1
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Isaksen JL, Sivertsen CB, Jensen CZ, Graff C, Linz D, Ellervik C, Jensen MT, Jørgensen PG, Kanters JK. Electrocardiographic markers in patients with type 2 diabetes and the role of diabetes duration. J Electrocardiol 2024; 84:129-136. [PMID: 38663227 DOI: 10.1016/j.jelectrocard.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The association between type 2 diabetes and electrocardiographic (ECG) markers are incompletely explored and the dependence on diabetes duration is largely unknown. We aimed to investigate the electrocardiographic (ECG) changes associated with type 2 diabetes over time. METHODS In this cross-sectional study, we matched people with type 2 diabetes 1:1 on sex, age, and body mass index with people without diabetes from the general population. We regressed ECG markers with the presence of diabetes and the duration of clinical diabetes, respectively, adjusted for sex, age, body mass index, smoking, heart rate, diabetes medication, renal function, hypertension, and myocardial infarction. RESULTS We matched 988 people with type 2 diabetes (332, 34% females) with as many controls. Heart rate was 8 bpm higher (p < 0.001) in people with vs. without type 2 diabetes, but the difference declined with increasing diabetes duration. For most depolarization markers, the difference between people with and without type 2 diabetes increased progressively with diabetes duration. On average, R-wave amplitude was 6 mm lower in lead V5 (p < 0.001), P-wave duration was 5 ms shorter (p < 0.001) and QRS duration was 3 ms (p = 0.03). Among repolarization markers, T-wave amplitude (measured in V5) was lower in patients with type 2 diabetes (1 mm lower, p < 0.001) and the QRS-T angle was 10 degrees wider (p = 0.002). We observed no association between diabetes duration and repolarization markers. CONCLUSIONS Type 2 diabetes was independently associated with electrocardiographic depolarization and repolarization changes. Differences in depolarization markers, but not repolarization markers, increased with increasing diabetes duration.
Collapse
Affiliation(s)
- Jonas L Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian B Sivertsen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Zinck Jensen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dominik Linz
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Data and Data Support, Region Zealand, Sorø, Denmark
| | | | - Peter G Jørgensen
- Department of Cardiology, Herlev and Gentofte University Hospital, Copenhagen, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Center of Physiological Research, University of California San Francisco, San Francisco, USA
| |
Collapse
|
3
|
Dai L, Zuo Y, Lv Y, Zeng H, Chen L. Diabetes status, genetic susceptibility, and incident arrhythmias: A prospective cohort study of 457,151 participants. Diabetes Metab Syndr 2024; 18:102971. [PMID: 38458077 DOI: 10.1016/j.dsx.2024.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
AIMS The association of diabetes onset age and duration with incident arrhythmias remains unclear. This study evaluates the association of diabetes onset age and duration with incident arrhythmias and assesses modifications by the genetic predisposition to atrial fibrillation (AF). METHODS We included 457,151 participants from the UK Biobank study. Multivariable Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) were used for the association between diabetes status, genetic predisposition, and risk of incident arrhythmias. The polygenic risk score (PRS) for AF comprised 142 single-nucleotide variants. RESULTS Over 12 years of follow-up, we documented 23,518 AF, 9079 bradyarrhythmia, 9280 conduction system diseases, 3358 supraventricular arrhythmias, and 3095 ventricular arrhythmias. Compared with non-diabetes, the risks of AF increased by 19%, 25%, and 36% for those with diabetes durations <5, 5-9, and ≥10 years, respectively. After multivariate adjustment, with the increase in diabetes onset age, the HRs of outcomes were gradually attenuated. The multivariable-adjusted HRs (95% CI) of diabetes for AF were 1.46 (1.24-1.71) in early middle age (<55 years), 1.21 (1.12-1.30) in late middle age (55-64 years), and 1.15 (1.06-1.24) in the elderly population (≥65 years). A significant interaction between diabetes status and AF-PRS for incident AF was observed (P for interaction <0.001). The same trends were observed for the other arrhythmias. CONCLUSIONS Diabetes was associated with higher risks of incident arrhythmias, and younger age at onset of diabetes was significantly associated with higher risk of subsequent arrhythmias.
Collapse
Affiliation(s)
- Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Vascular Interventional Therapy, Wuhan, China.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Qian LL, Liu XY, Li XY, Yang F, Wang RX. Effects of Electrical Remodeling on Atrial Fibrillation in Diabetes Mellitus. Rev Cardiovasc Med 2023; 24:3. [PMID: 39076858 PMCID: PMC11270397 DOI: 10.31083/j.rcm2401003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/31/2024] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias in medical practice. Diabetes mellitus (DM) is one of the independent risk factors for atrial fibrillation. The increased morbility of atrial fibrillation in diabetes mellitus is related to both structural and electrical remodeling of atrium. Based on studies of atrial electrophysiological changes in diabetes mellitus, this article focuses on the electrical remodeling of atrial cardiomyocytes, including remodeling of sodium channels, calcium channels, potassium channels and other channels, to provide the basis for the clinical management of antiarrhythmic drugs in diabetic patients with atrial fibrillation.
Collapse
Affiliation(s)
- Ling-ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Xiao-yu Liu
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Xiao-yan Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Fan Yang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Assessment of atrial conduction time and P-wave dispersion in patients with gestational diabetes mellitus. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
ŚLIMAK J, MERCIK J, UNKELL M, ZAWADZKI G, RADZIEJEWSKA J, GAJEK J. P-wave duration and interatrial conduction abnormalities in paroxysmal and persistent typical atrial flutter. Physiol Res 2022; 71:597-606. [PMID: 36073736 PMCID: PMC9841807 DOI: 10.33549/physiolres.934731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Functional and structural changes, the enlargement of the right atrium is the background for the development of typical atrial flutter (AFL). These changes in ECG are manifested in the morphology of the initial part of the P-wave. The aim of the study was to assess the duration and morphology of the P-wave in patients with paroxysmal and persistent AFL. The study population consisted of 131 patients with AFL, 38 women and 93 men aged 66 years (60-72), divided in 62 patients with paroxysmal and 69 with persistent AFL. P-wave duration was measured with an electrophysiological system in all leads at a paper speed of 200 mm/s. The groups did differ in terms of gender (38/24 vs. 55/14, (M/F), p=0.033). Patients with persistent AF had a longer P-wave duration - 175±26.3 ms vs. 159±22.6 ms, p=0.01, and higher creatinine concentration - 1.2±0.60 mg/dl vs. 1.08±0.68 mg/dl, p=0.007. The presence and severity of interatrial conduction block (I-none, II-partial, III-total) was related to age of the patients (60.3±12.1 vs. 64.7±-8.3 vs. 68.9±9.5 years, respectively). Patients with persistent AFL show a longer P-wave compared to paroxysmal AFL, regardless of comorbidities and antiarrhythmic drugs. The arrhythmia-related longer P-wave duration should encourage the clinicians to restore sinus rhythm earlier in order to more effectively maintain it over the long term.
Collapse
Affiliation(s)
- Jan ŚLIMAK
- Internal Medicine Ward, Saint Hedwig of Silesia Hospital in Trzebnica, Trzebnica, Republic of Poland
| | - Jakub MERCIK
- Department of Emergency Medicine, Wroclaw Medical University, Wroclaw, Republic of Poland
| | - Malte UNKELL
- Students’ Scientific Association, Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Republic of Poland
| | - Grzegorz ZAWADZKI
- Students’ Scientific Association, Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Republic of Poland
| | | | - Jacek GAJEK
- Department of Emergency Medical Service, Wroclaw Medical University, Wroclaw, Republic of Poland
| |
Collapse
|
7
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
8
|
Loss of insulin signaling may contribute to atrial fibrillation and atrial electrical remodeling in type 1 diabetes. Proc Natl Acad Sci U S A 2020; 117:7990-8000. [PMID: 32198206 DOI: 10.1073/pnas.1914853117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) is prevalent in diabetes mellitus (DM); however, the basis for this is unknown. This study investigated AF susceptibility and atrial electrophysiology in type 1 diabetic Akita mice using in vivo intracardiac electrophysiology, high-resolution optical mapping in atrial preparations, and patch clamping in isolated atrial myocytes. qPCR and western blotting were used to assess ion channel expression. Akita mice were highly susceptible to AF in association with increased P-wave duration and slowed atrial conduction velocity. In a second model of type 1 DM, mice treated with streptozotocin (STZ) showed a similar increase in susceptibility to AF. Chronic insulin treatment reduced susceptibility and duration of AF and shortened P-wave duration in Akita mice. Atrial action potential (AP) morphology was altered in Akita mice due to a reduction in upstroke velocity and increases in AP duration. In Akita mice, atrial Na+ current (INa) and repolarizing K+ current (IK) carried by voltage gated K+ (Kv1.5) channels were reduced. The reduction in INa occurred in association with reduced expression of SCN5a and voltage gated Na+ (NaV1.5) channels as well as a shift in INa activation kinetics. Insulin potently and selectively increased INa in Akita mice without affecting IK Chronic insulin treatment increased INa in association with increased expression of NaV1.5. Acute insulin also increased INa, although to a smaller extent, due to enhanced insulin signaling via phosphatidylinositol 3,4,5-triphosphate (PIP3). Our study reveals a critical, selective role for insulin in regulating atrial INa, which impacts susceptibility to AF in type 1 DM.
Collapse
|
9
|
Bohne LJ, Johnson D, Rose RA, Wilton SB, Gillis AM. The Association Between Diabetes Mellitus and Atrial Fibrillation: Clinical and Mechanistic Insights. Front Physiol 2019; 10:135. [PMID: 30863315 PMCID: PMC6399657 DOI: 10.3389/fphys.2019.00135] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/04/2019] [Indexed: 01/16/2023] Open
Abstract
A number of clinical studies have reported that diabetes mellitus (DM) is an independent risk factor for Atrial fibrillation (AF). After adjustment for other known risk factors including age, sex, and cardiovascular risk factors, DM remains a significant if modest risk factor for development of AF. The mechanisms underlying the increased susceptibility to AF in DM are incompletely understood, but are thought to involve electrical, structural, and autonomic remodeling in the atria. Electrical remodeling in DM may involve alterations in gap junction function that affect atrial conduction velocity due to changes in expression or localization of connexins. Electrical remodeling can also occur due to changes in atrial action potential morphology in association with changes in ionic currents, such as sodium or potassium currents, that can affect conduction velocity or susceptibility to triggered activity. Structural remodeling in DM results in atrial fibrosis, which can alter conduction patterns and susceptibility to re-entry in the atria. In addition, increases in atrial adipose tissue, especially in Type II DM, can lead to disruptions in atrial conduction velocity or conduction patterns that may affect arrhythmogenesis. Whether the insulin resistance in type II DM activates unique intracellular signaling pathways independent of obesity requires further investigation. In addition, the relationship between incident AF and glycemic control requires further study.
Collapse
Affiliation(s)
- Loryn J Bohne
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Dustin Johnson
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Robert A Rose
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Stephen B Wilton
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Anne M Gillis
- Department of Cardiac Sciences and Department of Physiology and Pharmacology, University of Calgary and Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| |
Collapse
|
10
|
P-wave duration is a predictor for long-term mortality in post-CABG patients. PLoS One 2018; 13:e0199718. [PMID: 29995922 PMCID: PMC6040706 DOI: 10.1371/journal.pone.0199718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022] Open
Abstract
Risk stratification in secondary prevention has emerged as an unmet clinical need in order to mitigate the Number-Needed-to-Treat and make expensive therapies both clinically relevant and cost-effective. P wave indices reflect atrial conduction, which is a sensitive marker for inflammatory, metabolic, and pressure overload myocardial cell remodeling; the three stimuli are traditional mechanisms for adverse clinical evolution. Accordingly, we sought to investigate the predictive role of P-wave indices to estimate residual risk in patients with chronic coronary artery disease (CAD). The cohort included 520 post-Coronary Artery Bypass Grafting patients with a median age of 60 years who were followed for a median period of 1025 days. The primary endpoint was long-term all-cause death. Cubic spline model demonstrated a linear association between P-wave duration and incidence rate of long-term all-cause death (p = 0.023). P-wave >110ms was a marker for an average of 425 days shorter survival as compared with P-wave under 80ms (Logrank p = 0.020). The Cox stepwise regression models retained P-wave duration as independent marker (HR:1.37; 95%CI:1.05–1.79,p = 0.023). In conclusion, the present study suggests that P-wave measurement may constitute a simple, inexpensive and accessible prognostic tool to be added in the bedside risk estimation in CAD patients.
Collapse
|