1
|
Li F, Wang P, Wang Li X. Deep learning-based regional ECG diagnosis platform. Pacing Clin Electrophysiol 2024; 47:139-148. [PMID: 38029363 DOI: 10.1111/pace.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To enable the intelligent diagnosis of a variety of common Electrocardiogram (ECG), we investigate the deep learning-based ECG diagnosis system. METHODS From January 2015 to December 2019, four consecutive years of 100,120 conventional 12-lead ECG data were collected in our hospital. Utilizing this dataset, we constructed a deep learning model designed to intelligently diagnose prevalent ECG anomalies by employing a multi-task learning framework. The system performance was evaluated using various metrics, including sensitivity, specificity, negative predictive value, positive predictive value, and so forth. Additionally, we employed an ECG intelligent diagnostic platform for clinical application to undertake real-time online analysis of 2500 conventional 12-lead ECG samples in June 2020, aiming to validate our model. At this stage, we compared the performance of our model against the traditional manual identification method. RESULTS The efficacy of the ECG intelligent diagnostic model was notably high for common and straightforward ECG patterns, such as sinus rhythm (F1 = 98.01%), sinus tachycardia (F1 = 96.26%), sinus bradycardia (F1 = 94.88%), and a normal electrocardiogram (F1 = 91.71%), as well as for Premature Ventricular Contractions (F1 = 91.62%). Nevertheless, when diagnosing rarer and more intricate ECG anomalies, the system requires an increased number of samples to refine the deep learning models. During the validation stage, our model exhibited better efficiency in terms of accuracy, labor time and labor cost when compared to the manual identification approach. CONCLUSIONS Our deep learning-driven intelligent ECG diagnostic model clearly demonstrates significant clinical utility. The integrated artificial intelligence diagnosis system not only has the potential to augment physicians in their diagnostic processes but also offers a viable avenue to reduce associated labor costs.
Collapse
Affiliation(s)
- Fang Li
- Department of Cardiology, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ping Wang
- Department of Cardiology, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Xiao Wang Li
- Department of Cardiology, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| |
Collapse
|
2
|
García-Vicente C, Gutiérrez-Tobal GC, Jiménez-García J, Martín-Montero A, Gozal D, Hornero R. ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis. Comput Biol Med 2023; 167:107628. [PMID: 37918264 DOI: 10.1016/j.compbiomed.2023.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.
Collapse
Affiliation(s)
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Jorge Jiménez-García
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Adrián Martín-Montero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - David Gozal
- Office of The Dean, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr, Huntington, WV, 25701, USA
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
3
|
Arslan RS. Sleep disorder and apnea events detection framework with high performance using two-tier learning model design. PeerJ Comput Sci 2023; 9:e1554. [PMID: 37810361 PMCID: PMC10557519 DOI: 10.7717/peerj-cs.1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023]
Abstract
Sleep apnea is defined as a breathing disorder that affects sleep. Early detection of sleep apnea helps doctors to take intervention for patients to prevent sleep apnea. Manually making this determination is a time-consuming and subjectivity problem. Therefore, many different methods based on polysomnography (PSG) have been proposed and applied to detect this disorder. In this study, a unique two-layer method is proposed, in which there are four different deep learning models in the deep neural network (DNN), gated recurrent unit (GRU), recurrent neural network (RNN), RNN-based-long term short term memory (LSTM) architecture in the first layer, and a machine learning-based meta-learner (decision-layer) in the second layer. The strategy of making a preliminary decision in the first layer and verifying/correcting the results in the second layer is adopted. In the training of this architecture, a vector consisting of 23 features consisting of snore, oxygen saturation, arousal and sleep score data is used together with PSG data. A dataset consisting of 50 patients, both children and adults, is prepared. A number of pre-processing and under-sampling applications have been made to eliminate the problem of unbalanced classes. Proposed method has an accuracy of 95.74% and 99.4% in accuracy of apnea detection (apnea, hypopnea and normal) and apnea types detection (central, mixed and obstructive), respectively. Experimental results demonstrate that patient-independent consistent results can be produced with high accuracy. This robust model can be considered as a system that will help in the decisions of sleep clinics where it is expected to detect sleep disorders in detail with high performance.
Collapse
|
4
|
Bazoukis G, Bollepalli SC, Chung CT, Li X, Tse G, Bartley BL, Batool-Anwar S, Quan SF, Armoundas AA. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med 2023; 19:1337-1363. [PMID: 36856067 PMCID: PMC10315608 DOI: 10.5664/jcsm.10532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
STUDY OBJECTIVES Machine learning (ML) models have been employed in the setting of sleep disorders. This review aims to summarize the existing data about the role of ML techniques in the diagnosis, classification, and treatment of sleep-related breathing disorders. METHODS A systematic search in Medline, EMBASE, and Cochrane databases through January 2022 was performed. RESULTS Our search strategy revealed 132 studies that were included in the systematic review. Existing data show that ML models have been successfully used for diagnostic purposes. Specifically, ML models showed good performance in diagnosing sleep apnea using easily obtained features from the electrocardiogram, pulse oximetry, and sound signals. Similarly, ML showed good performance for the classification of sleep apnea into obstructive and central categories, as well as predicting apnea severity. Existing data show promising results for the ML-based guided treatment of sleep apnea. Specifically, the prediction of outcomes following surgical treatment and optimization of continuous positive airway pressure therapy can be guided by ML models. CONCLUSIONS The adoption and implementation of ML in the field of sleep-related breathing disorders is promising. Advancements in wearable sensor technology and ML models can help clinicians predict, diagnose, and classify sleep apnea more accurately and efficiently. CITATION Bazoukis G, Bollepalli SC, Chung CT, et al. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med. 2023;19(7):1337-1363.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Cheuk To Chung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong
| | - Xinmu Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong
- Kent and Medway Medical School, Canterbury, Kent, United Kingdom
| | - Bethany L. Bartley
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Salma Batool-Anwar
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Stuart F. Quan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Antonis A. Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
5
|
Yue H, Li P, Li Y, Lin Y, Huang B, Sun L, Ma W, Fan X, Wen W, Lei W. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis. J Clin Sleep Med 2023; 19:1017-1025. [PMID: 36734174 PMCID: PMC10235715 DOI: 10.5664/jcsm.10466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
STUDY OBJECTIVES We evaluated the validity of a squeeze-and-excitation and multiscaled fusion network (SE-MSCNN) using single-lead electrocardiogram (ECG) signals for obstructive sleep apnea detection and classification. METHODS Overnight polysomnographic data from 436 participants at the Sleep Center of the First Affiliated Hospital of Sun Yat-sen University were used to generate a new FAH-ECG dataset comprising 260, 88, and 88 single-lead ECG signal recordings for training, validation, and testing, respectively. The SE-MSCNN was employed for detection of apnea-hypopnea events from the acquired ECG segments. Sensitivity, specificity, accuracy, and F1 scores were assigned to assess algorithm performance. We also used the SE-MSCNN to estimate the apnea-hypopnea index, classify obstructive sleep apnea severity, and compare the agreement between 2 sleep technicians. RESULTS The SE-MSCNN's accuracy, sensitivity, specificity, and F1 score on the FAH-ECG dataset were 86.6%, 83.3%, 89.1%, and 0.843, respectively. Although slightly inferior to previously reported results using public datasets, it is superior to state-of-the-art open-source models. Furthermore, the SE-MSCNN had good agreement with manual scoring, such that the Spearman's correlations for the apnea-hypopnea index between the SE-MSCNN and 2 technicians were 0.93 and 0.94, respectively. Cohen's kappa scores in classifying the SE-MSCNN and the 2 sleep technicians were 0.72 and 0.78, respectively. CONCLUSIONS In this study, we validated the use of the SE-MSCNN in a clinical environment, and despite some limitations the network appeared to meet the performance standards for generalizability. Therefore, updating algorithms based on single-lead ECG signals can facilitate the development of novel wearable devices for efficient obstructive sleep apnea screening. CITATION Yue H, Li P, Li Y, et al. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis. J Clin Sleep Med. 2023;19(6):1017-1025.
Collapse
Affiliation(s)
- Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Pan Li
- School of Computer Science, South China Normal University, Guangzhou, People’s Republic of China
| | - Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bixue Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lin Sun
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenjun Ma
- School of Computer Science, South China Normal University, Guangzhou, People’s Republic of China
| | - Xiaomao Fan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, People’s Republic of China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Neri L, Oberdier MT, van Abeelen KCJ, Menghini L, Tumarkin E, Tripathi H, Jaipalli S, Orro A, Paolocci N, Gallelli I, Dall’Olio M, Beker A, Carrick RT, Borghi C, Halperin HR. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4805. [PMID: 37430719 PMCID: PMC10223364 DOI: 10.3390/s23104805] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023]
Abstract
Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data.
Collapse
Affiliation(s)
- Luca Neri
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Matt T. Oberdier
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Kirsten C. J. van Abeelen
- Department of Informatics, Systems, and Communication, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Internal Medicine, Radboud University Medical Center, 6525 AJ Nijmegen, The Netherlands
| | - Luca Menghini
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Ethan Tumarkin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Hemantkumar Tripathi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Sujai Jaipalli
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy
| | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Ilaria Gallelli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Massimo Dall’Olio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Amir Beker
- AccYouRate Group S.p.A., 67100 L’Aquila, Italy
| | - Richard T. Carrick
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Henry R. Halperin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Sun C, Hong S, Wang J, Dong X, Han F, Li H. A systematic review of deep learning methods for modeling electrocardiograms during sleep. Physiol Meas 2022; 43. [PMID: 35853448 DOI: 10.1088/1361-6579/ac826e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Sleep is one of the most important human physiological activities and plays an essential role in human health. Polysomnography (PSG) is the gold standard for measuring sleep quality and disorders, but it is time-consuming, labor-intensive, and prone to errors. Current research has confirmed the correlations between sleep and the respiratory/circulatory system. Electrocardiography (ECG) is convenient to perform, and ECG data are rich in breathing information. Therefore, sleep research based on ECG data has become popular. Currently, deep learning (DL) methods have achieved promising results on predictive health care tasks using ECG signals. Therefore, in this review, we systematically identify recent research studies and analyze them from the perspectives of data, model, and task. We discuss the shortcomings, summarize the findings, and highlight the potential opportunities. For sleep-related tasks, many ECG-based DL methods produce more accurate results than traditional approaches by combining multiple signal features and model structures. Methods that are more interpretable, scalable, and transferable will become ubiquitous in the daily practice of medicine and ambient-assisted-living applications. This paper is the first systematic review of ECG-based DL methods for sleep tasks.
Collapse
Affiliation(s)
- Chenxi Sun
- School of Artificial Intelligence, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, 100871, CHINA
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, Beijing, 100871, CHINA
| | - Jingyu Wang
- Sleep Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, CHINA
| | - Xiaosong Dong
- Sleep Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, CHINA
| | - Fang Han
- Sleep Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, CHINA
| | - Hongyan Li
- School of Artificial Intelligence, Peking University, No. 5, Yiheyuan Road, Haidian District, Beijing, Beijing, 100871, CHINA
| |
Collapse
|
9
|
Petmezas G, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers JA, Katsaggelos AK, Maglaveras N. State-of-the-art Deep Learning Methods on Electrocardiogram Data: A Systematic Review (Preprint). JMIR Med Inform 2022; 10:e38454. [PMID: 35969441 PMCID: PMC9425174 DOI: 10.2196/38454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools that can provide useful information regarding a patient’s health status. Deep learning (DL) is an area of intense exploration that leads the way in most attempts to create powerful diagnostic models based on physiological signals. Objective This study aimed to provide a systematic review of DL methods applied to ECG data for various clinical applications. Methods The PubMed search engine was systematically searched by combining “deep learning” and keywords such as “ecg,” “ekg,” “electrocardiogram,” “electrocardiography,” and “electrocardiology.” Irrelevant articles were excluded from the study after screening titles and abstracts, and the remaining articles were further reviewed. The reasons for article exclusion were manuscripts written in any language other than English, absence of ECG data or DL methods involved in the study, and absence of a quantitative evaluation of the proposed approaches. Results We identified 230 relevant articles published between January 2020 and December 2021 and grouped them into 6 distinct medical applications, namely, blood pressure estimation, cardiovascular disease diagnosis, ECG analysis, biometric recognition, sleep analysis, and other clinical analyses. We provide a complete account of the state-of-the-art DL strategies per the field of application, as well as major ECG data sources. We also present open research problems, such as the lack of attempts to address the issue of blood pressure variability in training data sets, and point out potential gaps in the design and implementation of DL models. Conclusions We expect that this review will provide insights into state-of-the-art DL methods applied to ECG data and point to future directions for research on DL to create robust models that can assist medical experts in clinical decision-making.
Collapse
Affiliation(s)
- Georgios Petmezas
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leandros Stefanopoulos
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Kilintzis
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Tzavelis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - John A Rogers
- Department of Material Science, Northwestern University, Evanston, IL, United States
| | - Aggelos K Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, United States
| | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical-Imaging Technologies, The Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Kim D, Hwang JE, Cho Y, Cho HW, Lee W, Lee JH, Oh IY, Baek S, Lee E, Kim J. A Retrospective Clinical Evaluation of an Artificial Intelligence Screening Method for Early Detection of STEMI in the Emergency Department. J Korean Med Sci 2022; 37:e81. [PMID: 35289140 PMCID: PMC8921208 DOI: 10.3346/jkms.2022.37.e81] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Rapid revascularization is the key to better patient outcomes in ST-elevation myocardial infarction (STEMI). Direct activation of cardiac catheterization laboratory (CCL) using artificial intelligence (AI) interpretation of initial electrocardiography (ECG) might help reduce door-to-balloon (D2B) time. To prove that this approach is feasible and beneficial, we assessed the non-inferiority of such a process over conventional evaluation and estimated its clinical benefits, including a reduction in D2B time, medical cost, and 1-year mortality. METHODS This is a single-center retrospective study of emergency department (ED) patients suspected of having STEMI from January 2021 to June 2021. Quantitative ECG (QCG™), a comprehensive cardiovascular evaluation system, was used for screening. The non-inferiority of the AI-driven CCL activation over joint clinical evaluation by emergency physicians and cardiologists was tested using a 5% non-inferiority margin. RESULTS Eighty patients (STEMI, 54 patients [67.5%]) were analyzed. The area under the curve of QCG score was 0.947. Binned at 50 (binary QCG), the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 98.1% (95% confidence interval [CI], 94.6%, 100.0%), 76.9% (95% CI, 60.7%, 93.1%), 89.8% (95% CI, 82.1%, 97.5%) and 95.2% (95% CI, 86.1%, 100.0%), respectively. The difference in sensitivity and specificity between binary QCG and the joint clinical decision was 3.7% (95% CI, -3.5%, 10.9%) and 19.2% (95% CI, -4.7%, 43.1%), respectively, confirming the non-inferiority. The estimated median reduction in D2B time, evaluation cost, and the relative risk of 1-year mortality were 11.0 minutes (interquartile range [IQR], 7.3-20.0 minutes), 26,902.2 KRW (22.78 USD) per STEMI patient, and 12.39% (IQR, 7.51-22.54%), respectively. CONCLUSION AI-assisted CCL activation using initial ECG is feasible. If such a policy is implemented, it would be reasonable to expect some reduction in D2B time, medical cost, and 1-year mortality.
Collapse
Affiliation(s)
- Dongsung Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Youngjin Cho
- Department of Cardiology, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Hyoung-Won Cho
- Department of Cardiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Wonjae Lee
- Department of Cardiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Lee
- Department of Cardiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Il-Young Oh
- Department of Cardiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sumin Baek
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunkyoung Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Big Data Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joonghee Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Big Data Center, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
11
|
Jeong H, Jeong YW, Park Y, Kim K, Park J, Kang DR. Applications of deep learning methods in digital biomarker research using noninvasive sensing data. Digit Health 2022; 8:20552076221136642. [PMID: 36353696 PMCID: PMC9638529 DOI: 10.1177/20552076221136642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2022] [Indexed: 07/02/2024] Open
Abstract
Introduction: Noninvasive digital biomarkers are critical elements in digital healthcare in terms of not only the ease of measurement but also their use of raw data. In recent years, deep learning methods have been put to use to analyze these diverse heterogeneous data; these methods include representation learning for feature extraction and supervised learning for the prediction of these biomarkers. Methods: We introduce clinical cases of digital biomarkers and various deep-learning methods applied according to each data type. In addition, deep learning methods for the integrated analysis of multidimensional heterogeneous data are introduced, and the utility of these data as an integrated digital biomarker is presented. The current status of digital biomarker research is examined by surveying research cases applied to various types of data as well as modeling methods. Results: We present a future research direction for using data from heterogeneous sources together by introducing deep learning methods for dimensionality reduction and mode integration from multimodal digital biomarker studies covering related domains. The integration of multimodality has led to advances in research through the improvement of performance and complementarity between modes. Discussion: The integrative digital biomarker will be more useful for research on diseases that require data from multiple sources to be treated together. Since delicate signals from patients are not missed and the interaction effects between signals are also considered, it will be helpful for immediate detection and more accurate prediction of symptoms.
Collapse
Affiliation(s)
- Hoyeon Jeong
- Department of Biostatistics, Yonsei University Wonju College of
Medicine, Wonju, Republic of Korea
| | - Yong W Jeong
- Department of Biostatistics, Yonsei University Wonju College of
Medicine, Wonju, Republic of Korea
| | - Yeonjae Park
- Department of Biostatistics, Yonsei University Wonju College of
Medicine, Wonju, Republic of Korea
| | - Kise Kim
- School of Health and Environmental Science, Korea University, Seoul, Republic of Korea
| | | | - Dae R Kang
- Department of Biostatistics, Yonsei University Wonju College of
Medicine, Wonju, Republic of Korea
- Department of Precision Medicine, Yonsei University Wonju College of
Medicine, Wonju, Republic of Korea
| |
Collapse
|