidity in our patients. Conclusion In carefully selected patients with drug-resistant epilepsy, surgery offers an excellent chance of becoming seizure-free with significant improvement in overall quality of life. Majority of the common epilepsy surgery procedures can be performed through a multidisciplinary approach even in centers with limited resources.
Collapse
Affiliation(s)
- Nisha Shenoy
- Department of Neurology, Kasturba Medical College, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Siddharth Srinivasan
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Girish Menon
- Department of Neurosurgery, Kasturba Medical College, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Radhakrishnan Kurupath
- Department of Neurology, Kasturba Medical College, Manipal Academy of Higher Education, Udupi, Karnataka, India
| |
Collapse
|
2
|
Karagianni MD, Brotis AG, Tasiou A, Delev D, von Lehe M, Schijns OE, Fountas KN. Hemispherotomy Revised: A complication overview and a systematic review meta-analysis. BRAIN & SPINE 2023; 3:101766. [PMID: 38021002 PMCID: PMC10668062 DOI: 10.1016/j.bas.2023.101766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 12/01/2023]
Abstract
Introduction Hemispherectomy/hemispherotomy has been employed in the management of catastrophic epilepsy. However, initial reports on the associated mortality and morbidity raised several concerns regarding the technique's safety. Their actual, current incidence needs to be systematically examined to redefine hemispherotomy's exact role. Research question Our current study examined their incidence and evaluated the association of the various hemispherotomy surgical techniques with the reported complications. Material & methods A PRISMA-compliant systematic review and meta-analysis was performed. We searched PubMed, Scopus, and Web of Science until December 2022. Fixed- and random-effects models were employed. Egger's regression test was used for estimating the publication bias, while subgroup analysis was utilized for defining the role of the different hemispherotomy techniques. Results We retrieved a total of 37 studies. The overall procedure mortality was 5%, with a reported mortality of 7% for hemispherectomy and 3% for hemispherotomy. The reported mortality has decreased over the last 30 years from 32% to 2%. Among the observed post-operative complications aseptic meningitis and/or fever occurred in 33%. Hydrocephalus requiring a shunt insertion occurred in 16%. Hematoma evacuation was necessary in 8%, while subgaleal effusion in another 8%. Infections occurred in 11%. A novel post-operative cranial nerve deficit occurred in 11%, while blood transfusion was necessary in 28% of the cases. Discussion and conclusion Our current analysis demonstrated that the evolution from hemispherectomy to hemispherotomy along with neuroanesthesia advances, had a tremendous impact on the associated mortality and morbidity. Hemispherotomy constitutes a safe surgical procedure in the management of catastrophic epilepsies.
Collapse
Affiliation(s)
- Maria D. Karagianni
- Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
| | - Alexandros G. Brotis
- Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
| | - Anastasia Tasiou
- Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
| | - Daniel Delev
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
- Center for Integrated Oncology, Universities Aachen, Bonn, Cologne, Duesseldorf (CIO ABCD), Germany
| | - Marec von Lehe
- Department of Neurosurgery, Brandenburg Medical School, University Hospital Ruppin Brandenburg, Fehrbelliner Str. 38, Neuruppin, Germany
| | - Olaf E.M.G. Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maatricht, the Netherlands
- Academic Center for Epileptology, Maastricht, Kempenhaeghe, the Netherlands
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Konstantinos N. Fountas
- Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
- Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41110, Greece
| |
Collapse
|
3
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
5
|
Witkin JM, Li G, Golani LK, Xiong W, Smith JL, Ping X, Rashid F, Jahan R, Cerne R, Cook JM, Jin X. The Positive Allosteric Modulator of α2/3-Containing GABA A Receptors, KRM-II-81, Is Active in Pharmaco-Resistant Models of Epilepsy and Reduces Hyperexcitability after Traumatic Brain Injury. J Pharmacol Exp Ther 2020; 372:83-94. [PMID: 31694876 PMCID: PMC6927408 DOI: 10.1124/jpet.119.260968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
The imidizodiazepine, 5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole (KRM-II-81), is selective for α2/3-containing GABAA receptors. KRM-II-81 dampens seizure activity in rodent models with enhanced efficacy and reduced motor-impairment compared with diazepam. In the present study, KRM-II-81 was studied in assays designed to detect antiepileptics with improved chances of impacting pharmaco-resistant epilepsies. The potential for reducing neural hyperactivity weeks after traumatic brain injury was also studied. KRM-II-81 suppressed convulsions in corneal-kindled mice. Mice with kainate-induced mesial temporal lobe seizures exhibited spontaneous recurrent hippocampal paroxysmal discharges that were significantly reduced by KRM-II-81 (15 mg/kg, orally). KRM-II-81 also decreased convulsions in rats undergoing amygdala kindling in the presence of lamotrigine (lamotrigine-insensitive model) (ED50 = 19 mg/kg, i.p.). KRM-II-81 reduced focal and generalized seizures in a kainate-induced chronic epilepsy model in rats (20 mg/kg, i.p., three times per day). In mice with damage to the left cerebral cortex by controlled-cortical impact, enduring neuronal hyperactivity was dampened by KRM-II-81 (10 mg/kg, i.p.) as observed through in vivo two-photon imaging of layer II/III pyramidal neurons in GCaMP6-expressing transgenic mice. No notable side effects emerged up to doses of 300 mg/kg KRM-II-81. Molecular modeling studies were conducted: docking in the binding site of the α1β3γ2L GABAA receptor showed that replacing the C8 chlorine atom of alprazolam with the acetylene of KRM-II-81 led to loss of the key interaction with α1His102, providing a structural rationale for its low affinity for α1-containing GABAA receptors compared with benzodiazepines such as alprazolam. Overall, these findings predict that KRM-II-81 has improved therapeutic potential for epilepsy and post-traumatic epilepsy. SIGNIFICANCE STATEMENT: We describe the effects of a relatively new orally bioavailable small molecule in rodent models of pharmaco-resistant epilepsy and traumatic brain injury. KRM-II-81 is more potent and generally more efficacious than standard-of-care antiepileptics. In silico docking experiments begin to describe the structural basis for the relative lack of motor impairment induced by KRM-II-81. KRM-II-81 has unique structural and anticonvulsant effects, predicting its potential as an improved antiepileptic drug and novel therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Guanguan Li
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Lalit K Golani
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Wenhui Xiong
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Jodi L Smith
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xingjie Ping
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Farjana Rashid
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rajwana Jahan
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Rok Cerne
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - James M Cook
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| | - Xiaoming Jin
- Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., X.J.); and Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, Indiana (J.L.S.)
| |
Collapse
|
6
|
Witkin JM, Ping X, Cerne R, Mouser C, Jin X, Hobbs J, Tiruveedhula VVNPB, Li G, Jahan R, Rashid F, Kumar Golani L, Cook JM, Smith JL. The value of human epileptic tissue in the characterization and development of novel antiepileptic drugs: The example of CERC-611 and KRM-II-81. Brain Res 2019; 1722:146356. [PMID: 31369732 DOI: 10.1016/j.brainres.2019.146356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The need for improved antiepileptics is clearly mandated despite the existence of multiple existing medicines from different chemical and mechanistic classes. Standard of care agents do not fully control epilepsies and have a variety of side-effect and safety issues. Patients typically take multiple antiepileptic drugs and yet many continue to have seizures. Antiepileptic-unresponsive seizures are life-disrupting and life-threatening. One approach to seizure control is surgical resection of affected brain tissue and associated neural circuits. Although non-human brain studies can provide insight into novel antiepileptic mechanisms, human epileptic brain is the bottom-line biological substrate. Human epileptic brain can provide definitive information on the presence or absence of the putative protein targets of interest in the patient population, the potential changes in these proteins in the epileptic state, and the engagement of novel molecules and their functional impact in target tissue. In this review, we discuss data on two novel potential antiepileptic drugs. CERC-611 (LY3130481) is an AMPA receptor antagonist that selectively blocks AMPA receptors associated with the auxiliary protein TARP γ-8 and is in clinical development. KRM-II-81 is a positive allosteric modulator of GABAA receptors selectively associated with protein subunits α2 and α 3. Preclinical data on these compounds argue that patient-based biological data increase the probability that a newly discovered molecule will translate its antiepileptic potential to patients.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Rok Cerne
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Mouser
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jon Hobbs
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Guanguan Li
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rajwana Jahan
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Lalit Kumar Golani
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M Cook
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, USA.
| |
Collapse
|