1
|
Lee J, Kim HB, Jung HJ, Chung M, Park SE, Lee KH, Kim WS, Moon JH, Lee JW, Shim JW, Lee SS, Kang Y, Yoo Y. Protecting our future: environmental hazards and children's health in the face of environmental threats: a comprehensive overview. Clin Exp Pediatr 2024; 67:589-598. [PMID: 39483040 PMCID: PMC11551600 DOI: 10.3345/cep.2023.01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 11/03/2024] Open
Abstract
Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children's environmental health was the Declaration of the Environment Leaders of the Eight on Children's Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children's environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents.
Collapse
Affiliation(s)
- Jungha Lee
- Respite Care Center for Children, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hun-Jong Jung
- Department of Occupation & Environment, Dongkuk University Hospital, Gyeongju, Korea
| | | | - So Eun Park
- Seoul National University Graduate School of Medicine, Seoul, Korea
| | - Kon-Hee Lee
- Korean Red Cross Blood Services, The Korean Red Cross, Seoul, Korea
| | - Won Seop Kim
- Department of Pediatrics, Chungbuk National University Medical College, Cheongju, Korea
| | - Jin-Hwa Moon
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - Jung Won Lee
- Department of Pediatrics, Ewha Womans University Medical College, Seoul, Korea
| | - Jae Won Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Soo Lee
- Department of Pediatrics, Sungse Children’s Hospital, Pyeongtaek, Korea
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Yoo
- Department of Pediatrics, Korea University Medical College, Seoul, Korea
| | - The Environmental Health Committee of the Korean Pediatric Society
- Respite Care Center for Children, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Occupation & Environment, Dongkuk University Hospital, Gyeongju, Korea
- Dr. Chung Growth Clinic, Daegu, Korea
- Seoul National University Graduate School of Medicine, Seoul, Korea
- Korean Red Cross Blood Services, The Korean Red Cross, Seoul, Korea
- Department of Pediatrics, Chungbuk National University Medical College, Cheongju, Korea
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
- Department of Pediatrics, Ewha Womans University Medical College, Seoul, Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pediatrics, Sungse Children’s Hospital, Pyeongtaek, Korea
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Pediatrics, Korea University Medical College, Seoul, Korea
| |
Collapse
|
2
|
Kim HY, Son Y, Jeong YJ, Lee SH, Kim N, Ahn YH, Jeon SB, Choi HD, Lee HJ. Effects of 4G Long-Term Evolution Electromagnetic Fields on Thyroid Hormone Dysfunction and Behavioral Changes in Adolescent Male Mice. Int J Mol Sci 2024; 25:10875. [PMID: 39456657 PMCID: PMC11507962 DOI: 10.3390/ijms252010875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Radiofrequency electromagnetic fields (RF-EMFs) can penetrate tissues and potentially influence endocrine and brain development. Despite increased mobile phone use among children and adolescents, the long-term effects of RF-EMF exposure on brain and endocrine development remain unclear. This study investigated the effects of long-term evolution band (LTE) EMF exposure on thyroid hormone levels, crucial for metabolism, growth, and development. Four-week-old male mice (C57BL/6) were exposed to LTE EMF (whole-body average specific absorption rate [SAR] 4 W/kg) or a positive control (lead; Pb, 300 ppm in drinking water) for 4 weeks. Subsequently, the mice underwent behavioral tests including open field, marble burying, and nest building. Blood pituitary and thyroid hormone levels, and thyroid hormone-regulating genes within the hypothalamus-pituitary-thyroid (HPT) axis were analyzed. LTE exposure increased T3 levels, while Pb exposure elevated T3 and T4 and decreased ACTH levels. The LTE EMF group showed no gene expression alterations in the thyroid and pituitary glands, but hypothalamic Dio2 and Dio3 expressions were significantly reduced compared to that in the sham-exposed group. Pb exposure altered the hypothalamic mRNA levels of Oatp1c1 and Trh, pituitary mRNA of Trhr, and Tpo and Tg expression in the thyroid. In conclusion, LTE EMF exposure altered hypothalamic Dio2 and Dio3 expression, potentially impacting the HPT axis function. Further research is needed to explore RF-EMF's impacts on the endocrine system.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea; (H.-Y.K.); (Y.S.); (Y.J.J.); (S.-H.L.)
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea
| | - Yeonghoon Son
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea; (H.-Y.K.); (Y.S.); (Y.J.J.); (S.-H.L.)
| | - Ye Ji Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea; (H.-Y.K.); (Y.S.); (Y.J.J.); (S.-H.L.)
| | - Soo-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea; (H.-Y.K.); (Y.S.); (Y.J.J.); (S.-H.L.)
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28466, Republic of Korea;
| | - Young Hwan Ahn
- Department of Neurosurgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Sang Bong Jeon
- Department of EMF Research Team, Electronics and Telecommunication Research Institute, Daejon 34129, Republic of Korea;
| | - Hyung-Do Choi
- Department of EMF Research Team, Electronics and Telecommunication Research Institute, Daejon 34129, Republic of Korea;
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Republic of Korea; (H.-Y.K.); (Y.S.); (Y.J.J.); (S.-H.L.)
| |
Collapse
|
3
|
Zhao C, Ma Y, Hou D, Wang L, Hong T, Tang Z, Huang K, Gou D. Experimental Investigation on Electrical Conductivity Variation of Carnosine and Zinc Chloride Aqueous Solutions under Microwave Irradiation. J Phys Chem B 2024; 128:8494-8503. [PMID: 39178416 DOI: 10.1021/acs.jpcb.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
The mechanism of biological effects of environmental electromagnetic radiation is still not completely clear. The chelation of biological small molecule peptides with metal ions plays a very important role in human metabolism. In this paper, a special experimental system was designed to measure the conductivity of carnosine and zinc chloride mixed aqueous solutions under different concentration ratios, microwave powers, and temperatures. The experimental results show that, first, different concentration ratios can alter the conductivity change rate of the mixed aqueous solution. The conductivity of the solution always increases under microwave irradiation at a concentration ratio of 1:1. However, the conductivity is reduced by -0.04% with a 1:5 concentration ratio and 6 W microwave power at 10 °C. Second, temperature can alter the conductivity change rate of the aqueous mixture. The higher the temperature, the smaller the conductivity change rate. Third, different microwave powers can alter the conductivity change rate of the mixed aqueous solution. In general, the conductivity change rate increases with an increase in microwave power. Experimentally observed reduction of the conductivity change rate in carnosine and zinc chloride aqueous solution under low microwave power and low temperature indicates that microwaves do affect the chelation of carnosine with zinc chloride. This work provides a new perspective for the mechanism of explanation of microwave biological effects.
Collapse
Affiliation(s)
- Chenxi Zhao
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Yun Ma
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Desheng Hou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Lin Wang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Tao Hong
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Zhengming Tang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| | - Kama Huang
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Dezhi Gou
- School of Electronic and Information Engineering, China West Normal University, Nanchong 637000, China
| |
Collapse
|
4
|
Massaro L, De Sanctis S, Franchini V, Regalbuto E, Alfano G, Focaccetti C, Benvenuto M, Cifaldi L, Sgura A, Berardinelli F, Marinaccio J, Barbato F, Rossi E, Nardozi D, Masuelli L, Bei R, Lista F. Study of genotoxic and cytotoxic effects induced in human fibroblasts by exposure to pulsed and continuous 1.6 GHz radiofrequency. Front Public Health 2024; 12:1419525. [PMID: 39145180 PMCID: PMC11323689 DOI: 10.3389/fpubh.2024.1419525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.
Collapse
Affiliation(s)
- Luca Massaro
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefania De Sanctis
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Valeria Franchini
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Elisa Regalbuto
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Gaetano Alfano
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | | | | | - Federica Barbato
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Erica Rossi
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Florigio Lista
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| |
Collapse
|
5
|
Moretti L, Bizzoca D, Geronimo A, Abbaticchio AM, Moretti FL, Carlet A, Fischetti F, Moretti B. Targeting Adenosine Signalling in Knee Chondropathy: The Combined Action of Polydeoxyribonucleotide and Pulsed Electromagnetic Fields: A Current Concept Review. Int J Mol Sci 2023; 24:10090. [PMID: 37373237 PMCID: PMC10298276 DOI: 10.3390/ijms241210090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chondropathy of the knee is one of the most frequent degenerative cartilage pathologies with advancing age. Scientific research has, in recent years, advanced new therapies that target adenosine A2 receptors, which play a significant role in human health against many disease states by activating different protective effects against cell sufferance and damage. Among these, it has been observed that intra-articular injections of polydeoxyribonucleotides (PDRN) and Pulsed Electromagnetic Fields (PEMF) can stimulate the adenosine signal, with significant regenerative and healing effects. This review aims to depict the role and therapeutic modulation of A2A receptors in knee chondropathy. Sixty articles aimed at providing data for our study were included in this review. The present paper highlights how intra-articular injections of PDRN create beneficial effects by reducing pain and improving functional clinical scores, thanks to their anti-inflammatory action and the important healing and regenerating power of the stimulation of cell growth, production of collagen, and the extracellular matrix. PEMF therapy is a valid option in the conservative treatment of different articular pathologies, including early OA, patellofemoral pain syndrome, spontaneous osteonecrosis of the knee (SONK), and in athletes. PEMF could also be used as a supporting therapy after an arthroscopic knee procedure total knee arthroplasty to reduce the post-operative inflammatory state. The proposal of new therapeutic approaches capable of targeting the adenosine signal, such as the intra-articular injection of PDRN and the use of PEMF, has shown excellent beneficial results compared to conventional treatments. These are presented as an extra weapon in the fight against knee chondropathy.
Collapse
Affiliation(s)
- Lorenzo Moretti
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Davide Bizzoca
- Orthopaedics Unit—UOSD Vertebral Surgery, AOU Consorziale Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy;
- Ph.D. Course in Public Health, Clinical Medicine and Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Geronimo
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | | | - Francesco Luca Moretti
- National Centre for Chemicals, Cosmetic Products and Consumer Protection, National Institute of Health, 00161 Rome, Italy
| | - Arianna Carlet
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Fischetti
- Departement DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Biagio Moretti
- Orthopaedics Unit, DiBraiN, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
6
|
Davis D, Birnbaum L, Ben-Ishai P, Taylor H, Sears M, Butler T, Scarato T. Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 2023; 53:101374. [PMID: 36935315 DOI: 10.1016/j.cppeds.2023.101374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Children today are conceived and live in a sea of wireless radiation that did not exist when their parents were born. The launch of the digital age continues to transform the capacity to respond to emergencies and extend global communications. At the same time that this increasingly ubiquitous technology continues to alter the nature of commerce, medicine, transport and modern life overall, its varied and changing forms have not been evaluated for their biological or environmental impacts. Standards for evaluating radiation from numerous wireless devices were first set in 1996 to avoid heating tissue and remain unchanged since then in the U.S. and many other nations. A wide range of evidence indicates that there are numerous non-thermal effects from wireless radiation on reproduction, development, and chronic illness. Many widely used devices such as phones and tablets function as two-way microwave radios, sending and receiving various frequencies of information-carrying microwave radiation on multiple simultaneously operating antennas. Expert groups advising governments on this matter do not agree on the best approaches to be taken. The American Academy of Pediatrics recommends limited screen time for children under the age of two, but more than half of all toddlers regularly have contact with screens, often without parental engagement. Young children of parents who frequently use devices as a form of childcare can experience delays in speech acquisition and bonding, while older children report feelings of disappointment due to 'technoference'-parental distraction due to technology. Children who begin using devices early in life can become socially, psychologically and physically addicted to the technology and experience withdrawal upon cessation. We review relevant experimental, epidemiological and clinical evidence on biological and other impacts of currently used wireless technology, including advice to include key questions at pediatric wellness checkups from infancy to young adulthood. We conclude that consistent with advice in pediatric radiology, an approach that recommends that microwave radiation exposures be As Low As Reasonably Achievable (ALARA) seems sensible and prudent, and that an independently-funded training, research and monitoring program should be carried out on the long term physical and psychological impacts of rapidly changing technological milieu, including ways to mitigate impacts through modifications in hardware and software. Current knowledge of electrohypersensitivity indicates the importance of reducing wireless exposures especially in schools and health care settings.
Collapse
Affiliation(s)
- Devra Davis
- Medicine, Ondokuz Mayis University, Samsun, Turkey; Environmental Health Trust, Teton Village, WY, USA.
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences and National Toxicology Program, Scholar in Residence, Nicholas School of the Environment, Duke University, USA
| | | | - Hugh Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Meg Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, Canada
| | | | | |
Collapse
|
7
|
Shobeiri P, Seyedmirzaei H, Kalantari A, Mohammadi E, Rezaei N, Hanaei S. The Epidemiology of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:19-39. [PMID: 36587379 DOI: 10.1007/978-3-031-14732-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CNS tumors are a diverse group of neoplasms that emerge from a variety of different CNS cell types. These tumors may be benign, malignant, or borderline in nature. The majority of high grade glial tumors are fatal, with the exception of pilocytic astrocytoma. Primary malignant CNS tumors occur at a global annual rate of 2.1 to 5.8 per 100,000 persons. Males are more likely to develop malignant brain tumors than females, whereas benign meningiomas are more common in adult females. Additionally, gender inequalities in non-malignant tumors peak between the ages of 25 and 29 years. Only a small number of genetic variants have been associated with survival and prognosis. Notably, central nervous system (CNS) tumors exhibit significant age, gender, and race variation. Race is another factor that affects the incidence of brain and spinal cord tumors. Different races exhibit variation in terms of the prevalence of brain and CNS malignancies. This chapter discusses ongoing research on brain and spinal cord tumor epidemiology, as well as the associated risks and accompanied disorders.
Collapse
Affiliation(s)
- Parnian Shobeiri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Homa Seyedmirzaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirali Kalantari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Esmaeil Mohammadi
- Department of Pediatric Neurosurgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Hanaei
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Li Y, Shi Q, Peng L, Chang M, Zhou F, Gong C, Wu Y, Zhang L. Carbon nanotubes/cellulose composite aerogels with controllable microstructure for electromagnetic interference shielding. J Appl Polym Sci 2022. [DOI: 10.1002/app.53535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ying Li
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Qin Shi
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Longgui Peng
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Mengjie Chang
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Fang Zhou
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Changdan Gong
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Yi Wu
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| | - Liangqing Zhang
- College of Material Science and Engineering Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
9
|
Physical Differences between Man-Made and Cosmic Microwave Electromagnetic Radiation and Their Exposure Limits, and Radiofrequencies as Generators of Biotoxic Free Radicals. RADIATION 2022. [DOI: 10.3390/radiation2040022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical arguments for radiofrequency radiation exposure limits are currently based on the principle that radio frequencies (RF) and electromagnetic fields (EMFs) are non-ionising, and their exposure limits are even 100-fold lower than those emitted from the Sun in the whole RF-EMF spectrum. Nonetheless, this argument has been challenged by numerous experimental and theoretical studies on the diverse biological effects of RF-EMF at much lower power density (W/m2) levels than today’s exposing limits. On the other hand, less attention has been given to counterarguments based on the differences in the physics concepts underlying man-made versus natural electromagnetic radiation (EMR) and on the fact that man’s biology has been adapted to the natural EMR levels reaching Earth’s surface at single EMF wavelengths, which are the natural limits of man’s exposure to EMFs. The article highlights the main points of interaction of natural and man-made radiation with biomatter and reveals the physical theoretical background that explains the effects of man-made microwave radiation on biological matter. Moreover, the article extends its analysis on experimental quantum effects, establishing the “ionising-like” effects of man-made microwave radiation on biological matter.
Collapse
|
10
|
Jagetia GC. Genotoxic effects of electromagnetic field radiations from mobile phones. ENVIRONMENTAL RESEARCH 2022; 212:113321. [PMID: 35508219 DOI: 10.1016/j.envres.2022.113321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The use of wireless communication technology in mobile phones has revolutionized modern telecommunication and mobile phones have become so popular that their number exceeds the global population. Electromagnetic field radiations (EMR) are an integral part of wireless technology, which are emitted by mobile phones, mobile tower antennas, electric power stations, transmission lines, radars, microwave ovens, television sets, refrigerators, diagnostic, therapeutic, and other electronic devices. Manmade EMR sources have added to the existing burden of natural EMR human exposure arising from the Sun, cosmos, atmospheric discharges, and thunder storms. EMR including radiofrequency waves (RF) and extremely low-frequency radiation (ELF) has generated great interest as their short-term exposure causes headache, fatigue, tinnitus, concentration problems, depression, memory loss, skin irritation, sleep disorders, nausea, cardiovascular effects, chest pain, immunity, and hormonal disorders in humans, whereas long-term exposure to EMR leads to the development of cancer. The review has been written by collecting the information using various search engines including google scholar, PubMed, SciFinder, Science direct, EMF-portal, saferemr, and other websites from the internet. The main focus of this review is to delineate the mutagenic and genotoxic effects of EMR in humans and mammals. Numerous investigations revealed that exposure in the range of 0-300 GHz EMR is harmless as it did not increase micronuclei and chromosome aberrations. On the contrary, several other studies have demonstrated that exposure to EMR is genotoxic and mutagenic as it increases the frequency of micronuclei, chromosome aberrations, DNA adducts, DNA single and double strand breaks at the molecular level in vitro and in vivo. The EMR exposure induces reactive oxygen species and changes the fidelity of genes involved in signal transduction, cytoskeleton formation, and cellular metabolism.
Collapse
|
11
|
Jin B, Lee S, Chung US. Jeopardized mental health of children and adolescents in coronavirus disease 2019 pandemic. Clin Exp Pediatr 2022; 65:322-329. [PMID: 35681248 PMCID: PMC9263423 DOI: 10.3345/cep.2021.01753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak became a worldwide pandemic in 2020. Social distancing measures, such as self-quarantine, lockdowns, and school closures, which have proven efficacy in various pandemic situations, remain in use in Korea. These measures prevented viral transmission to some extent; however, adverse effects have also resulted. First, the negative effect of social isolation on mental health is evident. This influences the psychiatric milieu of parents and children directly and indirectly. The most stressful factor among Korean youth was the restriction of outdoor activities. Increasing parenting burden result in increased screen time among youth, and social isolation created depressive mood with symptoms similar to those of attention deficit hyperactivity disorder and anxiety. Second, symptoms of posttraumatic stress disorder (PTSD) and somatization are prevalent among children and adolescents. The sense of threatened health and life during the pandemic, one symptom of PTSD, is a strong risk factor for somatization. Finally, the increased pattern of child abuse in pandemic indicates increased levels of emotional/psychological abuse and nonmedical neglect. Social isolation makes people less aware of these events. Because pediatricians evaluate pediatric patients and their families, they should regularly assess emotional/stress factors, especially when somatization is prominent during the pandemic, and cautiously recommend that families seek advice from mental health professionals when warranted. Primary physicians must understand the characteristics and aspects of child abuse in the COVID-19 pandemic, make efforts to identify signs of child abuse, and deliver accurate information and preventive strategies for child abuse to caregivers, thereby functioning as a professional guardian. To promote the mental health of parents and children during the COVID-19 pandemic, more research and cooperation among health professionals, families, governments, and schools are needed in the future.
Collapse
Affiliation(s)
- Bohyun Jin
- Department of Psychiatry, Kyungpook National University Children's Hospital, Daegu, Korea
| | - Sohee Lee
- Department of Psychiatry, Kyungpook National University Children's Hospital, Daegu, Korea
| | - Un Sun Chung
- Department of Psychiatry, Kyungpook National University Children's Hospital, Daegu, Korea.,Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
12
|
Jaffar FHF, Osman K, Hui CK, Zulkefli AF, Ibrahim SF. Long-Term Wi-Fi Exposure From Pre-Pubertal to Adult Age on the Spermatogonia Proliferation and Protective Effects of Edible Bird’s Nest Supplementation. Front Physiol 2022; 13:828578. [PMID: 35360230 PMCID: PMC8963498 DOI: 10.3389/fphys.2022.828578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Children are vulnerable to the radiofrequency radiation (RFR) emitted by Wi-Fi devices. Nevertheless, the severity of the Wi-Fi effect on their reproductive development has been sparsely available. Therefore, this study was conducted to evaluate the Wi-Fi exposure on spermatogonia proliferation in the testis. This study also incorporated an approach to attenuate the effect of Wi-Fi by giving concurrent edible bird’s nest (EBN) supplementation. It was predicted that Wi-Fi exposure reduces spermatogonia proliferation while EBN supplementation protects against it. A total of 30 (N = 30) 3-week-old Sprague Dawley weanlings were divided equally into five groups; Control, Control EBN, Wi-Fi, Sham Wi-Fi, and Wi-Fi + EBN. 2.45 GHz Wi-Fi exposure and 250 mg/kg EBN supplementation were conducted for 14 weeks. Findings showed that the Wi-Fi group had decreased in spermatogonia mitosis status. However, the mRNA and protein expression of c-Kit-SCF showed no significant decrease. Instead, the reproductive hormone showed a reduction in FSH and LH serum levels. Of these, LH serum level was decreased significantly in the Wi-Fi group. Otherwise, supplementing the Wi-Fi + EBN group with 250 mg/kg EBN resulted in a significant increase in spermatogonia mitotic status. Even though EBN supplementation improved c-Kit-SCF mRNA and protein expression, the effects were insignificant. The improvement of spermatogonia mitosis appeared to be associated with a significant increase in blood FSH levels following EBN supplementation. In conclusion, the long-term Wi-Fi exposure from pre-pubertal to adult age reduces spermatogonia proliferation in the testis. On the other hand, EBN supplementation protects spermatogonia proliferation against Wi-Fi exposure.
Collapse
Affiliation(s)
| | - Khairul Osman
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Aini Farzana Zulkefli
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
- *Correspondence: Siti Fatimah Ibrahim,
| |
Collapse
|
13
|
Alkayyali T, Ochuba O, Srivastava K, Sandhu JK, Joseph C, Ruo SW, Jain A, Waqar A, Poudel S. An Exploration of the Effects of Radiofrequency Radiation Emitted by Mobile Phones and Extremely Low Frequency Radiation on Thyroid Hormones and Thyroid Gland Histopathology. Cureus 2021; 13:e17329. [PMID: 34567874 PMCID: PMC8451508 DOI: 10.7759/cureus.17329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
The use of mobile phones has widely increased over the last two decades. Mobile phones produce a radiofrequency electromagnetic field (RF-EMF), a form of non-ionizing radiation. In contrast to the ionizing radiation proven to cause DNA damage, the harmful effects of non-ionizing radiation on the human body have not been discovered yet. The thyroid gland is among the most susceptible organs to mobile phone radiation due to its location in the anterior neck. Our purpose in this literature review is to explore the effects of the electromagnetic field (EMF), especially radiofrequency emitted from mobile phones, on thyroid hormones and thyroid gland histopathology. We searched PubMed and Google Scholar databases for relevant studies published after the year 2000, using the following keywords: ‘cell phones', ‘mobile phones', ‘telephones', ‘electromagnetic fields', ‘radiofrequency radiation', ‘microwaves', ‘thyroid gland', ‘thyroid hormones', and ‘thyroid cancer'. Our review revealed that mobile phone radiofrequency radiation (RFR) might be associated with thyroid gland insufficiency and alterations in serum thyroid hormone levels, with a possible disruption in the hypothalamic-pituitary-thyroid axis. The review also showed histopathological changes in the thyroid gland follicles after exposure of rats to non-ionizing radiation. The results were directly related to the amount and duration of exposure to EMF radiation. Further human studies exploring thyroid gland hormones, microscopic morphology, and thyroid cancer are highly recommended for future researches.
Collapse
Affiliation(s)
- Tasnim Alkayyali
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Olive Ochuba
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kosha Srivastava
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jasmine K Sandhu
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Christine Joseph
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheila W Ruo
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ashish Jain
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ahsan Waqar
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sujan Poudel
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
14
|
Martiñón-Gutiérrez G, Luna-Castro M, Hernández-Muñoz R. Role of insulin/glucagon ratio and cell redox state in the hyperglycaemia induced by exposure to a 60-Hz magnetic field in rats. Sci Rep 2021; 11:11666. [PMID: 34083675 PMCID: PMC8175349 DOI: 10.1038/s41598-021-91228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/29/2021] [Indexed: 11/12/2022] Open
Abstract
The exposure to extremely low-frequency electromagnetic fields (EMFs) could adversely affect the endocrine system and cellular proliferative response. Nonetheless, the use of 60-Hz EMFs in the form of magneto-therapy exerts beneficial actions on human health but can also induce hyperglycaemia. Therefore, the present study was aimed to search for metabolic responses of fed or fasted male rats to a single EMF exposure. We performed a 15 min-single exposure to 60-Hz (3.8 mT, intensity) EMF, and determined serum levels of glucose, lipids, and indicators of cellular redox state and energy parameters. A single exposure to a 60-Hz EMF induced hyperglycaemia in both animal groups, and an attenuated second serum insulin peak. The 60-Hz EMF also decreased free fatty acids and lactate serum levels, oppositely increasing pyruvate and acetoacetate levels. Significant increases in blood glucose level and rat’s glucose metabolism were related to a more oxidized cellular redox state and variations in insulin and glucagon secretion. The 60-Hz EMF’s effects were not modified in animals previously subjected to chronic EMFs exposure (14 days). In conclusion, increased serum glucose levels and glucose metabolism induced by a single 60-Hz EMF exposure were closely related to the cellular redox state and the insulin/glucagon ratio.
Collapse
Affiliation(s)
- Gabriel Martiñón-Gutiérrez
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad # 3000, Apdo. Postal 70-243, Coyoacán, 04510, Mexico City, Mexico
| | - María Luna-Castro
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad # 3000, Apdo. Postal 70-243, Coyoacán, 04510, Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad # 3000, Apdo. Postal 70-243, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
15
|
Okechukwu C. Smartphone Use and Child Neurology. Neurol India 2021; 69:1896-1897. [DOI: 10.4103/0028-3886.333470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Acharya SR, Shin YC, Moon DH, Pahari S. Electromagnetic Field Exposure in Kindergarten Children: Responsive Health Risk Concern. Front Pediatr 2021; 9:694407. [PMID: 34291019 PMCID: PMC8288246 DOI: 10.3389/fped.2021.694407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term exposure to physical agents can be detrimental to children due to their vulnerability. This study aimed to assess and compare the electromagnetic field (EMF) exposure level around the kindergartens from the underground transmission line (UGTL). We investigated randomly selected 24 kindergartens based on the location of the UGTL. The EMF emission levels were measured using an EMDEX II (Electric and Magnetic Digital Exposure Meter). The maximum mean value of the EMF emission level was 13.5 mG around the kindergartens and 17.7 mG from the point of UGTL to kindergartens. EMF emission level around the kindergartens was significantly associated with the location of the UGTL (t = -7.35, P < 0.001). These estimates are not trivial, as long-term exposure to EMF among kindergarten children can lead to different health problems. Routine monitoring of EMF emission levels is recommended including the awareness of EMF exposure to public citizens.
Collapse
Affiliation(s)
- Shiva Raj Acharya
- Graduate School of Public Health, Busan Medical Campus, Inje University, Busan, South Korea
| | - Yong Chul Shin
- Department of Occupational Health and Safety, Inje University, Busan, South Korea
| | - Deog Hwan Moon
- Graduate School of Public Health, Busan Medical Campus, Inje University, Busan, South Korea
| | - Sandip Pahari
- Department of Public Health, Pokhara University, Pokhara, Nepal
| |
Collapse
|