1
|
Panich W, Jaruboonyakorn P, Raksaman A, Tejangkura T, Chontananarth T. Development and utilization of a visual loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay for rapid detection of Echinostomatidae metacercaria in edible snail samples. Int J Food Microbiol 2024; 418:110732. [PMID: 38728973 DOI: 10.1016/j.ijfoodmicro.2024.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Trematodes belonging to the family Echinostomatidae are food-borne parasites which cause echinostomiasis in animals and humans. This is a global public health issue, particularly in East and Southeast Asia. A method to detect the infective stage of Echinostomatidae species is required to prevent transmission to humans. In this study, a loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay was developed for visual detection of the metacercarial stage in edible snails of the genus Filopaludina from local markets in Thailand. The LAMP-LFD method can be performed within 70 min at a consistent temperature of 66 °C, and the results can be interpreted with the naked eye. The detection limits of the assay using Echinostoma mekongi, E. macrorchis, E. miyagawai and Hypoderaeum conoideum genomic DNA were equal between the four species at 50 pg/μL. A specificity evaluation demonstrated that the LAMP-LFD assay had no cross-reaction with another parasite (Thapariella species) or with the snail host species (Filopaludina martensi martensi, F. sumatrensis speciosa, and F. s. polygramma). Clinical test assessments were compared to microscopic examination in 110 edible snail samples. The clinical sensitivity and specificity of the tests were 84.62 % and 100 %, respectively, with a strong level of agreement based on the kappa statistic and the results of both methods were not significantly different (p > 0.05) per McNemar's test. The test successfully developed in this study may be useful for the detection of the metacercarial stage in edible snails for epidemiological investigations, control, surveillance, and to prevent future echinostomiasis health issues.
Collapse
Affiliation(s)
- Wasin Panich
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Phonkawin Jaruboonyakorn
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Awika Raksaman
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Thanawan Tejangkura
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Research and Innovation Unit for Diagnosis of Medical and Veterinary Important Parasites, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| |
Collapse
|
2
|
Chai JY, Jung BK. Epidemiology and Geographical Distribution of Human Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:443-505. [PMID: 39008273 DOI: 10.1007/978-3-031-60121-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Digenetic trematodes infecting humans are more than 109 species that belong to 49 genera all over the world. According to their habitat in the definitive hosts, they are classified as 6 blood flukes (Schistosoma japonicum. S. mekongi, S. malayensis, S. mansoni, S. intercalatum, and S. haematobium), 15 liver flukes (Fasciola hepatica, F. gigantica, Clonorchis sinensis, Opisthorchis viverrini, O. felineus, Dicrocoelium dendriticum, D. hospes, Metorchis bilis, M. conjunctus, M. orientalis, Amphimerus sp., A. noverca, A. pseudofelineus, Pseudamphistomum truncatum, and P. aethiopicum), nine lung flukes (Paragonimus westermani, P. heterotremus, P. skrjabini, P. skrjabini miyazakii, P. kellicotti, P. mexicanus, P. africanus, P. uterobilateralis, and P. gondwanensis), 30 heterophyid intestinal flukes (Metagonimus yokogawai, M. takahashii, M. miyatai, M. suifunensis, M. katsuradai, M. pusillus, M. minutus, Heterophyes heterophyes, H. nocens, H. dispar, Haplorchis taichui, H. pumilio, H. yokogawai, H. vanissinus, Centrocestus formosanus, C. armatus, C. cuspidatus, C. kurokawai, Procerovum calderoni, P. varium, Pygidiopsis genata, P. summa, Stictodora fuscata, S. lari, Stellantchasmus falcatus, Heterophyopsis continua, Acanthotrema felis, Apophallus donicus, Ascocotyle longa, and Cryptocotyle lingua), 24 echinostome intestinal flukes (Echinostoma revolutum, E. cinetorchis, E. mekongi, E. paraensei, E. ilocanum, E. lindoense, E. macrorchis, E. angustitestis, E. aegyptica, Isthmiophora hortensis, I. melis, Echinochasmus japonicus, E. perfoliatus, E. lilliputanus, E. caninus, E. jiufoensis, E. fujianensis, Artyfechinostomum malayanum, A. sufrartyfex, A. oraoni, Acanthoparyphium tyosenense, Echinoparymphium recurvatum, Himasthla muehlensi, and Hypoderaeum conoideum), 23 miscellaneous intestinal flukes (Brachylaima cribbi, Caprimolgorchis molenkampi, Phaneropsolus bonnei, P. spinicirrus, Cotylurus japonicus, Fasciolopsis buski, Gastrodiscoides hominis, Fischoederius elongatus, Watsonius watsoni, Gymnophalloides seoi, Gynaecotyla squatarolae, Microphallus brevicaeca, Isoparorchis hypselobagri, Nanophyetus salmincola, N. schikobalowi, Neodiplostomum seoulense, Fibricola cratera, Plagiorchis muris, P. vespertilionis, P. harinasutai, P. javensis, P. philippinensis, and Prohemistomum vivax), one throat fluke (Clinostomum complanatum), and one pancreatic fluke (Eurytrema pancreaticum). The mode of transmission to humans includes contact with cercariae contaminated in water (schistosomes) or ingestion of raw or improperly cooked food, including fish (liver flukes, heterophyid flukes, echinostomes, and throat flukes), snails (echinostomes, brachylaimids, and gymnophallid flukes), amphibia, reptiles (neodiplostomes), aquatic vegetables (fasciolids and amphistomes), and insect larvae or adults (lecithodendriids, plagiorchiids, and pancreatic flukes). Praziquantel has been proven to be highly effective against almost all kinds of trematode infections except Fasciola spp. Epidemiological surveys and detection of human infections are required for a better understanding of the prevalence, intensity of infection, and geographical distribution of each trematode species.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, Republic of Korea
| |
Collapse
|
3
|
Toledo R, Conciancic P, Fiallos E, Esteban JG, Muñoz-Antoli C. Echinostomes and Other Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:285-322. [PMID: 39008269 DOI: 10.1007/978-3-031-60121-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.
Collapse
Affiliation(s)
- Rafael Toledo
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain.
| | - Paola Conciancic
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Emma Fiallos
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carla Muñoz-Antoli
- Área de Parasitología, Departamento de Farmacia, Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
4
|
Chai JY, Jung BK. General overview of the current status of human foodborne trematodiasis. Parasitology 2022; 149:1262-1285. [PMID: 35591777 PMCID: PMC10090779 DOI: 10.1017/s0031182022000725] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/30/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
Foodborne trematodes (FBT) of public health significance include liver flukes (Clonorchis sinensis, Opisthorchis viverrini, O. felineus, Fasciola hepatica and F. gigantica), lung flukes (Paragonimus westermani and several other Paragonimus spp.) and intestinal flukes, which include heterophyids (Metagonimus yokogawai, Heterophyes nocens and Haplorchis taichui), echinostomes (Echinostoma revolutum, Isthmiophora hortensis, Echinochasmus japonicus and Artyfechinostomum malayanum) and miscellaneous species, including Fasciolopsis buski and Gymnophalloides seoi. These trematode infections are distributed worldwide but occur most commonly in Asia. The global burden of FBT diseases has been estimated at about 80 million, however, this seems to be a considerable underestimate. Their life cycle involves a molluscan first intermediate host, and a second intermediate host, including freshwater fish, crustaceans, aquatic vegetables and freshwater or brackish water gastropods and bivalves. The mode of human infection is the consumption of the second intermediate host under raw or improperly cooked conditions. The major pathogenesis of C. sinensis and Opisthorchis spp. infection includes inflammation of the bile duct which leads to cholangitis and cholecystitis, and in a substantial number of patients, serious complications, such as liver cirrhosis and cholangiocarcinoma, may develop. In lung fluke infections, cough, bloody sputum and bronchiectasis are the most common clinical manifestations. However, lung flukes often migrate to extrapulmonary sites, including the brain, spinal cord, skin, subcutaneous tissues and abdominal organs. Intestinal flukes can induce inflammation in the intestinal mucosa, and they may at times undergo extraintestinal migration, in particular, in immunocompromised patients. In order to control FBT infections, eating foods after proper cooking is strongly recommended.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul 07649, South Korea
| |
Collapse
|
5
|
Abstract
In the present paper, we review two of the most neglected intestinal food-borne trematodiases: echinostomiasis, caused by members of the family Echinostomatidae, and gastrodiscoidiasis produced by the amphistome Gastrodiscoides hominis. Both parasitic infections are important intestinal food-borne diseases. Humans become infected after ingestion of raw or insufficiently cooked molluscs, fish, crustaceans, amphibians or aquatic vegetables. Thus, eating habits are essential to determine the distribution of these parasitic diseases and, traditionally, they have been considered as minor diseases confined to low-income areas, mainly in Asia. However, this scenario is changing and the population at risk are currently expanding in relation to factors such as new eating habits in developed countries, growing international markets, improved transportation systems and demographic changes. These aspects determine the necessity of a better understanding of these parasitic diseases. Herein, we review the main features of human echinostomiasis and gastrodiscoidiasis in relation to their biology, epidemiology, immunology, clinical aspects, diagnosis and treatment.
Collapse
|
6
|
Cho J, Jung BK, Chang T, Sohn WM, Sinuon M, Chai JY. Echinostoma mekongi n. sp. (Digenea: Echinostomatidae) from Riparian People along the Mekong River in Cambodia. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:431-443. [PMID: 32871637 PMCID: PMC7462798 DOI: 10.3347/kjp.2020.58.4.431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Echinostoma mekongi n. sp. (Digenea: Echinostomatidae) is described based on adult flukes collected from humans residing along the Mekong River in Cambodia. Total 256 flukes were collected from the diarrheic stool of 6 echinostome egg positive villagers in Kratie and Takeo Province after praziquantel treatment and purging. Adults of the new species were 9.0-13.1 (av. 11.3) mm in length and 1.3-2.5 (1.9) mm in maximum width and characterized by having a head collar armed with 37 collar spines (dorsal spines arranged in 2 alternative rows), including 5 end group spines. The eggs in feces and worm uterus were 98-132 (117) μm long and 62-90 (75) μm wide. These morphological features closely resembled those of Echinostoma revolutum, E. miyagawai, and several other 37-collar-spined Echinostoma species. However, sequencing of the nuclear ITS (ITS1-5.8S rRNA-ITS2) and 2 mitochondrial genes, cox1 and </>nad1, revealed unique features distinct from E. revolutum and also from other 37-collar-spined Echinostoma group available in GenBank (E. bolschewense, E. caproni, E. cinetorchis, E. deserticum, E. miyagawai, E. nasincovae, E. novaezealandense, E. paraensei, E. paraulum, E. robustum, E. trivolvis, and Echinostoma sp. IG). Thus, we assigned our flukes as a new species, E. mekongi. The new species revealed marked variation in the morphology of testes (globular or lobulated), and smaller head collar, collar spines, oral and ventral suckers, and cirrus sac compared to E. revolutum and E. miyagawai. Epidemiological studies regarding the geographical distribution and its life history, including the source of human infections, remain to be performed.
Collapse
Affiliation(s)
- Jaeeun Cho
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Taehee Chang
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Muth Sinuon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
7
|
Chai JY, Jung BK, Chang T, Shin H, Sohn WM, Eom KS, Yong TS, Min DY, Phammasack B, Insisiengmay B, Rim HJ. Echinostoma aegyptica (Trematoda: Echinostomatidae) Infection in Five Riparian People in Savannakhet Province, Lao PDR. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:67-72. [PMID: 32145730 PMCID: PMC7066437 DOI: 10.3347/kjp.2020.58.1.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/11/2019] [Indexed: 11/23/2022]
Abstract
Human infection with Echinostoma aegyptica Khalil and Abaza, 1924 (Trematoda: Echinostomatidae) is extremely rare. In this study, we confirmed E. aegyptica infection in 5 riparian residents living along the Mekong River in Savannakhet Province, Lao PDR. The patients revealed eggs of Opisthorchis viverrini/minute intestinal flukes, echinostomes, and other parasites in fecal examinations using the Kato-Katz technique. Following treatment with praziquantel 30–40 mg/kg and pyrantel pamoate 10–15 mg/kg in a single dose and purging with magnesium salts, adult specimens of various helminth species were collected. Among the trematodes, echinostome flukes of 4.5–7.6 mm in length (n = 134; av. 22.3 specimens per case) were of taxonomic interest and subjected in this study. The flukes were morphologically characterized by having total 43–45 collar spines arranged in 2 alternating rows (corner spines usually 5 on each side) and compatible with previous descriptions of E. aegyptica. The patients were mixed-infected with other helminths, so specific clinical manifestations due to this echinostome fluke were difficult to determine. The present paper describes for the first time human E. aegyptica infections in Lao PDR. This is the second report of human infection (2nd–6th cases) with E. aegyptica in the world following the first one from China.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea.,Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Taehee Chang
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Hyejoo Shin
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Keeseon S Eom
- Department of Parasitology and Parasite Research Center, Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Duk-Young Min
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Bounlay Phammasack
- Department of Hygiene and Prevention, Ministry of Health, Vientiane, Lao PDR
| | | | - Han-Jong Rim
- Department of Parasitology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
8
|
Chai JY, Jung BK. Foodborne intestinal flukes: A brief review of epidemiology and geographical distribution. Acta Trop 2020; 201:105210. [PMID: 31600520 DOI: 10.1016/j.actatropica.2019.105210] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 01/24/2023]
Abstract
Foodborne intestinal flukes are highly diverse consisting of at least 74 species with a diverse global distribution. Taxonomically they include 28 species of heterophyids, 23 species of echinostomes, and 23 species of miscellaneous groups (amphistomes, brachylaimids, cyathocotylids, diplostomes, fasciolids, gymnophallids, isoparorchiids, lecithodendriid-like group, microphallids, nanophyetids, plagiorchiids, and strigeids). The important heterophyid species (15 species) include Metagonimus yokogawai, M. takahashii, M. miyatai, Heterophyes heterophyes, H. nocens, Haplorchis taichui, H. pumilio, H. yokogawai, Heterophyopsis continua, Centrocestus formosanus, Pygidiopsis genata, P. summa, Stellantchasmus falcatus, Stictodora fuscata, and S. lari. The echinostome species of public health significance (15 species) include Echinostoma revolutum, E. cinetorchis, E. lindoense, E. ilocanum, Isthmiophora hortensis, Echinochasmus japonicus, E. perfoliatus, E. liliputanus, E. fujianensis, E. caninus, Acanthoparyphium tyosenense, Artyfechinostomum malayanum, A. sufrartyfex, A. oraoni, and Hypoderaeum conoideum. Among the other zoonotic intestinal flukes, Gastrodiscoides hominis, Brachylaima cribbi, Neodiplostomum seoulense, Fasciolopsis buski, Gymnophalloides seoi, Caprimolgorchis molenkampi, Phaneropsolus bonnei, Microphallus brevicaeca, Nanophyetus salmincola, and N. schikhobalowi (10 species) have drawn considerable medical attention causing quite a fair number of human infection cases. The principal mode of human infections include ingestion of raw or improperly cooked fish (heterophyids and echinostomes), snails including oysters (echinostomes and G. seoi), amphibians and reptiles (N. seoulense), aquatic vegetables (amphistomes and F. buski), and insect larvae or adults (C. molenkampi and P. bonnei). Epidemiological characteristics such as the prevalence, geographical distribution, and clinical and public health significance are poorly known in many of these species. Praziquantel has been proved to be highly effective against most species of intestinal fluke infections. Surveys and detection of human infection cases are urgently required for better understanding of the global status and public health significance of each species.
Collapse
|
9
|
Chai JY, Chang T, Jung BK, Shin H, Sohn WM, Eom KS, Yong TS, Min DY, Phammasack B, Insisiengmay B, Rim HJ. Echinochasmus caninus n. comb. (Trematoda: Echinostomatidae) Infection in Eleven Riparian People in Khammouane Province, Lao PDR. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:451-456. [PMID: 31533415 PMCID: PMC6753300 DOI: 10.3347/kjp.2019.57.4.451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/15/2019] [Indexed: 11/23/2022]
Abstract
Adult specimens of Echinochasmus caninus n. comb. (Verma, 1935) (Trematoda: Echinostomatidae) (syn. Episthmium caninum Yamaguti, 1958) were recovered from 11 riparian people who resided along the Mekong River in Khammouane Province, Lao PDR. In fecal examinations done by the Kato-Katz technique, the cases revealed eggs of Opisthorchis viverrini/minute intestinal flukes, hookworms, and in 2 cases echinostome eggs. To recover the adult helminths, praziquantel 30-40 mg/kg and pyrantel pamoate 10-15 mg/kg in a single dose were given and purged with magnesium salts. Various species of trematodes (including O. viverrini and Haplorchis spp.), cestodes, and nematodes were recovered from their diarrheic stools. Among the trematodes, small echinostome flukes (n=42; av. 3.8 specimens per case) of 0.7-1.2 mm in length are subjected in this study. They are morphologically characterized by having 24 collar spines interrupted dorsally and anterior extension of vitellaria from the cirrus sac or genital pore level to the posterior end of the body. Particularly based on this extensive distribution of vitellaria, the specific diagnosis was made as Echinochasmus caninus. The cases were co-infected with various other helminth parasites; thus, clinical manifestations specific for this echinostome infection were difficult to determine. The present paper describes for the first time human E. caninus infections in Lao PDR. Our cases marked the 4-14th human infections with this echinostome around the world following the 3 previous cases reported from Thailand.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea.,Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Taehee Chang
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Hyejoo Shin
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul 07649, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | - Keeseon S Eom
- Department of Parasitology and Parasite Research Center, Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Duk-Young Min
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea
| | - Bounlay Phammasack
- Department of Hygiene and Prevention, Ministry of Health, Vientiane, Lao PDR
| | | | - Han-Jong Rim
- Department of Parasitology, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
10
|
Chai JY, Jung BK. Epidemiology of Trematode Infections: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:359-409. [PMID: 31297768 DOI: 10.1007/978-3-030-18616-6_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Digenetic trematodes infecting humans are more than 91 species which belong to 46 genera all over the world. According to their habitat in definitive hosts, they are classified as blood flukes (Schistosoma japonicum. S. mekongi, S. mansoni, S. haematobium, and S. intercalatum), liver flukes (Clonorchis sinensis, Opisthorchis viverrini, O. felineus, Metorchis conjunctus, M. bilis, M. orientalis, Fasciola hepatica, F. gigantica, Dicrocoelium dendriticum, and D. hospes), lung flukes (Paragonimus westermani, P. heterotremus, P. skrjabini, P. miyazakii, P. kellicoti, P. mexicanus, P. africanus, and P. uterobilateralis), throat fluke (Clinostomum complanatum), pancreatic fluke (Eurytrema pancreaticum), and intestinal flukes (Metagonimus yokogawai, M. miyatai, M. takahashii, Heterophyes nocens, H. heterophyes, Haplorchis taichui, H. pumilio, H. yokogawai, Centrocestus formosanus, Echinostoma revolutum, E. ilocanum, Isthmiophora hortensis, Echinochasmus japonicus, E. lilliputanus, Artyfechinostomum malayanum, A. sufrartyfex, A. oraoni, Fasciolopsis buski, Gymnophalloides seoi, Neodiplostomum seoulense, Caprimolgorchis molenkampi, Phaneropsolus bonnei, and Plagiorchis muris). The mode of transmission to humans includes contact with cercariae contaminated in water (schistosomes) and ingestion of raw or improperly cooked fish (liver and throat flukes, heterophyids, and echinostomes), snails (echinostomes and gymnophallids), amphibia, reptiles (neodiplostomes), aquatic vegetables (amphistomes), or insect larvae or adults (plagiorchiids, lecithodendriids, and pancreatic fluke). Praziquantel has been proved to be highly effective against most species of trematode infections except fascioliasis. Epidemiological surveys and detection of human infections are required for better understanding of the geographical distribution and endemicity of each trematode species.
Collapse
Affiliation(s)
- Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul, Republic of Korea.
- Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bong-Kwang Jung
- Institute of Parasitic Diseases, Korea Association of Health Promotion, Seoul, Republic of Korea
| |
Collapse
|
11
|
Toledo R, Alvárez-Izquierdo M, Muñoz-Antoli C, Esteban JG. Intestinal Trematode Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:181-213. [DOI: 10.1007/978-3-030-18616-6_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|