1
|
Grande G, Graziani A, De Toni L, Garolla A, Milardi D, Ferlin A. Acquired Male Hypogonadism in the Post-Genomic Era-A Narrative Review. Life (Basel) 2023; 13:1854. [PMID: 37763258 PMCID: PMC10532903 DOI: 10.3390/life13091854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Although precision medicine took its first steps from genomic medicine, it has gone far beyond genomics, considering the full complexity of cellular physiology. Therefore, the present time can be considered as the "post-genomic era". In detail, proteomics captures the overall protein profile of an analyzed sample, whilst metabolomics has the purpose of studying the molecular aspects of a known medical condition through the measurement of metabolites with low molecular weight in biological specimens. In this review, the role of post-genomic platforms, namely proteomics and metabolomics, is evaluated with a specific interest in their application for the identification of novel biomarkers in male hypogonadism and in the identification of new perspectives of knowledge on the pathophysiological function of testosterone. Post-genomic platforms, including MS-based proteomics and metabolomics based on ultra-high-performance liquid chromatography-HRMS, have been applied to find solutions to clinical questions related to the diagnosis and treatment of male hypogonadism. In detail, seminal proteomics helped us in identifying novel non-invasive markers of androgen activity to be translated into clinical practice, sperm proteomics revealed the role of testosterone in spermatogenesis, while serum metabolomics helped identify the different metabolic pathways associated with testosterone deficiency and replacement treatment, both in patients with insulin sensitivity and patients with insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Grande
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Andrea Graziani
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Luca De Toni
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| | - Domenico Milardi
- Division of Endocrinology, Fondazione Policlinico Universitario “Agostino Gemelli” Scientific Hospitalization and Treatment Institute (IRCCS), 00168 Rome, Italy;
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35128 Padova, Italy; (A.G.); (L.D.T.); (A.G.); (A.F.)
| |
Collapse
|
2
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
3
|
Boys EL, Liu J, Robinson PJ, Reddel RR. Clinical applications of mass spectrometry-based proteomics in cancer: where are we? Proteomics 2022; 23:e2200238. [PMID: 35968695 DOI: 10.1002/pmic.202200238] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emma L Boys
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jia Liu
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Campus, University of New South Wales, Sydney, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
4
|
Singh Y, Nimoriya R, Rawat P, Mishra DK, Kanojiya S. Structural Analysis of Diastereomeric Cardiac Glycosides and Their Genins Using Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1205-1214. [PMID: 33818079 DOI: 10.1021/jasms.1c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultraperformance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) is an economical and indispensable tool in natural product research to investigate novel metabolites, biomarker discovery, chemical diversity exploration, and structure elucidation. In this study, the structural analysis of 38 naturally occurring cardiac glycosides (CGs) in various tissues of Nerium oleander was achieved by the extensive use of mass spectrometry. The chemical diversity of CGs was described on the basis of characteristic MS/MS fragmentation patterns, accurate mass measurement, and published scientific information on CGs from Nerium oleander. It was observed that only six genins, viz., Δ16anhydrogitoxigenin, Δ16adynerigenin, gitoxigenin, oleandrigenin, digitoxigenin, and adynerigenine, produce 38 diverse chemical structures of CGs. Among them, 20 were identified as diastereomers having a difference in a sugar (l-oleandrose, β-d-diginose, and β-d-sarmentose) unit. However, the differentiation of diastereomeric CGs was not possible by only MS/MS fragments. Thus, the diastereomer's chromatographic elution order was assigned on the basis of the relative retention time (RRt) of two reference standards (odoroside A and oleandrin) among their diastereomers. Besides this, the in-source fragmentation of CGs and the MS/MS of m/z 325 and 323 disaccharide daughter ions also exposed the intrinsic structure information on the sugar units. The daughter ions m/z 162, 145, 113, 95, and 85 in MS/MS spectra indicated the abundance of l-oleandrose, β-d-diginose, and β-d-sarmentose sugars. At the same time, m/z 161, 143, 129, and 87 product ions confirmed the presence of a β-d-digitalose unit. As a result, the UPLC-ESI/TQD system was successfully utilized for the structure characterization of CGs in Nerium oleander tissues.
Collapse
Affiliation(s)
| | | | - Priyanka Rawat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | | | - Sanjeev Kanojiya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Orlando E, Aebersold R. On the contribution of mass spectrometry-based platforms to the field of personalized oncology. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Vlahou A. Implementation of Clinical Proteomics: A Step Closer to Personalized Medicine? Proteomics Clin Appl 2018; 13:e1800088. [DOI: 10.1002/prca.201800088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Antonia Vlahou
- Biomedical Research FoundationAcademy of Athens Soranou Efessiou 4 11527 Athens Greece
| |
Collapse
|
7
|
Mohammed Y, Pan J, Zhang S, Han J, Borchers CH. ExSTA: External Standard Addition Method for Accurate High-Throughput Quantitation in Targeted Proteomics Experiments. Proteomics Clin Appl 2018; 12:1600180. [PMID: 28895300 PMCID: PMC6084352 DOI: 10.1002/prca.201600180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/09/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE Targeted proteomics using MRM with stable-isotope-labeled internal-standard (SIS) peptides is the current method of choice for protein quantitation in complex biological matrices. Better quantitation can be achieved with the internal standard-addition method, where successive increments of synthesized natural form (NAT) of the endogenous analyte are added to each sample, a response curve is generated, and the endogenous concentration is determined at the x-intercept. Internal NAT-addition, however, requires multiple analyses of each sample, resulting in increased sample consumption and analysis time. EXPERIMENTAL DESIGN To compare the following three methods, an MRM assay for 34 high-to-moderate abundance human plasma proteins is used: classical internal SIS-addition, internal NAT-addition, and external NAT-addition-generated in buffer using NAT and SIS peptides. Using endogenous-free chicken plasma, the accuracy is also evaluated. RESULTS The internal NAT-addition outperforms the other two in precision and accuracy. However, the curves derived by internal vs. external NAT-addition differ by only ≈3.8% in slope, providing comparable accuracies and precision with good CV values. CONCLUSIONS AND CLINICAL RELEVANCE While the internal NAT-addition method may be "ideal", this new external NAT-addition can be used to determine the concentration of high-to-moderate abundance endogenous plasma proteins, providing a robust and cost-effective alternative for clinical analyses or other high-throughput applications.
Collapse
Affiliation(s)
- Yassene Mohammed
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenthe Netherlands
| | - Jingxi Pan
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
| | - Suping Zhang
- MRM Proteomics Inc.VictoriaBritish ColumbiaCanada
| | - Jun Han
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
| | - Christoph H. Borchers
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaCanada
- University of VictoriaDepartment of Biochemistry and MicrobiologyVictoriaBCCanada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill UniversityMontrealQuebecCanada
- Proteomics CentreSegal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
8
|
Burke TW, Henao R, Soderblom E, Tsalik EL, Thompson JW, McClain MT, Nichols M, Nicholson BP, Veldman T, Lucas JE, Moseley MA, Turner RB, Lambkin-Williams R, Hero AO, Woods CW, Ginsburg GS. Nasopharyngeal Protein Biomarkers of Acute Respiratory Virus Infection. EBioMedicine 2017; 17:172-181. [PMID: 28238698 PMCID: PMC5360578 DOI: 10.1016/j.ebiom.2017.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/09/2022] Open
Abstract
Infection of respiratory mucosa with viral pathogens triggers complex immunologic events in the affected host. We sought to characterize this response through proteomic analysis of nasopharyngeal lavage in human subjects experimentally challenged with influenza A/H3N2 or human rhinovirus, and to develop targeted assays measuring peptides involved in this host response allowing classification of acute respiratory virus infection. Unbiased proteomic discovery analysis identified 3285 peptides corresponding to 438 unique proteins, and revealed that infection with H3N2 induces significant alterations in protein expression. These include proteins involved in acute inflammatory response, innate immune response, and the complement cascade. These data provide insights into the nature of the biological response to viral infection of the upper respiratory tract, and the proteins that are dysregulated by viral infection form the basis of signature that accurately classifies the infected state. Verification of this signature using targeted mass spectrometry in independent cohorts of subjects challenged with influenza or rhinovirus demonstrates that it performs with high accuracy (0.8623 AUROC, 75% TPR, 97.46% TNR). With further development as a clinical diagnostic, this signature may have utility in rapid screening for emerging infections, avoidance of inappropriate antibacterial therapy, and more rapid implementation of appropriate therapeutic and public health strategies.
Collapse
Affiliation(s)
- Thomas W Burke
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Ricardo Henao
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Erik Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27708, USA
| | - Ephraim L Tsalik
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA; Durham Veteran's Affairs Medical Center, Durham, NC 27705, USA; Division of Infectious Diseases and International Health, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27708, USA
| | - Micah T McClain
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA; Division of Infectious Diseases and International Health, Department of Medicine, Duke University, Durham, NC 27710, USA; Section for Infectious Diseases, Medicine Service, Durham Veteran's Affairs Medical Center, Durham, NC 27705, USA
| | - Marshall Nichols
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA
| | | | - Timothy Veldman
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Joseph E Lucas
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - M Arthur Moseley
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA; Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27708, USA
| | - Ronald B Turner
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Alfred O Hero
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher W Woods
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA; Division of Infectious Diseases and International Health, Department of Medicine, Duke University, Durham, NC 27710, USA; Section for Infectious Diseases, Medicine Service, Durham Veteran's Affairs Medical Center, Durham, NC 27705, USA.
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Department of Medicine, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Coleman O, Henry M, McVey G, Clynes M, Moriarty M, Meleady P. Proteomic strategies in the search for novel pancreatic cancer biomarkers and drug targets: recent advances and clinical impact. Expert Rev Proteomics 2016; 13:383-94. [PMID: 26985644 DOI: 10.1586/14789450.2016.1167601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers; despite a low incidence rate it is the fourth leading cause of cancer-related death in the world. Improvement of the diagnosis, prognosis and treatment remains the main focus of pancreatic cancer research. Rapid developments in proteomic technologies has improved our understanding of the pancreatic cancer proteome. Here, the authors summarise the recent proteomic strategies undertaken in the search for: novel biomarkers for early diagnosis, pancreatic cancer-specific proteins which may be used for novel targeted therapies and proteins which may be useful for monitoring disease progression post-therapy. Recent advances and findings discussed here provide great promise of having a significant clinical impact and improving the outcome of patients with this malignancy.
Collapse
Affiliation(s)
- Orla Coleman
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Michael Henry
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Gerard McVey
- b St. Lukes Hospital , Rathgar , Dublin 6 , Ireland
| | - Martin Clynes
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| | - Michael Moriarty
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland.,b St. Lukes Hospital , Rathgar , Dublin 6 , Ireland
| | - Paula Meleady
- a Department of Proteomics, National Institute for Cellular Biotechnology , Dublin City University , Glasnevin , Dublin 9 , Ireland
| |
Collapse
|
10
|
Kang C, Lee Y, Lee JE. Recent advances in mass spectrometry-based proteomics of gastric cancer. World J Gastroenterol 2016; 22:8283-8293. [PMID: 27729735 PMCID: PMC5055859 DOI: 10.3748/wjg.v22.i37.8283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/28/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Collapse
|
11
|
Panis C, Pizzatti L, Souza GF, Abdelhay E. Clinical proteomics in cancer: Where we are. Cancer Lett 2016; 382:231-239. [PMID: 27561426 DOI: 10.1016/j.canlet.2016.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Proteomics has emerged as a promising field in the post-genomic era. Notwithstanding the great advances provided by gene expression analysis in cancer, the lack of a correlation between gene expression and protein levels has highlighted the need for a proteomic focus on cancer. Although the increasing knowledge regarding cancer biology, a reliable marker to improve diagnosis, prognosis and treatment for cancer patients is not a reality at present. In this review, we address the main considerations regarding proteomics-based studies and their clinical applications on cancer research, highlighting some considerations related to strengths and limitations of proteomics-based studies and its application to clinical practice.
Collapse
Affiliation(s)
- Carolina Panis
- Laboratório de Células Tronco, Instituto Nacional de Câncer, INCA, Rio de Janeiro, Brazil; Laboratório de Mediadores Inflamatórios, Universidade Estadual do Oeste do Paraná, UNIOESTE, Campus Francisco Beltrão, Paraná, Brazil.
| | - Luciana Pizzatti
- Laboratório de Biologia Molecular e Proteômica do Sangue - LABMOPS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Eliana Abdelhay
- Laboratório de Células Tronco, Instituto Nacional de Câncer, INCA, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Zhou L, Li Q, Wang J, Huang C, Nice EC. Oncoproteomics: Trials and tribulations. Proteomics Clin Appl 2015; 10:516-31. [PMID: 26518147 DOI: 10.1002/prca.201500081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Qifu Li
- Department of Neurology; The Affiliated Hospital of Hainan Medical College; Haikou Hainan P. R. China
| | - Jiandong Wang
- Department of Biomedical; Chengdu Medical College; Chengdu Sichuan Province P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
| | - Edouard C. Nice
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University, and Collaborative Innovation Center for Biotherapy; Chengdu P. R. China
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Australia
| |
Collapse
|
13
|
Siqueira-Batista R, Gomes AP, Mendonça EGD, Vitorino RR, Azevedo SFMD, Freitas RDB, Santana LA, Oliveira MGDA. Plasmodium falciparum malaria: proteomic studies. Rev Bras Ter Intensiva 2015; 24:394-400. [PMID: 23917939 PMCID: PMC4031808 DOI: 10.1590/s0103-507x2012000400017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 12/04/2012] [Indexed: 01/21/2023] Open
Abstract
Despite advances in treatment and campaigns for prevention and control of malaria on
the various continents where it is still rampant, this disease remains significantly
relevant to the contemporary world. Plasmodium falciparum is the
organism that is mainly responsible for severe malaria, which is characterized by
disturbances in different organs and systems, with possibly fatal outcomes. Although
incipient, proteomic studies of malaria have yielded favorable prospects for
elucidating the biological aspects of Plasmodium as well as the
pathophysiological, diagnostic, prophylactic, and therapeutic mechanisms of the
disease. Thus, the aim of the present article is to present a brief review of the
applications of proteomic analysis in P. falciparum malaria.
Collapse
|
14
|
Khaghani-Razi-Abad S, Hashemi M, Pooladi M, Entezari M, Kazemi E. Proteomics analysis of human oligodendroglioma proteome. Gene 2015; 569:77-82. [DOI: 10.1016/j.gene.2015.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/12/2023]
|
15
|
Maes E, Mertens I, Valkenborg D, Pauwels P, Rolfo C, Baggerman G. Proteomics in cancer research: Are we ready for clinical practice? Crit Rev Oncol Hematol 2015; 96:437-48. [PMID: 26277237 DOI: 10.1016/j.critrevonc.2015.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Although genomics has delivered major advances in cancer prognostics, treatment and diagnostics, it still only provides a static image of the situation. To study more dynamic molecular entities, proteomics has been introduced into the cancer research field more than a decade ago. Currently, however, the impact of clinical proteomics on patient management and clinical decision-making is low and the implementations of scientific results in the clinic appear to be scarce. The search for cancer-related biomarkers with proteomics however, has major potential to improve risk assessment, early detection, diagnosis, prognosis, treatment selection and monitoring. In this review, we provide an overview of the transition of oncoproteomics towards translational oncology. We describe which lessons are learned from currently approved protein biomarkers and previous proteomic studies, what the pitfalls and challenges are in clinical proteomics applications, and how proteomic research can be successfully translated into medical practice.
Collapse
Affiliation(s)
- Evelyne Maes
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Inge Mertens
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Edegem, Belgium
| | - Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE), Antwerp University, Edegem, Belgium.
| | - Geert Baggerman
- Flemish Institute for Technological Research (VITO), Mol, Belgium; CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Tighe PJ, Ryder RR, Todd I, Fairclough LC. ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin Appl 2015; 9:406-22. [PMID: 25644123 PMCID: PMC6680274 DOI: 10.1002/prca.201400130] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Multiplex immunoassays confer several advantages over widely adopted singleplex immunoassays including increased efficiency at a reduced expense, greater output per sample volume ratios and higher throughput predicating more resolute, detailed diagnostics and facilitating personalised medicine. Nonetheless, to date, relatively few protein multiplex immunoassays have been validated for in vitro diagnostics in clinical/point-of-care settings. This review article will outline the challenges, which must be ameliorated prior to the widespread integration of multiplex immunoassays in clinical settings: (i) biomarker validation; (ii) standardisation of immunoassay design and quality control (calibration and quantification); (iii) availability, stability, specificity and cross-reactivity of reagents; (iv) assay automation and the use of validated algorithms for transformation of raw data into diagnostic results. A compendium of multiplex immunoassays applicable to in vitro diagnostics and a summary of the diagnostic products currently available commercially are included, along with an analysis of the relative states of development for each format (namely planar slide based, suspension and planar/microtitre plate based) with respect to the aforementioned issues.
Collapse
Affiliation(s)
- Patrick J Tighe
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
17
|
Boja ES, Fehniger TE, Baker MS, Marko-Varga G, Rodriguez H. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers. J Proteome Res 2014; 13:5325-32. [PMID: 25171765 PMCID: PMC4261948 DOI: 10.1021/pr500753r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Protein
biomarker discovery and validation in current omics era
are vital for healthcare professionals to improve diagnosis, detect
cancers at an early stage, identify the likelihood of cancer recurrence,
stratify stages with differential survival outcomes, and monitor therapeutic
responses. The success of such biomarkers would have a huge impact
on how we improve the diagnosis and treatment of patients and alleviate
the financial burden of healthcare systems. In the past, the genomics
community (mostly through large-scale, deep genomic sequencing technologies)
has been steadily improving our understanding of the molecular basis
of disease, with a number of biomarker panels already authorized by
the U.S. Food and Drug Administration (FDA) for clinical use (e.g.,
MammaPrint, two recently cleared devices using next-generation sequencing
platforms to detect DNA changes in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene). Clinical proteomics, on the other
hand, albeit its ability to delineate the functional units of a cell,
more likely driving the phenotypic differences of a disease (i.e.,
proteins and protein–protein interaction networks and signaling
pathways underlying the disease), “staggers” to make
a significant impact with only an average ∼1.5 protein biomarkers
per year approved by the FDA over the past 15–20 years. This
statistic itself raises the concern that major roadblocks have been
impeding an efficient transition of protein marker candidates in biomarker
development despite major technological advances in proteomics in
recent years.
Collapse
Affiliation(s)
- Emily S Boja
- Office of Cancer Clinical Proteomics Research, Center for Strategic Scientific Initiatives, National Cancer Institute, National Institutes of Health , 31 Center Drive, MS 2580, Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Gayatri Mohanty
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Nirlipta Swain
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| | - Luna Samanta
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Orissa, India
| |
Collapse
|
19
|
Song SH, Han M, Choi YS, Dan KS, Yang MG, Song J, Park SS, Lee JH. Proteomic profiling of serum from patients with tuberculosis. Ann Lab Med 2014; 34:345-53. [PMID: 25187886 PMCID: PMC4151002 DOI: 10.3343/alm.2014.34.5.345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/31/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Background Effective treatment and monitoring of tuberculosis (TB) requires biomarkers that can be easily evaluated in blood samples. The aim of this study was to analyze the serum proteome of patients with TB and to identify protein biomarkers for TB. Methods Serum samples from 26 TB patients and 31 controls were analyzed by using nano-flow ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry in data-independent mode, and protein and peptide amounts were calculated by using a label-free quantitative approach. The generated data were analyzed by using principal component analysis and partial least squares discriminant analysis, a multivariate statistical method. Results Of more than 500 proteins identified, alpha-1-antitrypsin was the most discriminative, which was 4.4 times higher in TB patients than in controls. Peptides from alpha-1-antitrypsin and antithrombin III increased in TB patients and showed a high variable importance in the projection scores and coefficient in partial least square discriminant analysis. Conclusions Sera from patients with TB had higher alpha-1-antitrypsin levels than sera from control participants. Alpha-1-antitrypsin levels may aid in the diagnosis of TB.
Collapse
Affiliation(s)
- Sang Hoon Song
- Clinical Proteomics Laboratory, Seoul National University Hospital, Seoul, Korea. ; Biomedical Research Institute and Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Minje Han
- Clinical Proteomics Laboratory, Seoul National University Hospital, Seoul, Korea. ; Biomedical Research Institute and Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yang Seon Choi
- Clinical Proteomics Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Ki Soon Dan
- Clinical Proteomics Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Man Gil Yang
- Clinical Proteomics Laboratory, Seoul National University Hospital, Seoul, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Sup Park
- Clinical Proteomics Laboratory, Seoul National University Hospital, Seoul, Korea. ; Biomedical Research Institute and Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jae Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
20
|
Milardi D, Grande G, Vincenzoni F, Giampietro A, Messana I, Castagnola M, Marana R, De Marinis L, Pontecorvi A. Novel biomarkers of androgen deficiency from seminal plasma profiling using high-resolution mass spectrometry. J Clin Endocrinol Metab 2014; 99:2813-20. [PMID: 24796927 DOI: 10.1210/jc.2013-4148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT The seminal plasma is made of secretions from the testis, the epididymis, and the male accessory glands, which are dependent on the presence of androgenic stimuli. OBJECTIVE The objective of this study was to identify new seminal biomarkers for secundary male hypogonadism using proteomic profiling. DESIGN Seminal plasma samples from patients affected by secundary hypogonadism and normogonadal controls were analyzed by an LTQ Orbitrap XL hybrid mass spectrometer and data were evaluated using bioinformatic tools. SETTING The study was performed at a clinical research center. SUBJECTS Twenty male patients, aged 25-55 years, affected by secundary hypogonadic were studied. Ten patients were reevaluated after 6 months of T replacement therapy (TRT). Ten normogonadic men were enrolled as a control group. INTERVENTIONS There were no interventions. MAIN OUTCOME MEASURES The list of absent proteins in the samples of hypogonadic patients and identified after TRT was studied. Bioinformatic tools were used to functionally annotate the panel of androgen-dependent proteins. The interaction network of the differentially expressed proteins was built in silico, including the androgen receptor. RESULTS A lower number of proteins was identified in hypogonadic patients compared with normogonadal men. Among the 61 proteins identified in normogonadal men, 33 proteins were absent in hypogonadic patients. Fourteen of 33 absent proteins were identified in seminal samples after 6 months of TRT. Functional annotation analysis revealed that binding and enzymatic activities are mainly deficient in male hypogonadism. Seven of 14 differentially expressed proteins can fall into one large protein-protein interaction network, which directly involves the androgen receptor. CONCLUSION A high resolution mass spectrometry-based proteomic approach was first used to describe the alterations of seminal seminal proteome in secundary male hypogonadism. These proteins represent putative physiological in vivo targets for androgen deficiency.
Collapse
Affiliation(s)
- Domenico Milardi
- International Scientific Institute (D.M., R.M.), "Paolo VI", Division of Endocrinology and Metabolic Diseases (G.G., A.G., L.D.M., A.P.), and Institute of Biochemistry and Clinical Biochemistry (F.V., M.C.), Università Cattolica del Sacro Cuore, 00168 Rome, Italy; and Department of Life and Environmental Sciences (I.M.), University of Cagliari, 09124 Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Acosta-Martin AE, Lane L. Combining bioinformatics and MS-based proteomics: clinical implications. Expert Rev Proteomics 2014; 11:269-84. [PMID: 24720436 DOI: 10.1586/14789450.2014.900446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical proteomics research aims at i) discovery of protein biomarkers for screening, diagnosis and prognosis of disease, ii) discovery of protein therapeutic targets for improvement of disease prevention, treatment and follow-up, and iii) development of mass spectrometry (MS)-based assays that could be implemented in clinical chemistry, microbiology or hematology laboratories. MS has been increasingly applied in clinical proteomics studies for the identification and quantification of proteins. Bioinformatics plays a key role in the exploitation of MS data in several aspects such as the generation and curation of protein sequence databases, the development of appropriate software for MS data treatment and integration with other omics data and the establishment of adequate standard files for data sharing. In this article, we discuss the main MS approaches and bioinformatics solutions that are currently applied to accomplish the objectives of clinical proteomic research.
Collapse
|
22
|
Pham TV, Piersma SR, Oudgenoeg G, Jimenez CR. Label-free mass spectrometry-based proteomics for biomarker discovery and validation. Expert Rev Mol Diagn 2014; 12:343-59. [DOI: 10.1586/erm.12.31] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Percy AJ, Byrns S, Chambers AG, Borchers CH. Targeted quantitation of CVD-linked plasma proteins for biomarker verification and validation. Expert Rev Proteomics 2014; 10:567-78. [DOI: 10.1586/14789450.2013.856763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Pooladi M, Rezaei-Tavirani M, Hashemi M, Hesami-Tackallou S, Khaghani-Razi-Abad S, Moradi A, Zali AR, Mousavi M, Firozi-Dalvand L, Rakhshan A, Zamanian Azodi M. Cluster and Principal Component Analysis of Human Glioblastoma Multiforme (GBM) Tumor Proteome. IRANIAN JOURNAL OF CANCER PREVENTION 2014; 7:87-95. [PMID: 25250155 PMCID: PMC4142943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/26/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Glioblastoma Multiforme (GBM) or grade IV astrocytoma is the most common and lethal adult malignant brain tumor. Several of the molecular alterations detected in gliomas may have diagnostic and/or prognostic implications. Proteomics has been widely applied in various areas of science, ranging from the deciphering of molecular pathogen nests of discuses. METHODS In this study proteins were extracted from the tumor and normal brain tissues and then the protein purity was evaluated by Bradford test and spectrophotometry. In this study, proteins were separated by 2-Dimensional Gel (2DG) electrophoresis method and the spots were then analyzed and compared using statistical data and specific software. Protein clustering analysis was performed on the list of proteins deemed significantly altered in glioblastoma tumors (t-test and one-way ANOVA; P< 0.05). RESULTS The 2D gel showed totally 876 spots. We reported, 172 spots were exhibited differently in expression level (fold > 2) for glioblastoma. On each analytical 2D gel, an average of 876 spots was observed. In this study, 188 spots exhibited up regulation of expression level, whereas the remaining 232 spots were decreased in glioblastoma tumor relative to normal tissue. Results demonstrate that functional clustering (up and down regulated) and Principal Component Analysis (PCA) has considerable merits in aiding the interpretation of proteomic data. CONCLUSION 2D gel electrophoresis is the core of proteomics which permitted the separation of thousands of proteins. High resolution 2DE can resolve up to 5,000 proteins simultaneously. Using cluster analysis, we can also form groups of related variables, similar to what is practiced in factor analysis.
Collapse
Affiliation(s)
- Mehdi Pooladi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dept. of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Dept. Of Molecular Genetics, Tehran Medical Branch, Islamic Azad University Tehran, Iran
| | | | - Solmaz Khaghani-Razi-Abad
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dept. of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Moradi
- Dept. Of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Reza Zali
- Dept. of Neurosurgery, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Mousavi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Firozi-Dalvand
- Dept. of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Rakhshan
- Dept. Of Pathology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Stehle F, Schulz K, Seliger B. Towards defining biomarkers indicating resistances to targeted therapies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:909-16. [PMID: 24269379 DOI: 10.1016/j.bbapap.2013.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/17/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022]
Abstract
An impressive, but often short objective response was obtained in many tumor patients treated with different targeted therapies, but most of the patients develop resistances against these drugs. So far, a number of distinct mechanisms leading to intrinsic as well as acquired resistances have been identified in tumors of distinct origin. These can arise from genetic alterations, like mutations, truncations, and amplifications or due to deregulated expression of various proteins and signal transduction pathways, but also from cellular heterogeneity within tumors after an initial response. Therefore, biomarkers are urgently needed for cancer prognosis and personalized cancer medicine. The application of "ome"-based technologies including cancer (epi)genomics, next generation sequencing, cDNA microarrays and proteomics might led to the predictive or prognostic stratification of patients to categorize resistance mechanisms and to postulate combinations of treatment strategies. This review discusses the implementation of proteome-based analysis to identify markers of pathway (in)activation in tumors and the resistance mechanisms, which represent major clinical problems as a tool to optimize individually tailored therapies based on targeted drugs. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Franziska Stehle
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, D-06112 Halle, Saale, Germany
| | - Kristin Schulz
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, D-06112 Halle, Saale, Germany
| | - Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, D-06112 Halle, Saale, Germany.
| |
Collapse
|
26
|
Ramasamy P, Murphy CC, Clynes M, Horgan N, Moriarty P, Tiernan D, Beatty S, Kennedy S, Meleady P. Proteomics in uveal melanoma. Exp Eye Res 2013; 118:1-12. [PMID: 24056206 DOI: 10.1016/j.exer.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.
Collapse
Affiliation(s)
- Pathma Ramasamy
- Royal College of Surgeons Ireland, Stephen's Green, Dublin 2, Ireland; National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| | - Conor C Murphy
- Royal College of Surgeons Ireland, Stephen's Green, Dublin 2, Ireland; Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| | - Noel Horgan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Paul Moriarty
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Damien Tiernan
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Stephen Beatty
- Macular Pigment Research Group, Waterford Institute of Technology, Waterford, Ireland.
| | - Susan Kennedy
- Royal Victoria Eye and Ear Hospital, Adelaide Road, Dublin 2, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Collins Avenue, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
27
|
Krüger T, Lehmann T, Rhode H. Effect of quality characteristics of single sample preparation steps in the precision and coverage of proteomic studies—A review. Anal Chim Acta 2013; 776:1-10. [DOI: 10.1016/j.aca.2013.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/25/2022]
|
28
|
Milardi D, Grande G, Vincenzoni F, Castagnola M, Marana R. Proteomics of human seminal plasma: Identification of biomarker candidates for fertility and infertility and the evolution of technology. Mol Reprod Dev 2013; 80:350-7. [DOI: 10.1002/mrd.22178] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Domenico Milardi
- International Scientific Institute “PaoloVI”; Università Cattolica del S. Cuore; Rome; Italy
| | - Giuseppe Grande
- Department of Endocrinology; Università Cattolica del S. Cuore; Rome; Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry; Università Cattolica del S. Cuore; Rome; Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry; Università Cattolica del S. Cuore; Rome; Italy
| | | |
Collapse
|
29
|
Lab-on-a-Chip, Micro- and Nanoscale Immunoassay Systems, and Microarrays. THE IMMUNOASSAY HANDBOOK 2013. [PMCID: PMC7152144 DOI: 10.1016/b978-0-08-097037-0.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
30
|
Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Zhang H, Tian Y, Li Y, Kulasingam V, Drabovich A, Smith CR, Batruch I, Oran PE, Fredolini C, Luchini A, Liotta L, Petricoin E, Diamandis EP, Chan DW, Nelson R, Lopez MF. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res 2012; 11:3986-95. [PMID: 22639787 DOI: 10.1021/pr300014s] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.
Collapse
Affiliation(s)
- Amol Prakash
- Thermo Fisher Scientific, BRIMS (Biomarker Research in Mass Spectrometry), Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Serum lysophosphatidylcholine level is not altered in coronary artery disease. Clin Biochem 2012; 45:793-7. [DOI: 10.1016/j.clinbiochem.2012.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 03/12/2012] [Accepted: 03/24/2012] [Indexed: 11/22/2022]
|
32
|
Ecker SM, Pfahler SM, Hines JC, Lovelace AS, Glaser BM. Sequential in-office vitreous aspirates demonstrate vitreous matrix metalloproteinase 9 levels correlate with the amount of subretinal fluid in eyes with wet age-related macular degeneration. Mol Vis 2012; 18:1658-67. [PMID: 22773904 PMCID: PMC3388986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 06/16/2012] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To evaluate levels of 37 native pathway proteins of the vitreous proteome from a subset of wet age-related macular degeneration (AMD) patients with and without subretinal fluid (SRF). METHODS A total of 62 consecutive samples were aspirated from 12 patients with AMD, six who had SRF at baseline, and six who did not have SRF at any point during the study. Vitreous levels of the 37 native pathway proteins were analyzed in these patients using reverse phase protein microarray technology. At each visit, at which the 62 samples were taken, SRF and central retinal thickness were measured. These values were then compared to the relative intensity level of the 37 proteins screened. RESULTS In the subset of AMD patients with SRF, the average matrix metalloproteinase 9 (MMP-9), interleukin (IL)-12, Abelson murine leukemia viral oncogene homolog 1 (cABL) Thr735, heme oxygenase-1, Musashi, platelet-derived growth factor receptor beta Tyr751 (PDGFRβ), IL-8, and BCL-2 associated death promoter (BAD) Ser112 levels in the vitreous were found to be significantly different with a 21%-82% increase in expression compared to those without SRF (p<0.0001). Within the SRF group, there was a positive correlation between the vitreous MMP-9 levels and the SRF level. MMP-9 levels in the vitreous proteome varied with the level of SRF but not retinal edema. Compared to patients without SRF, the patients with initial SRF had persistent or progressive disease. CONCLUSIONS This is the first prospective case series sequentially monitoring the vitreous proteome in patients with wet AMD. The results suggest that MMP-9 is a proteomic biomarker of SRF accumulation, separate from macular edema.
Collapse
Affiliation(s)
- Stephanie M. Ecker
- The National Retina Institute, Department of Ocular Proteomics, Towson MD,Ocular Proteomics LLC, Towson MD
| | - Scott M. Pfahler
- The National Retina Institute, Department of Ocular Proteomics, Towson MD
| | - Joshua C. Hines
- The National Retina Institute, Department of Ocular Proteomics, Towson MD,Ocular Proteomics LLC, Towson MD
| | - Ann S. Lovelace
- The National Retina Institute, Department of Ocular Proteomics, Towson MD
| | - Bert M. Glaser
- The National Retina Institute, Department of Ocular Proteomics, Towson MD,Ocular Proteomics LLC, Towson MD
| |
Collapse
|
33
|
After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli? J Proteomics 2012; 75:2773-89. [PMID: 22245553 DOI: 10.1016/j.jprot.2011.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/30/2022]
Abstract
Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
|