1
|
Futagami S, Kessoku T, Kasai Y, Higurashi T, Nakajima A, Agawa S, Yamawaki H, Nakamura K, Habiro M, Kawawa R, Ueki N, Higashida S, Watanabe Y, Yamato H, Yamamoto T, Takasaki Y, Ito K, Hojo M, Isayama H, Motoda N, Ohashi R, Siah KTH, Ng CK, Gwee KA. Comparison of pancreatic enzyme abnormalities and protease-activated receptor-2-positive eosinophils in the duodenum of patients with functional dyspepsia-irritable bowel syndrome overlap with functional dyspepsia alone in Asian populations. J Gastroenterol Hepatol 2023; 38:1778-1786. [PMID: 37278449 DOI: 10.1111/jgh.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIM Some patients with functional gastrointestinal disorders exhibit pancreatic dysfunctions and pancreatic enzyme abnormalities. Thus, we aimed to clarify whether significant differences in clinical characteristics, prevalence of pancreatic enzyme abnormalities, duodenal inflammation, and protease-activated receptor 2 (PAR2) expression levels related to hypersensitivity exist between functional dyspepsia (FD) alone and FD-irritable bowel syndrome (IBS) overlap group. METHODS Ninety-three patients based on the Rome IV criteria, FD alone (n = 44) and FD overlapped with IBS (n = 49) group were enrolled. The patients scored their own clinical symptoms after consuming high-fat meals. Serum trypsin, PLA2, lipase, p-amylase, and elastase-1 levels were measured. PAR2, eotaxin-3, and TRPV4 mRNA levels in duodenum were determined using real-time polymerase chain reaction methods. PRG2- and PAR2 in the duodenum were evaluated using immunostaining. RESULTS FD score and global GSRS in patients with FD-IBS overlap were significantly higher than FD alone. Although the prevalence of pancreatic enzyme abnormalities in patients with FD alone was significantly (P < 0.01) higher than that in FD-IBS overlap, the ratio of aggravation of clinical symptoms following high-fat intake in patients with FD-IBS overlap was significantly higher (P = 0.007) than that in patients with FD alone. PAR2- and PRG2-double positive cells were localized in the degranulated eosinophils in the duodenum of patients with FD-IBS overlap. The number of PAR2- and PRG2-double positive cells in FD-IBS overlap was significantly (P < 0.01) higher than FD alone. CONCLUSIONS Pancreatic enzyme abnormalities and PAR2 expression on degranulated eosinophils infiltrations in the duodenum may be associated with the pathophysiology of patients with FD-IBS overlap in Asian populations.
Collapse
Affiliation(s)
- Seiji Futagami
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City Univeristy, Yokohama, Japan
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City Univeristy, Yokohama, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City Univeristy, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City Univeristy, Yokohama, Japan
| | - Shuhei Agawa
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yamawaki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Ken Nakamura
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Mayu Habiro
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Rie Kawawa
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Nobue Ueki
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Sakura Higashida
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Division of Gastroenterology, Nippon Medical School, Tokyo, Japan
- Division of Gastroenterology, Kawasaki Rinko General Hospital, Kawasaki, Japan
| | - Hiroshi Yamato
- Department of Medicine, Division of Gastroenterology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takatsugu Yamamoto
- Department of Medicine, Division of Gastroenterology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yusuke Takasaki
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Koichi Ito
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Norio Motoda
- Department of Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Kewin Tien Ho Siah
- Department of Medicine, Division of Gastroenterology and Hepatology, National University Hospital, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Kok-Ann Gwee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Stomach, Liver and Bowel Clinic, Gleneagles Hospital, Singapore
- The Gastroenterology Group, Gleneagles Hospital, Singapore
| |
Collapse
|
2
|
Protease-activated receptor 2 (PAR2)-targeting peptide derivatives for positron emission tomography (PET) imaging. Eur J Med Chem 2023; 246:114989. [PMID: 36527934 DOI: 10.1016/j.ejmech.2022.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The proteolytically-activated G protein-coupled receptor (GPCR) protease-activated receptor 2 (PAR2), is implicated in various cancers and inflammatory diseases. Synthetic ligands and in vitro imaging probes targeting this receptor have been developed with low nanomolar affinity, however, no in vivo imaging probes exist for PAR2. Here, we report the strategic design, synthesis, and biological evaluation of a series of novel 4-fluorobenzoylated PAR2-targeting peptides derived from 2f-LIGRLO-NH2 (2f-LI-) and Isox-Cha-Chg-Xaa-NH2 (Isox-) peptide families, where the 4-fluorobenzoyl moiety acts as the 19F-standard of an 18F-labeled probe for potential use in in vivo imaging. We found that several of the 4-fluorobenzoylated peptides from the 2f-LI-family exhibited PAR2 selectivity with moderate potency (EC50 = 151-252 nM), whereas several from the Isox-family exhibited PAR2 selectivity with high potency (EC50 = 13-42 nM). Our lead candidate, Isox-Cha-Chg-Ala-Arg-Dpr(4FB)-NH2 (EC50 = 13 nM), was successfully synthesized with fluorine-18 with a radiochemical yield of 37%, radiochemical purity of >98%, molar activity of 20 GBq/μmol, and an end of synthesis time of 125 min. Biodistribution studies and preliminary PET imaging of the tracer in mice showed predominantly renal clearance. This 18F-labeled tracer is the first reported PAR2 imaging agent with potential for use in vivo. Future work will explore the use of this tracer in cancer xenografts and inflammation models involving upregulation of PAR2 expression.
Collapse
|
3
|
PD-1 + mast cell enhanced by PD-1 blocking therapy associated with resistance to immunotherapy. Cancer Immunol Immunother 2023; 72:633-645. [PMID: 36018370 PMCID: PMC9947072 DOI: 10.1007/s00262-022-03282-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) antibody has been approved for a variety of tumors, but its effective rate is unsatisfactory. New evidence suggests that mast cells are an important component of the tumor microenvironment and are associated with resistance to immunotherapy, but the underlying mechanism is not clear. METHODS Bioinformatics analysis of patients with melanoma in TCGA-SKCM and GSE91061 was used to determine the prognostic value of mast cells and their association with anti-PD-1 immunotherapy. HMC-1 cells (mast cell line) and bone marrow-derived mast cells (BMMCs) were used to verify the effect of PD-1 antibody and cromolyn sodium in vitro. The mouse subcutaneous melanoma model was used to verify the effect of the PD-1 antibody on mast cells in vivo. RESULTS Bioinformatics analysis showed that mast cells were a poor prognostic factor associated with resistance to anti-PD-1 immunotherapy. PD-1 was expressed on the mast cell membrane. The PD-1 antibody promoted the release of histamine and cytokines from mast cells via the PI3K/AKT pathway and calcium signaling pathway. The activation of mast cells induced by PD-1 antibody could be partially inhibited by cromolyn sodium. In vivo, cromolyn sodium increased the efficacy of PD-1 antibody and decreased the infiltration of mast cells and the density of microvessels. CONCLUSION PD-1+ mast cell activated by PD-1 antibody plays a negative role in the tumor microenvironment via the enhanced function of releasing histamine and cytokines. Inhibition of mast cell may provide a new solution to solve the low response rate of anti-PD-1 immunotherapy.
Collapse
|
4
|
Pagán-Busigó JE, López-Carrasquillo J, Appleyard CB, Torres-Reverón A. Beyond depression and anxiety; a systematic review about the role of corticotropin-releasing hormone antagonists in diseases of the pelvic and abdominal organs. PLoS One 2022; 17:e0264909. [PMID: 35275963 PMCID: PMC8916623 DOI: 10.1371/journal.pone.0264909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Evidence for beneficial effects of corticotropin releasing hormone (CRH) antagonists in abdominal and pelvic organs is emerging in preclinical studies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement a compilation of preclinical studies using CRH receptor antagonists as a treatment for abdominal and pelvic disease was carried out. The Animal Research: Reporting of In Vivo Experiments (ARRIVE) essential 10 guidelines were used to determine quality of the included studies. A total of 40 studies from the last 15 years studying irritable bowel syndrome, inflammatory bowel disease, endometriosis, enteritis, stress impact on gastrointestinal processes and exogenous CRH administration effects were included. Blockage of the CRH receptor 1 was mainly associated with beneficial effects while that of CRH receptor 2 worsened studied effects. However, time of administration, route of administration and the animal model used, all had an impact on the beneficial outcomes. Frequency of drugs administered indicated that astressin-2B, astressin and antalarmin were among the most utilized antagonists. Of concern, studies included were predominantly carried out in male models only, representing a gender discrepancy in preclinical studies compared to the clinical scenario. The ARRIVE score average was 13 with ~60% of the studies failing to randomize or blind the experimental units. Despite the failure to date of the CRH antagonists in moving across the clinical trials pipeline, there is evidence for their beneficial effects beyond mood disorders. Future pre-clinical studies should be tailored towards effectively predicting the clinical scenario, including reduction of bias and randomization.
Collapse
Affiliation(s)
- Joshua E. Pagán-Busigó
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Jonathan López-Carrasquillo
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
| | - Annelyn Torres-Reverón
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
- * E-mail: ,
| |
Collapse
|
5
|
Zhao L, Ren P, Wang M, Wang J, He X, Gu J, Lu Y, Wu Y, Liu J, Wang L, Li H. Changes in intestinal barrier protein expression and intestinal flora in a rat model of visceral hypersensitivity. Neurogastroenterol Motil 2022; 34:e14299. [PMID: 34821442 DOI: 10.1111/nmo.14299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Destruction of the intestinal mucosal barrier and visceral hypersensitivity are main pathogenesis of irritable bowel syndrome (IBS). The study aimed to establish a rat model of visceral hypersensitivity and explore mechanisms involved the changes of the intestinal barrier protein expression and intestinal flora. METHODS A rat model of visceral hypersensitivity was established and evaluated using abdominal withdrawal reflex (AWR) scores, colonic paracellular permeability, and gastrointestinal motility. The expression of tight junction proteins, aquaporin proteins (AQPs), phosphorylated ERK, and proteinase-activated receptor-2 (PAR-2) was determined. The intestinal microflora was evaluated by high-throughput sequencing of the 16S rRNA gene. KEY RESULTS In model rats, AWR score and fecal water content were significantly increased, gastrointestinal motilities were disorder and characterized by an inhibition of gastric motility and an enhancement of small intestinal and colonic movement. The expressions of colonic occludin, ZO-1, AQP3, and AQP8 were decreased but claudin-2 and claudin-4 were markedly increased. Imbalance of intestinal flora appeared and showed an obvious decrease of Lactobacillus and an increase of Clostridiales_bacterium. Additionally, the total serine protease activity in feces, the expressions of PAR2 and phosphorylated ERK in the colon tissues were increased significantly. CONCLUSION AND INFERENCES The model rats of visceral hypersensitivity possess the decreased expression of occludin, ZO-1, AQP3, AQP8, and the increased expression of claudin-2 and claudin-4, meanwhile develop an imbalance of intestinal flora which probably increase serine protease activity, thereby activating the PAR2/ERK signaling and causing the intestinal barrier disorder.
Collapse
Affiliation(s)
- Li Zhao
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Peipei Ren
- Affiliated Hospital, Gansu University of Chinese Medicine, Lanzhou, China
| | - Miaolei Wang
- Affiliated Hospital, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingjing Wang
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Xueyun He
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Jingyan Gu
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Yanyu Lu
- Function Laboratory in College of Basic Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yana Wu
- Affiliated Hospital, Gansu University of Chinese Medicine, Lanzhou, China
| | - Junhong Liu
- Affiliated Hospital, Gansu University of Chinese Medicine, Lanzhou, China
| | - Longde Wang
- Affiliated Hospital, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongfang Li
- Department of Physiology, College of Basic Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, China
| |
Collapse
|
6
|
Yi W, Cheng J, Wei Q, Pan R, Song S, He Y, Tang C, Liu X, Zhou Y, Su H. Effect of temperature stress on gut-brain axis in mice: Regulation of intestinal microbiome and central NLRP3 inflammasomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144568. [PMID: 33770895 DOI: 10.1016/j.scitotenv.2020.144568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Temperature stress was reported to impact the gut-brain axis including intestinal microbiome and neuroinflammation, but the molecular markers involved remain unclear. We aimed to examine the effects of different temperature stress on the intestinal microbiome and central nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes. MATERIALS AND METHODS Mice models were established under low temperature (LT), room temperature (RT), high temperature (HT), and temperature variation (TV) respectively for seven days. We examined temperature-induced changes of intestinal microbiome composition and the levels of its metabolites short-chain fatty acids (SCFAs), as well as the expressions of central NLRP3 inflammasomes and inflammatory cytokines. Redundancy analysis and Spearman correlation analysis were performed to explore the relationships between microbiome and NLRP3 inflammasomes and other indicators. RESULTS HT and LT significantly increased the Alpha diversity of intestinal microbiome. Compared with RT group, Bacteroidetes were most abundant in LT group while Actinobacteria were most abundant in HT and TV groups. Nineteen discriminative bacteria were identified among four groups. LT increased the expressions of acetate and propionate while decreased that of NLRP3 inflammasomes; HT decreased the expression of butyrate while increased that of NLRP3 inflammasomes, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α; TV decreased the expression of propionate while increased that of NLRP3 inflammasomes and TNF-α. Microbiome distribution could significantly explain the differences in NLRP3 between comparison groups (LT&RT: R2 = 0.82, HT&RT: R2 = 0.86, TV&RT: R2 = 0.94; P < 0.05). The discriminative bacteria were significantly correlated with SCFAs but were correlated with NLRP3 inflammasomes and cytokines in the opposite direction. CONCLUSIONS LT inhibits while HT and TV promote the activation of NLRP3 inflammasomes in brain, and intestinal microbiome and its metabolites may be the potential mediators. Findings may shed some light on the impact of temperature stress on gut-brain axis.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
7
|
Luo Y, Ma H, Niu S, Li X, Nie L, Li G. Effects of norepinephrine on colonic tight junction protein expression during heat stress. Exp Ther Med 2021; 21:421. [PMID: 33747161 PMCID: PMC7967871 DOI: 10.3892/etm.2021.9865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Stress induced by changes in the internal or external environment in humans and animals leads to intestinal epithelial damage, in a manner that is associated with impaired intestinal barrier function. However, the role of the stress hormone norepinephrine (NE) in impairments in barrier function remains poorly understood. In the present study, a rat heat-exposed model was used to observe changes in the tight junction proteins Occludin and zonula occludens-1 (ZO-1), in addition to those in protease-activated receptor 2 (PAR-2) and transient receptor potential ankyrin 1 channel (TRPA1) in colon. The levels of plasma NE were detected using an ELISA kit. Different concentrations of NE were used to culture the human colon cell line Caco-2 for 6 and 24 h to investigate the cell viability using Cell Counting Kit-8 assay, whilst the expression levels of Occludin, ZO-1, PAR-2 and TRPA1 were examined using western blotting and immunofluorescence in Caco-2 cells and immunohistrochemistry in rat colon tissues. Although there was no clear histological damage to the rat colonic mucosa, there were decreased expression levels of tight junction proteins Occludin and ZO-1 after heat exposure. In addition, PAR-2 expression was increased by heat exposure. It was found that TRPA1 expression was concentrated to the luminal surface of the colon in the heat exposed group compared with that in the control group. After the administration of increasing concentrations of NE for 6 h, treatment did not affect cell viability. Furthermore, after application of NE for 24 h, cell viability gradually increased as the NE concentration was elevated from 10 to 100 µM. However, no significant increase in viability was observed when the cells were treated with 120 and 160 µM NE. Occludin expression was decreased when 10 µM NE was applied for 6 or 24 h. By contrast, 60 µM NE significantly downregulated Occludin expression in the 6 h group, but caused an insignificant decrease in the 24 h group. It was found that ZO-1 expression was upregulated after treatment with 10 µM NE for 6 h, whilst downregulation was observed after treatment with 10 µM NE for 24 h. PAR-2 protein expression was increased after application of NE for both 6 and 24 h, but not after treatment with 60 µM NE. In addition, TRPA1 expression was not affected by the treatment of NE, but increased positive staining was observed on the luminal side of the mucosa, which appeared to be concentrated in the cells of the luminal side in the rat colon after heat exposure. Collectively, the present results suggested that expression of tight junction proteins Occludin and ZO-1, in addition to that of PAR-2, can be regulated by NE, which may contribute to impairments in barrier function observed during heat stress.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China.,Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Shibo Niu
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Xu Li
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China.,People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750021, P.R China
| | - Lihong Nie
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| | - Guanghua Li
- Institute of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R China
| |
Collapse
|
8
|
LeSarge JC, Thibeault P, Milne M, Ramachandran R, Luyt LG. High Affinity Fluorescent Probe for Proteinase-Activated Receptor 2 (PAR2). ACS Med Chem Lett 2019; 10:1045-1050. [PMID: 31312406 DOI: 10.1021/acsmedchemlett.9b00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
PAR2 is a proteolytically activated G protein-coupled receptor (GPCR) that is implicated in various cancers and inflammatory diseases. Ligands with low nanomolar affinity for PAR2 have been developed, but there is a paucity of research on the development of PAR2-targeting imaging probes. Here, we report the development of seven novel PAR2-targeting compounds. Four of these compounds are highly potent and selective PAR2-targeting peptides (EC50 = 10 to 23 nM) that have a primary amine handle available for facile conjugation to various imaging components. We describe a peptide of the sequence Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2 as the most potent and highest affinity PAR2-selective fluorescent probe reported to date (EC50 = 16 nM, K D = 38 nM). This compound has a greater than 10-fold increase in potency and binding affinity for PAR2 compared to the leading previously reported probe and is conjugated to a red-shifted fluorophore, enabling in vitro and in vivo studies.
Collapse
Affiliation(s)
| | | | - Mark Milne
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | | | - Leonard G. Luyt
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| |
Collapse
|
9
|
The Anti-Stress Effect of Mentha arvensis in Immobilized Rats. Int J Mol Sci 2018; 19:ijms19020355. [PMID: 29370076 PMCID: PMC5855577 DOI: 10.3390/ijms19020355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Stress can lead to inflammation, accelerated aging, and some chronic diseases condition. Mentha arvensis (MA) is a traditional medicine having antioxidant and anti-inflammatory activities. The present study investigated the anti-stress role of MA and fermented MA (FMA) extract in immobilized rats. We studied the lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and rats were immobilized for 2 h per day for 14 days using a restraining cage. MA (100 mg/kg) and FMA (100 mg/kg) were orally administered to rats 1 h prior to immobilization. Using high-performance liquid chromatography (HPLC) analysis, we determined the rosmarinic acid content of MA and FMA. The generation of malondialdehyde (MDA) and nitric oxide (NO) in RAW 246.7 cells were suppressed by both MA and FMA. In rats, MA and FMA notably improved the body weight, daily food intake, and duodenum histology. MDA and NO level were gradually decreased by MA and FMA treatment. MA and FMA significantly controlled the stress-related hormones by decreasing corticosterone and β-endorphin and increasing serotonin level. Moreover, protein expression levels of mitogen activated protein kinases (MAPK) and cyclooxygenase-2 (COX-2) were markedly downregulated by MA and FMA. Taken together, MA and FMA could ameliorate immobilized-stress by reducing oxidative stress, regulating stress-related hormones, and MAPK/COX-2 signaling pathways in rats. Particularly, FMA has shown greater anti-stress activities than MA.
Collapse
|
10
|
Liang WJ, Zhang G, Luo HS, Liang LX, Huang D, Zhang FC. Tryptase and Protease-Activated Receptor 2 Expression Levels in Irritable Bowel Syndrome. Gut Liver 2017; 10:382-90. [PMID: 26446924 PMCID: PMC4849691 DOI: 10.5009/gnl14319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Previous studies have revealed that mast cells (MCs) may activate the protease-activated receptors and release of neuropeptides involved in the pathogenesis of irritable bowel syndrome (IBS). The levels of protease-activated receptor 2 (PAR-2) and tryptase can contribute to understanding the pathogenesis of IBS. Methods Colonoscopic biopsies were performed of 38 subjects (20 with IBS-diarrhea [IBS-D], eight with IBS-constipation [IBS-C], and 10 healthy volunteers). The mRNA and protein levels of tryptase and PAR-2 were assessed by real-time PCR and Western blot. The levels of vasoactive intestinal peptide (VIP), substance P (SP), and calcitonin gene-related peptide (CGRP) were measured by immunohistochemistry, and MCs were counted by toluidine blue staining. Results Significant increases in the mRNA expression of tryptase (p<0.05, IBS-D, IBS-C vs control) and PAR-2 (p<0.05, IBS-D, IBS-C vs control) and in the tryptase protein level (p<0.05, IBS-D, IBS-C vs control) were detected in IBS. Elevations of MCs, CGRP, VIP and SP (p<0.05, IBS-D vs control) were observed for IBS-D only. Conclusions Tryptase levels may upregulate the function of PAR-2, resulting in the release of neuropeptide and they were correlated with clinical symptoms associated with IBS.
Collapse
Affiliation(s)
- Wen-Jing Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guo Zhang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lie-Xin Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Dan Huang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fa-Can Zhang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
11
|
Li Y, Li LS, Zhang XL, Zhang Y, Xu JD, Zhu JX. An enhanced cAMP pathway is responsible for the colonic hyper-secretory response to 5-HT in acute stress rats. Physiol Res 2014; 64:387-96. [PMID: 25536313 DOI: 10.33549/physiolres.932863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
5-hydroxytryptamine (5-HT) is involved in the stress-induced alteration of colonic functions, specifically motility and secretion, but its precise mechanisms of regulation remain unclear. In the present study, we have investigated the effects of 5-HT on rat colonic mucosal secretion after acute water immersion restraint stress, as well as the underlying mechanism of this phenomenon, using short circuit current recording (I(SC)), real-time polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbance assays. After 2 h of water immersion restraint stress, the baseline I(SC) and 5-HT-induced I(SC) responses of the colonic mucosa were significantly increased. Pretreatment with selective 5-HT(4) receptor antagonist, SB204070, inhibited the 5-HT-induced colonic I(SC) response by 96 % in normal rats and 91.2 % in acute-stress rats. However, pretreatment with the selective antagonist of 5-HT(3) receptor, MDL72222 or Y-25130, had no obvious effect on 5-HT-induced I(SC) responses under either set of conditions. Total protein expression of both the mucosal 5-HT(3) receptors and the 5-HT(4) receptors underwent no significant changes following acute stress. Both colonic basal cAMP levels and foskolin-induced I(SC) responses were significantly enhanced in acute stress rats. 5-HT significantly enhanced the intracellular cAMP level via 5-HT(4) receptors in the colonic mucosa from both control and stressed animals, and 5-HT-induced cAMP increase in stressed rats was not more than that in control rats. Taken together, the present results indicate that acute water immersion restraint stress enhances colonic secretory responses to 5-HT in rats, a process in which increased cellular cAMP accumulation is involved.
Collapse
Affiliation(s)
- Y Li
- Department of Immunology and Department of Physiology and Pathophysiology, Capital Medical University, Beijing, P. R. China. and
| | | | | | | | | | | |
Collapse
|
12
|
Kim YS, Lee MY, Ryu HS, Choi ES, Oh JT, Yun KJ, Choi SC. Regional Differences in Chronic Stress-induced Alterations in Mast Cell and Protease-activated Receptor-2-positive Cell Numbers in the Colon of Ws/Ws Rats. J Neurogastroenterol Motil 2013; 20:54-63. [PMID: 24466445 PMCID: PMC3895609 DOI: 10.5056/jnm.2014.20.1.54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 12/30/2022] Open
Abstract
Background/Aims There have been no reports on the effect of chronic psychological stress on colonic immune cells or the regional differences. We aimed to investigate the effect of chronic psychological stress on the number of mast cells and protease-activated receptor (PAR)-2-positive cells in the rat colonic mucosa. Methods Six-week-old and 14-week-old Ws/Ws rats, which lack mast cells after 10 weeks, were used as control and mast cell-deficient groups, respectively. The rats were divided into stress and sham-treated groups. Rats in the stressed group were exposed to water avoidance stress (WAS, 1 hour/day) for 13 days. Fecal pellet output and the number of mast cells and PAR-2-positive cells in colonic mucosa were compared between the WAS and sham groups. Results In 6-week-old rats, the WAS group showed a significantly higher number of mast cells compared to the sham group. In 14-week-old rats, mast cells were nearly absent in the colonic mucosa. WAS significantly increased PAR-2-positive cells in 14-week-old rats, but not in 6-week-old rats. Indirect estimation of PAR-2-positive mast cells in 6-week-old rats suggested that the majority of increased mast cells following WAS did not express PAR-2. WAS increased mast cells and PAR-2-positive cells mainly in the proximal colon. Fecal pellet output was continuously higher in the WAS group than in the sham group, and the difference was significant for both 6-week-old and 14-week-old rats. Conclusions Chronic psychological stress increased the number of mast cells and PAR-2-positive cells in rat colonic mucosa, and these increases were more prominent in the proximal colon.
Collapse
Affiliation(s)
- Yong Sung Kim
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Gastroenterology, Wonkwang University Sanbon Hospital, Gunpo, Gyeonggi-do, Korea
| | - Moon Young Lee
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Physiology and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Han Seung Ryu
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Gastroenterology, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Eul-Sig Choi
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Physiology and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Jung Taek Oh
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Surgery, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Ki Jung Yun
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Pathology, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Suck Chei Choi
- Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea. ; Department of Gastroenterology, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| |
Collapse
|
13
|
Yu Y, Liu ZQ, Liu XY, Yang L, Geng XR, Yang G, Liu ZG, Zheng PY, Yang PC. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance. PLoS One 2013; 8:e65760. [PMID: 23840363 PMCID: PMC3686760 DOI: 10.1371/journal.pone.0065760] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/29/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. METHODS Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. RESULTS The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. CONCLUSIONS Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa.
Collapse
Affiliation(s)
- Yong Yu
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Liu
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiao-Yu Liu
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Yang
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiao-Rui Geng
- Longgang Central Hospital, ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Gui Yang
- Longgang Central Hospital, ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Gang Liu
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
- * E-mail: (PYZ); (PCY)
| | - Ping-Chang Yang
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
- * E-mail: (PYZ); (PCY)
| |
Collapse
|
14
|
Yeom JS, Choi MB, Seo JH, Park JS, Lim JY, Park CH, Woo HO, Youn HS, Ko GH, Baik SC, Lee WK, Cho MJ, Rhee KH. Relationship between headache and mucosal mast cells in pediatric Helicobacter pylori-negative functional dyspepsia. Cephalalgia 2013; 33:323-9. [PMID: 23291287 DOI: 10.1177/0333102412472070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Although many patients with functional dyspepsia experience headache concurrently with dyspeptic symptoms, studies suggesting mechanisms underlying this phenomenon are limited. Herein, we explore the relationship between gastrointestinal inflammatory cells and presence of headache associated with dyspeptic symptoms in children with HELICOBACTER PYLORI -negative functional dyspepsia. METHODS Fifty-six patients with H. PYLORI -negative functional dyspepsia underwent upper endoscopy with biopsy to investigate recurrent epigastric pain or discomfort. Patients were divided into two groups according to self-reported presence of headache associated with dyspeptic symptoms. Inflammatory cells including mast cells, and enteroendocrine cells in the gastroduodenal mucosa were evaluated. Associations between headache presence and cellular changes in the gastroduodenal mucosa were examined. RESULTS Headache was not associated with the grade of lymphocytes, neutrophil infiltration, or enteroendocrine cell density in the gastroduedenal mucosa. However, headache was significantly associated with high mast cell density in the body (27.81 ± 8.71 vs. 20.30 ± 8.16, P < 0.01) and duodenum (23.16 ± 10.40 vs. 14.84 ± 5.88, P < 0.01). CONCLUSIONS Presence of headache associated with dyspeptic symptoms is strongly related to mucosal mast cell density in pediatric patients with H. PYLORI -negative functional dyspepsia. Thus, our results may help clinicians understand and treat headache during dyspeptic symptoms in such pediatric patients.
Collapse
Affiliation(s)
- Jung Sook Yeom
- Department of Pediatrics, Gyeongsang National University School of Medicine, Gyeongsang Institute of Health Science, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Essential role of mast cells in the visceral hyperalgesia induced by T. spiralis infection and stress in rats. Mediators Inflamm 2012; 2012:294070. [PMID: 22529522 PMCID: PMC3317356 DOI: 10.1155/2012/294070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/18/2011] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) deficient rats (Ws/Ws) were used to investigate the roles of MCs in visceral hyperalgesia. Ws/Ws and wild control (+/+) rats were exposed to T. spiralis or submitted to acute cold restraint stress (ACRS). Levels of proteinase-activated receptor 2 (PAR2) and nerve growth factor (NGF) were determined by immunoblots and RT-PCR analysis, and the putative signal pathways including phosphorylated extracellular-regulated kinase (pERK1/2) and transient receptor potential vanilloid receptor 1 (TRPV1) were further identified. Visceral hyperalgesia triggered by ACRS was observed only in +/+ rats. The increased expression of PAR2 and NGF was observed only in +/+ rats induced by T. spiralis and ACRS. The activation of pERK1/2 induced by ACRS occurred only in +/+ rats. However, a significant increase of TRPV1 induced by T. spiralis and ACRS was observed only in +/+ rats. The activation of PAR2 and NGF via both TRPV1 and pERK1/2 signal pathway is dependent on MCs in ACRS-induced visceral hyperalgesia rats.
Collapse
|
16
|
Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 2011; 34:133-49. [PMID: 21971685 DOI: 10.1007/s00281-011-0289-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
Huo T, Hu TM. Advances in understanding the relationship between mast cells and irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2011; 19:494-497. [DOI: 10.11569/wcjd.v19.i5.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of irritable bowel syndrome (IBS) is very complicated. At present, it is generally believed that IBS is related to infection and inflammation, visceral hypersensitivity, gastrointestinal neuro-endocrine-immune dysfunction, psychological stress, intestinal food allergy, and other factors. Recently, attention has been directed to the role of low inflammation in the pathogenesis of IBS, especially the relationship between mast cells and IBS. Numerous studies have shown that the development of IBS involves abnormal alterations of mast cells. Mast cell degranulation leads to the release of many bioactive mediators that participate in the pathophysiological process of IBS. Abnormal alterations of mast cells in IBS are related not only to intestinal low-grade inflammation but also to other pathogenic factors.
Collapse
|
18
|
Cho YJ, Kim JH, Yim HE, Lee DM, Im SK, Lee KJ. Role of corticotrophin-releasing factor in the stress-induced dilation of esophageal intercellular spaces. J Korean Med Sci 2011; 26:279-83. [PMID: 21286022 PMCID: PMC3031015 DOI: 10.3346/jkms.2011.26.2.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022] Open
Abstract
Corticotrophin-releasing factor (CRF) plays a major role in coordinating stress responses. We aimed to test whether blocking endogenous CRF activity can prevent the stress-induced dilation of intercellular spaces in esophageal mucosa. Eighteen adult male rats were divided into 3 groups: 1) a non-stressed group (the non-stressed group), 2) a saline-pretreated stressed group (the stressed group), 3) and an astressin-pretreated stressed group (the astressin group). Immediately after completing the experiments according to the protocol, distal esophageal segments were obtained. Intercellular space diameters of esophageal mucosa were measured by transmission electron microscopy. Blood was sampled for the measurement of plasma cortisol levels. Mucosal intercellular spaces were significantly greater in the stressed group than in the non-stressed group. Mucosal intercellular spaces of the astressin group were significantly smaller than those of the stressed group. Plasma cortisol levels in the stressed group were significantly higher than in the non-stressed group. Pretreatment with astressin tended to decrease plasma cortisol levels. Acute stress in rats enlarges esophageal intercellular spaces, and this stress-induced alteration appears to be mediated by CRF. Our results suggest that CRF may play a role in the pathophysiology of reflux-induced symptoms or mucosal damage.
Collapse
Affiliation(s)
- Young Ju Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Jang Hee Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun Ee Yim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Da Mi Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Seon Kyo Im
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| | - Kwang Jae Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|