1
|
Babcock MC, Mikulka CR, Wang B, Chandriani S, Chandra S, Xu Y, Webster K, Feng Y, Nelvagal HR, Giaramita A, Yip BK, Lo M, Jiang X, Chao Q, Woloszynek JC, Shen Y, Bhagwat S, Sands MS, Crawford BE. Substrate reduction therapy for Krabbe disease and metachromatic leukodystrophy using a novel ceramide galactosyltransferase inhibitor. Sci Rep 2021; 11:14486. [PMID: 34262084 PMCID: PMC8280112 DOI: 10.1038/s41598-021-93601-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.
Collapse
Affiliation(s)
- Michael C Babcock
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bing Wang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sanjay Chandriani
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sundeep Chandra
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yue Xu
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Katherine Webster
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Ying Feng
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Hemanth R Nelvagal
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex Giaramita
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Bryan K Yip
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Melanie Lo
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qi Chao
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Josh C Woloszynek
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Shripad Bhagwat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brett E Crawford
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA.
| |
Collapse
|
2
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
3
|
Hong X, Kumar AB, Daiker J, Yi F, Sadilek M, De Mattia F, Fumagalli F, Calbi V, Damiano R, Della Bona M, la Marca G, Vanderver AL, Waldman AT, Adang L, Sherbini O, Woidill S, Suhr T, Kurtzberg J, Beltran-Quintero ML, Escolar M, Aiuti A, Finglas A, Olsen A, Gelb MH. Leukocyte and Dried Blood Spot Arylsulfatase A Assay by Tandem Mass Spectrometry. Anal Chem 2020; 92:6341-6348. [PMID: 31922725 DOI: 10.1021/acs.analchem.9b05274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays were developed to measure arylsulfatase A (ARSA) activity in leukocytes and dried blood spots (DBS) using deuterated natural sulfatide substrate. These new assays were highly specific and sensitive. Patients with metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD) displayed a clear deficit in the enzymatic activity and could be completely distinguished from normal controls. The leukocyte assay reported here will be important for diagnosing MLD and MSD patients and for monitoring the efficacy of therapeutic treatments. ARSA activity was measured in DBS for the first time without an antibody. This new ARSA DBS assay can serve as a second-tier test following the sulfatide measurement in DBS for newborn screening of MLD. This leads to an elimination of most of the false positives identified by the sulfatide assay.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fan Yi
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Roberta Damiano
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Maria Della Bona
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, 50121, Italy
| | - Adeline L Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amy T Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Teryn Suhr
- MLD Foundation, West Linn, Oregon 97068, United States
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina 27705, United States
| | | | - Maria Escolar
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | | | - Amber Olsen
- United MSD Foundation, Ocean Springs, Misssissippi 39564, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|