1
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
2
|
Ul-Haq A, Seo H, Jo S, Park H, Kim S, Lee Y, Lee S, Jeong JH, Song H. Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea. Pol J Microbiol 2022; 71:601-613. [PMID: 36537058 PMCID: PMC9944973 DOI: 10.33073/pjm-2022-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
An imbalanced gut microbiome has been linked to a higher risk of many bone-related diseases. The objective of this study was to discover biomarkers of osteoporosis (OP). So, we collected 76 stool samples (60 human controls and 16 OP patients), extracted DNA, and performed 16S ribosomal ribonucleic acid (rRNA) gene-based amplicon sequencing. Among the taxa with an average taxonomic composition greater than 1%, only the Lachnospira genus showed a significant difference between the two groups. The Linear Discriminant Effect Size analysis and qPCR experiments indicated the Lachnospira genus as a potential biomarker of OP. Moreover, a total of 11 metabolic pathways varied between the two groups. Our study concludes that the genus Lachnospira is potentially crucial for diagnosing and treating osteoporosis. The findings of this study might help researchers better understand OP from a microbiome perspective. This research might develop more effective diagnostic and treatment methods for OP in the future.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea,Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Hyuna Park
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| | - Ho‑Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| |
Collapse
|
3
|
Garcia-Giralt N, Roca-Ayats N, Abril JF, Martinez-Gil N, Ovejero D, Castañeda S, Nogues X, Grinberg D, Balcells S, Rabionet R. Gene Network of Susceptibility to Atypical Femoral Fractures Related to Bisphosphonate Treatment. Genes (Basel) 2022; 13:genes13010146. [PMID: 35052486 PMCID: PMC8774942 DOI: 10.3390/genes13010146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication.
Collapse
Affiliation(s)
- Natalia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (D.O.); (X.N.)
- Correspondence:
| | - Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Josep F Abril
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Nuria Martinez-Gil
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (D.O.); (X.N.)
| | - Santos Castañeda
- Department of Rheumatology, Hospital Universitario de La Princesa, IIS-Princesa, Cátedra UAM-Roche, EPID-Future, Universidad Autónoma de Madrid, 28670 Madrid, Spain;
| | - Xavier Nogues
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 08003 Barcelona, Spain; (D.O.); (X.N.)
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, 08028 Barcelona, Spain; (N.R.-A.); (J.F.A.); (N.M.-G.); (D.G.); (S.B.); (R.R.)
| |
Collapse
|
4
|
Ciubean AD, Ungur RA, Irsay L, Ciortea VM, Borda IM, Dogaru GB, Trifa AP, Vesa SC, Buzoianu AD. Polymorphisms of FDPS, LRP5, SOST and VKORC1 genes and their relation with osteoporosis in postmenopausal Romanian women. PLoS One 2019; 14:e0225776. [PMID: 31774873 PMCID: PMC6880991 DOI: 10.1371/journal.pone.0225776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES This study aimed to assess the relationship between bone mineral density and genotypes of four polymorphisms in previously detected osteoporosis-candidate genes (FDPS rs2297480, LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438) in postmenopausal Romanian women with primary osteoporosis. METHODS An analytical, prospective, transversal, observational, case-control study on 364 postmenopausal Romanian women was carried out between June 2016 and August 2017 in Cluj Napoca, Romania. Clinical data and blood samples were collected from all study participants. Four polymorphisms were genotyped using TaqMan SNP Genotyping assays, run on a QuantStudio 3 real-time PCR machine. RESULTS Women with TT genotype in FDPS rs2297480 had significantly lower bone mineral density values in the lumbar spine and total hip, and the presence of the T allele was significantly associated with the osteoporosis. Women carrying the CC genotype in LRP5 rs3736228 tend to have lower bone mineral density values in the femoral neck and total hip. No significant association was found for the genotypes of SOST rs1234612 or VKORC1 rs9934438. CONCLUSIONS Our study showed a strong association between bone mineral density and polymorphisms in the FDPS gene, and a borderline association with LRP5 and SOST polymorphisms in postmenopausal Romanian women with osteoporosis. No association was found for VKORC1.
Collapse
Affiliation(s)
- Alina Deniza Ciubean
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Rodica Ana Ungur
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
- * E-mail: (RAU); (LI)
| | - Laszlo Irsay
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
- * E-mail: (RAU); (LI)
| | - Viorela Mihaela Ciortea
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Ileana Monica Borda
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Gabriela Bombonica Dogaru
- Department of Rehabilitation, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Adrian Pavel Trifa
- Department of Genetics, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Stefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Wong HSC, Lin YJ, Lu HF, Liao WL, Chen CH, Wu JY, Chang WC, Tsai FJ. Genomic interrogation of familial short stature contributes to the discovery of the pathophysiological mechanisms and pharmaceutical drug repositioning. J Biomed Sci 2019; 26:91. [PMID: 31699087 PMCID: PMC6836357 DOI: 10.1186/s12929-019-0581-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/09/2019] [Indexed: 01/06/2023] Open
Abstract
Background Genetic factors, dysregulation in the endocrine system, cytokine and paracrine factors are implicated in the pathogenesis of familial short stature (FSS). Nowadays, the treatment choice for FSS is limited, with only recombinant human growth hormone (rhGH) being available. Methods Herein, starting from the identification of 122 genetic loci related to FSS, we adopted a genetic-driven drug discovery bioinformatics pipeline based on functional annotation to prioritize crucial biological FSS-related genes. These genes were suggested to be potential targets for therapeutics. Results We discovered five druggable subnetworks, which contained seven FSS-related genes and 17 druggable targerts. Conclusions This study provides a valuable drug repositioning accompanied by corresponding targetable gene clusters for FSS therapy.
Collapse
Affiliation(s)
- Henry Sung-Ching Wong
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsing-Fang Lu
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Center for Personalized Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University , New Taipei City, Taiwan. .,Pain Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan. .,Children's Hospital of China Medical University, Taichung, Taiwan. .,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
CIUBEAN AD, IRSAY L, UNGUR RA, CIORTEA VM, BORDA IM, DOGARU BG, TRIFA AP, BUZOIANU AD. Genetic polymorphisms and their influence on therapeutic response to alendronate-a pilot study. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Osteoporosis has a strong genetic contribution, and several genes have been shown to influence bone mineral density. Variants in the human genome are considered important causes of differences in drug responses observed in clinical practice. In terms of bone mineral density, about 26–53% of patients do not respond to amino-bisphosphonate therapies, of which alendronate is the most widely used.
Material and method: The current study is prospective, observational, analytical, longitudinal and cohort type. It included 25 postmenopausal women treated with alendronate for 1 year. Bone mineral density at lumbar spine and proximal femur was measured and bone turnover markers (C-terminal telopeptide of type I collagen and procollagen 1N-terminal propeptide) were evaluated at 0 and 12 months of treatment. Six single nucleotide polymorphisms in osteoporosis-candidate genes were genotyped (FDPS rs2297480, LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438, GGPS1 rs10925503 and RANKL rs2277439). Treatment response was evaluated by percentage changes in bone mineral density and bone turnover markers.
Results: The heterozygous CT of FDPS rs2297480 showed lower increases in BMD values in the lumbar spine region and the homozygous CC of the GGPS1 rs10925503 showed lower increases in terms of BMD at the total hip region. No association was found for LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438 and RANKL rs2277439.
Conclusions: Romanian postmenopausal women with osteoporosis carrying the CT genotype of FDPS rs2297480 or the CC genotype of GGPS1 rs10925503 could have an unsatisfactory response to alendronate treatment.
Key words: osteoporosis; genetic polymorphism; alendronate; bone mineral density; bone turnover markers,
Collapse
Affiliation(s)
- Alina Deniza CIUBEAN
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Laszlo IRSAY
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Viorela Mihaela CIORTEA
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Ileana Monica BORDA
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Bombonica Gabriela DOGARU
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Adrian Pavel TRIFA
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Genetics, Cluj-Napoca, Romania
| | - Anca Dana BUZOIANU
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| |
Collapse
|
7
|
CIUBEAN AD, IRSAY L, UNGUR RA, CIORTEA VM, BORDA IM, DOGARU 1, BG, TRIFA AP, BUZOIANU AD. Association between polymorphisms in GGPS1 and RANKL genes and postmenopausal osteoporosis in Romanian women. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: This study aimed to assess the relationship between bone mineral density, fragility fractures, fracture risk and polymorphisms of two osteoporosis-candidate genes (GGPS1 and RANKL) in Romanian women with postmenopausal osteoporosis.
Methods: An analytical, prospective, transversal, observational, case-control study on 364 postmenopausal women, of which 228 were previously diagnosed with osteoporosis, was carried out between June 2016 and August 2017 in Cluj Napoca, Romania. Clinical data and blood samples were collected from all study participants. Polymorphisms in GGPS1 and RANKL genes were genotyped using TaqMan SNP Genotyping assays, run on a QuantStudio 3 real-time PCR machine.
Results: The CT genotype in GGPS1 rs10925503 was associated with significant lower bone mineral density values at lumbar spine and femoral neck sites and a higher fracture risk compared to controls. No significant association was found between genotypes of RANKL rs2277439 with bone mineral density or fracture risk compared to the healthy controls.
Conclusions: Our study showed a strong association between low bone mineral density and genotype CT of GGPS1 rs10925503 polymorphisms. No association was found for RANKL rs2277439 polymorphism.
Collapse
Affiliation(s)
- Alina Deniza CIUBEAN
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Laszlo IRSAY
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Viorela Mihaela CIORTEA
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Ileana Monica BORDA
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Bombonica Gabriela DOGARU 1,
- University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Adrian Pavel TRIFA
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Genetics, Cluj-Napoca, Romania
| | - Anca Dana BUZOIANU
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Marozik P, Alekna V, Rudenko E, Tamulaitiene M, Rudenka A, Mastaviciute A, Samokhovec V, Cernovas A, Kobets K, Mosse I. Bone metabolism genes variation and response to bisphosphonate treatment in women with postmenopausal osteoporosis. PLoS One 2019; 14:e0221511. [PMID: 31437227 PMCID: PMC6705789 DOI: 10.1371/journal.pone.0221511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/08/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction Long-term treatment is used in patients with osteoporosis, and bisphosphonates (BPs) are the most commonly prescribed medications. However, in some patients this therapy is not effective, cause different side effects and complications. Unfortunately, at least one year is needed to identify and confirm an ineffectiveness of BPs therapy on bone mineral density (BMD). Among other factors, a response to BPs therapy may also be explained by genetic factors. The aim of this study was to analyze the influence of SOST, PTH, FGF2, FDPS, GGPS1, and LRP5 gene variants on the response to treatment with aminobisphosphonates. Materials and methods Women with postmenopausal osteoporosis were included to this study if they used aminobisphosphonates for at least 12 months. Exclusion criteria were: persistence on BPs therapy less than 80%, bone metabolic diseases, diseases deemed to affect bone metabolism, malignant tumours, using of any medications influencing BMD. The study protocol was approved by the local ethics committee. The BMD at the lumbar spine and femoral neck were measured using dual x-ray absorptiometry (GE Lunar) before and at least 12 months after treatment with BPs. According to BMD change, patients were divided in two groups–responders and non-responders to BPs terapy. Polymorphic variants in SOST, PTH, FGF2, FDPS, GGPS1, and LRP5 genes were determined using PCR analysis with TaqMan probes (Thermo Scientific). Results In total, 201 women with BPs therapy were included in the study. No statistically significant differences were observed in age, age at menopause, weight, height, BMI and baseline BMD levels between responders (122 subjects) and non-responders (79 subjects). As single markers, the SOST rs1234612 T/T (OR = 2.3; P = 0.02), PTH rs7125774 T/T (OR = 2.8, P = 0.0009), FDPS rs2297480 G/G (OR = 29.3, P = 2.2×10−7), and GGPS1 rs10925503 C/C+C/T (OR = 2.9; P = 0.003) gene variants were over-represented in non-responders group. No significant association between FGF2 rs6854081 and LRP5 rs3736228 gene variants and response to BPs treatment was observed. The carriers of T-T-G-C allelic combination (constructed from rs1234612, rs7125774, rs2297480, and rs10925503) were predisposed to negative response to BPs treatment (OR = 4.9, 95% CI 1.7–14.6, P = 0.005). The C-C-T-C combination was significantly over-represented in responders (OR = 0.1, 95% CI 0.1–0.5, P = 0.006). Conclusions Our findings highlight the importance of identified single gene variants and their allelic combinations for pharmacogenetics of BPs therapy of osteoporosis. Complex screening of these genetic markers could be used as a new strategy for personalized antiresorptive therapy.
Collapse
Affiliation(s)
- Pavel Marozik
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
- Department of General Ecology, Biology, and Environmental Genetics, International Sakharov Environmental Institute of the Belarusian State University, Minsk, Belarus
- * E-mail:
| | | | - Ema Rudenko
- Department of Cardiology and Internal Diseases, Belarusian State Medical University, Minsk, Belarus
| | | | - Alena Rudenka
- Department of Cardiology and Rheumatology, Belarusian Medical Academy of Post-Graduate Education, Minsk, Belarus
| | | | - Volha Samokhovec
- Department of Cardiology and Rheumatology, Belarusian Medical Academy of Post-Graduate Education, Minsk, Belarus
| | | | - Katsiaryna Kobets
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Irma Mosse
- Laboratory of Human Genetics, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
- Department of General Ecology, Biology, and Environmental Genetics, International Sakharov Environmental Institute of the Belarusian State University, Minsk, Belarus
| |
Collapse
|
9
|
Kharazmi M, Michaëlsson K, Schilcher J, Eriksson N, Melhus H, Wadelius M, Hallberg P. A Genome-Wide Association Study of Bisphosphonate-Associated Atypical Femoral Fracture. Calcif Tissue Int 2019; 105:51-67. [PMID: 31006051 DOI: 10.1007/s00223-019-00546-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Atypical femoral fracture is a well-documented adverse reaction to bisphosphonates. It is strongly related to duration of bisphosphonate use, and the risk declines rapidly after drug withdrawal. The mechanism behind bisphosphonate-associated atypical femoral fracture is unclear, but a genetic predisposition has been suggested. With the aim to identify common genetic variants that could be used for preemptive genetic testing, we performed a genome-wide association study. Cases were recruited mainly through reports of adverse drug reactions sent to the Swedish Medical Products Agency on a nation-wide basis. We compared atypical femoral fracture cases (n = 51) with population-based controls (n = 4891), and to reduce the possibility of confounding by indication, we also compared with bisphosphonate-treated controls without a current diagnosis of cancer (n = 324). The total number of single-nucleotide polymorphisms after imputation was 7,585,874. A genome-wide significance threshold of p < 5 × 10-8 was used to correct for multiple testing. In addition, we performed candidate gene analyses for a panel of 29 genes previously implicated in atypical femoral fractures (significance threshold of p < 5.7 × 10-6). Compared with population controls, bisphosphonate-associated atypical femoral fracture was associated with four isolated, uncommon single-nucleotide polymorphisms. When cases were compared with bisphosphonate-treated controls, no statistically significant genome-wide association remained. We conclude that the detected associations were either false positives or related to the underlying disease, i.e., treatment indication. Furthermore, there was no significant association with single-nucleotide polymorphisms in the 29 candidate genes. In conclusion, this study found no evidence of a common genetic predisposition for bisphosphonate-associated atypical femoral fracture. Further studies of larger sample size to identify possible weakly associated genetic traits, as well as whole exome or whole-genome sequencing studies to identify possible rare genetic variation conferring a risk are warranted.
Collapse
Affiliation(s)
- Mohammad Kharazmi
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jörg Schilcher
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Roca-Ayats N, Ng PY, Garcia-Giralt N, Falcó-Mascaró M, Cozar M, Abril JF, Quesada Gómez JM, Prieto-Alhambra D, Nogués X, Dunford JE, Russell RG, Baron R, Grinberg D, Balcells S, Díez-Pérez A. Functional Characterization of a GGPPS Variant Identified in Atypical Femoral Fracture Patients and Delineation of the Role of GGPPS in Bone-Relevant Cell Types. J Bone Miner Res 2018; 33:2091-2098. [PMID: 30184270 DOI: 10.1002/jbmr.3580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/06/2018] [Accepted: 08/26/2018] [Indexed: 12/25/2022]
Abstract
Atypical femoral fractures (AFFs) are a rare but potentially devastating event, often but not always linked to bisphosphonate (BP) therapy. The pathogenic mechanisms underlying AFFs remain obscure, and there are no tests available that might assist in identifying those at high risk of AFF. We previously used exome sequencing to explore the genetic background of three sisters with AFFs and three additional unrelated AFF cases, all previously treated with BPs. We detected 37 rare mutations (in 34 genes) shared by the three sisters. Notably, we found a p.Asp188Tyr mutation in the enzyme geranylgeranyl pyrophosphate synthase, a component of the mevalonate pathway, which is critical to osteoclast function and is inhibited by N-BPs. In addition, the CYP1A1 gene, responsible for the hydroxylation of 17β-estradiol, estrone, and vitamin D, was also mutated in all three sisters and one unrelated patient. Here we present a detailed list of the variants found and report functional analyses of the GGPS1 p.Asp188Tyr mutation, which showed a severe reduction in enzyme activity together with oligomerization defects. Unlike BP treatment, this genetic mutation will affect all cells in the carriers. RNAi knockdown of GGPS1 in osteoblasts produced a strong mineralization reduction and a reduced expression of osteocalcin, osterix, and RANKL, whereas in osteoclasts, it led to a lower resorption activity. Taken together, the impact of the mutated GGPPS and the relevance of the downstream effects in bone cells make it a strong candidate for AFF susceptibility. We speculate that other genes such as CYP1A1 might be involved in AFF pathogenesis, which remains to be functionally proved. The identification of the genetic background for AFFs provides new insights for future development of novel risk assessment tools. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Neus Roca-Ayats
- Department of Genetics, Microbiology, and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Spain
| | - Pei Ying Ng
- Division of Bone and Mineral Research, Department of Oral Medicine, Harvard School of Dental Medicine, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Maite Falcó-Mascaró
- Department of Genetics, Microbiology, and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Spain
| | - Mónica Cozar
- Department of Genetics, Microbiology, and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Spain
| | - Josep Francesc Abril
- Department of Genetics, Microbiology, and Statistics, Facultat de Biologia, Universitat de Barcelona, IBUB, Barcelona, Spain
| | - José Manuel Quesada Gómez
- Mineral Metabolism Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, CIBERFES, ISCII, Córdoba, Spain
| | - Daniel Prieto-Alhambra
- GREMPAL (Grup de Recerca en Malalties Prevalents de l'Aparell Locomotor), Idiap Jordi Gol Primary Care Research Institute, CIBERFES, Autonomous University of Barcelona, Barcelona, Spain.,NIHR Musculoskeletal BRU and Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - James E Dunford
- NIHR Musculoskeletal BRU and Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - R Graham Russell
- NIHR Musculoskeletal BRU and Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK.,The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Harvard School of Dental Medicine, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel Grinberg
- Department of Genetics, Microbiology, and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Spain
| | - Susana Balcells
- Department of Genetics, Microbiology, and Statistics, Facultat de Biologia, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, IBUB, IRSJD, Barcelona, Spain
| | - Adolfo Díez-Pérez
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| |
Collapse
|
11
|
Han LW, Ma DD, Xu XJ, Lü F, Liu Y, Xia WB, Jiang Y, Wang O, Xing XP, Li M. Association Between Geranylgeranyl Pyrophosphate Synthase Gene Polymorphisms and Bone Phenotypes and Response to Alendronate Treatment in Chinese Osteoporotic Women. ACTA ACUST UNITED AC 2016; 31:8-16. [PMID: 28031082 DOI: 10.1016/s1001-9294(16)30016-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective To investigate the relationship between geranylgeranyl pyrophosphate synthase (GGPPS) gene polymorphisms and bone response to alendronate in Chinese osteoporotic women.Methods A total of 639 postmenopausal women with osteoporosis or osteopenia were included and randomly received treatment of low dose (70 mg per two weeks) or standard dose (70 mg weekly) of alendronate for one year. The six tag single nucleotide polymorphisms of GGPPS gene were identified. Bone mineral density (BMD), serum cross-linked C-telopeptide of type I collagen (β-CTX), and total alkaline phosphatase (ALP) were measured before and after treatment. GGPPS gene polymorphisms and the changes of BMD and bone turnover markers after treatment were analyzed.Results rs10925503 polymorphism of GGPPS gene was correlated to serum β-CTX levels at baseline, and patients with TT genotype had significantly higher serum β-CTX level than those with TC or CC genotype (all P<0.05). No correlation was found between polymorphisms of GGPPS gene and serum total ALP levels, as well as BMD at baseline. After 12 months of treatment, lumbar spine and hip BMD increased and serum bone turnover markers decreased significantly (P<0.01), and without obvious differences between the low dose and standard dose groups (all P>0.05). However, GGPPS gene polymorphisms were uncorrelated to percentage changes of BMD, serum total ALP, and β-CTX levels (all P>0.05).Conclusion GGPPS gene polymorphisms are correlated to osteoclasts activity, but all tag single nucleotide polymorphisms of GGPPS gene have no influence on the skeletal response to alendronate treatment.
Collapse
Affiliation(s)
- Lan-Wen Han
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Dou-Dou Ma
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xiao-Jie Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Fang Lü
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Yi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China
| |
Collapse
|
12
|
López-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol 2016; 12:389-98. [PMID: 26891809 DOI: 10.1517/17425255.2016.1154533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
OPG, RANKL, and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia. Pharmacogenet Genomics 2016; 26:12-9. [DOI: 10.1097/fpc.0000000000000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Zhou PR, Xu XJ, Zhang ZL, Liao EY, Chen DC, Liu J, Wu W, Jiang Y, Wang O, Xia WB, Xing XP, Xu L, Li M. SOST polymorphisms and response to alendronate treatment in postmenopausal Chinese women with osteoporosis. Pharmacogenomics 2015; 16:1077-88. [PMID: 26250343 DOI: 10.2217/pgs.15.76] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the association between SOST gene polymorphisms and response to alendronate treatment. MATERIALS & METHODS 639 Chinese postmenopausal women with osteoporosis or osteopenia received alendronate treatment. Polymorphisms of SOST were analyzed. Bone mineral density (BMD), serum ALP and β-CTX levels were measured. The correlation of SOST polymorphisms with changes of BMD and bone biomarkers after treatment was analyzed. RESULTS rs1234612 and rs851054 polymorphisms were correlated to baseline lumbar spine BMD (p < 0.05). After 12 months of treatment rs1234612 and rs865429 polymorphisms were correlated to BMD changes at the lumbar spine (p < 0.05) or femoral neck (p < 0.05), respectively. CONCLUSION The polymorphisms of SOST are genetic factors affecting bone health and response to alendronate in Chinese postmenopausal women.
Collapse
Affiliation(s)
- Pei-ran Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-jie Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhen-lin Zhang
- Metabolic Bone Disease & Genetics Research Unit, Department of Osteoporosis & Bone Diseases, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Er-yuan Liao
- Institute of Endocrinology & Metabolism, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - De-cai Chen
- Department of Endocrinology, Osteoporosis Education Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Liu
- Department of Orthopedics, Xijing Hospital, The Fourth Liberation Army University, Xi'an, Shaanxi, China
| | - Wen Wu
- Department of Endocrinology, Guangdong General Hospital, Guangzhou, Guangdong, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Xu
- Department of Obstetrics & Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Bratanic N, Dzodan B, Trebusak Podkrajsek K, Bertok S, Ostanek B, Marc J, Battelino T, Avbelj Stefanija M. Childhood Osteoporosis and Presentation of Two Cases with Osteogenesis Imperfecta Type V. Zdr Varst 2015; 54:119-25. [PMID: 27646918 PMCID: PMC4820164 DOI: 10.1515/sjph-2015-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is etiologically heterogeneous disorder characterized by childhood osteoporosis. A subtype OI type V is caused by the same c.-14C>T mutation in the IFITM5 gene. Nevertheless, there is a marked interindividual phenotypic variability in clinical presentation; however, response to bisphosphonates is reported to be good. Methods Two individuals with OI type V had multiple recurrent fractures with hypertrophic calluses, scoliosis and ossifications of the forearm interosseous membranes. Sequencing of IFITM5, genotyping of variants rs2297480 in farnesyl diphosphate synthase gene (FDPS), and rs3840452 in geranylgeranyl diphosphate synthase 1 gene (GGPS1), both involved in bisphosphonate metabolism, was performed. Results In patient 1 BMD reached normal values during bisphosphonate treatment and remained normal four years after the treatment discontinuation. In patient 2 no increase in BMD after five years of bisphosphonate treatment was observed and callus formation continued. The c.-14C>T IFITM5 mutation in heterozygous state was detected in both individuals. Additionally, both patients carried FDPS variant rs2297480 in homozygous state, and were heterozygous for GGPS 1 variant rs3840452. Conclusions The paper presents a short overview of childhood osteoporosis with a special emphasis on OI type V by presenting two cases. Both OI type V patients had identical disease-causing mutation, but marked interindividual phenotypic variability. The striking failure in response to bisphosphonate treatment in one of the patients could not be explained by the variants in genes involved in bisphosphonate metabolism.
Collapse
Affiliation(s)
- Nina Bratanic
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Bojana Dzodan
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Katarina Trebusak Podkrajsek
- University Medical Centre Ljubljana, University Children's Hospital, Unit for Special Laboratory Diagnostics, Vrazov trg 1, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sara Bertok
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Barbara Ostanek
- University of Ljubljana, Faculty of Farmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Farmacy, Askerceva 7, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- University Children's Hospital, Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Bohoriceva 20, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Abstract
The challenge of personalized medicine is to move away from the traditional 'one-size-fits-all' pharmacology to genotype-based individualized therapies. As an individual's response to drugs is under the control of genes, personal genetic profiles could help clinicians to predict individual drug response and prescribe the right drug and dose, thereby optimising efficacy and avoiding risk of adverse effects. Currently, the concrete application of pharmacogenetics into clinical practice is limited to a few drugs, and the genetic prediction of drug response is far from clear for many of thve principal complex disorders. This is even more evident in the field of osteoporosis and metabolic bone disorders, for which few pharmacogenetic studies have been conducted, and no conclusive results are available. In this chapter, we review recent research on pharmacogenetics of osteoporosis, evaluate criticisms, and offer possible suggestions for improvements in this field and for possible future applications into clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
17
|
Genetic polymorphisms in the mevalonate pathway affect the therapeutic response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. THE PHARMACOGENOMICS JOURNAL 2014; 15:158-64. [DOI: 10.1038/tpj.2014.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/15/2014] [Accepted: 08/13/2014] [Indexed: 11/08/2022]
|
18
|
Abstract
Osteoporosis is a prevalent disease that typically reduces bone strength and predisposes to fractures. It is a multifactorial disorder resulting from the interaction of genetic and acquired factors. Candidate gene studies and, more recently, genome-wide studies have identified a number of polymorphisms significantly associated with bone mass and fractures. Anti-resorptive drugs, which inhibit the differentiation and activity of osteoclasts, are frequently used to treat patients with osteoporosis.Several candidate gene studies have explored the association of genetic factors with drug response, including some common polymorphisms of the gene encoding FDPS (Farnesyl diphosphate synthase), an enzyme that is the main target of aminobisphosphonates. Although scarce data are available, interesting opportunities are open for a better understanding of the pharmacogenetics of osteoporosis and osteoporotic fractures. They include the reanalysis of data already available from epidemiological studies and clinical trials, as well as obtaining pharmacogenetic data in new studies. However, based upon the experience with previous genome-wide association studies, large collaborative efforts would be likely needed to obtain meaningful results.
Collapse
Affiliation(s)
- José A Riancho
- Bone Laboratory, Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, Av. Valdecilla s/n, Santander, 39008, Spain,
| | | |
Collapse
|
19
|
Rojo Venegas K, Aguilera Gómez M, Cañada Garre M, Sánchez AG, Contreras-Ortega C, Calleja Hernández MA. Pharmacogenetics of osteoporosis: towards novel theranostics for personalized medicine? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 16:638-51. [PMID: 23215803 DOI: 10.1089/omi.2011.0150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Osteoporosis is a complex multifactorial bone disorder with a strong genetic basis. It is the most common, severe, progressive skeletal illness that has been increasing, particularly in developed countries. Osteoporosis will no doubt constitute a serious clinical burden in healthcare management in the coming decades. The genetics of osteoporosis should be analyzed from both the disease susceptibility and the pharmacogenetic treatment perspectives. The former has been widely studied and discussed, while the latter still requires much more information and research. This article provides a synthesis of the literature on the genetics of osteoporosis and an update on progress made in pharmacogenetics of osteoporosis in recent years, specifically regarding the new molecular targets for antiresorptive drugs. In-depth translation of osteoporosis pharmacogenetics approaches to clinical practice demands a new vision grounded on the concept of "theranostics," that is, the integration of diagnostics for both disease susceptibility testing, as well as for prediction of health intervention outcomes. In essence, theranostics signals a broadening in the scope of inquiry in diagnostics medicine. The upcoming wave of theranostics medicine also suggests more distributed forms of science and knowledge production, both by experts and end-users of scientific products. Both the diagnosis and personalized treatment of osteoporosis could conceivably benefit from the emerging postgenomics field of theranostics.
Collapse
Affiliation(s)
- Karen Rojo Venegas
- Pharmacy Service, Virgen de las Nieves University Hospital, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Marini F, Brandi ML. The future of pharmacogenetics for osteoporosis. Pharmacogenomics 2013; 14:641-53. [DOI: 10.2217/pgs.13.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility to predict the outcome of medical treatments, both in terms of efficacy and development of adverse effects, is the main goal of modern personalized medicine. The principal aim of pharmacogenetics is to design specific predictive genetic tests, to be performed prior to any drug treatment, and to tailor the therapy for each patient based on the results of these tests. Few pharmacogenetic tests are today validated and commonly applied in clinical practice, and none in the area of osteoporosis and bone disorders. Surely, the complex regulation of bone metabolism and the involvement of numerous different molecular pathways makes it difficult to individuate responsible genes and polymorphisms involved in the modulation of anti-osteoporotic drug response and, subsequently, in designing specific predictive analyses.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Riancho JA, Hernández JL. Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics 2012; 13:815-29. [PMID: 22594513 DOI: 10.2217/pgs.12.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is frequent in postmenopausal women and old men. As with other prevalent disorders, it is the consequence of complex interactions between genetic and acquired factors. Candidate gene and genome-wide association studies have pointed to several genes as determinants of the risk of osteoporosis. Some of them were previously unsuspected and may help to find new therapeutic targets. Several drugs already available are very effective in increasing bone mass and decreasing fracture risk. However, not all patients respond properly and some of them suffer fragility fractures despite therapy. Investigators have tried to identify the genetic features influencing the response to antiosteoporotic therapy. In this article we will review recent data providing insight into new genes involved in osteoporosis and the pharmacogenetic data currently available.
Collapse
Affiliation(s)
- José A Riancho
- Department of Internal Medicine, Hospital UM Valdecilla-IFIMAV, University of Cantabria, Av Valdecilla s/n, Santander 39008, Spain.
| | | |
Collapse
|
22
|
Abstract
The early genetic prediction of personal drug therapy outcome, both in terms of identification of poor responders or nonresponders, as well as of subjects at risk of developing adverse reactions, and its translation into the clinical practice are the main challenges of personalized medicine. The application of pharmacogenetic predictive tests will be very useful mostly in cases of chronic disorders, as in metabolic bone diseases, that require long-term treatments and for whom exist effective differently acting drugs to be alternatively chosen. Pharmacogenetic tests, prior to drug administration, would hypothetically grant the optimization of drug therapy, based on patient's genotype, to ensure maximum efficacy with minimal adverse effects. This review aims to offer an overview on the principal findings in the field of pharmacogenetics of osteoporosis, and it will discuss future perspectives and possible clinical applications of pharmacogenetic tests for antiresorptive drugs.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | |
Collapse
|
23
|
Weivoda MM, Hohl RJ. Geranylgeranyl pyrophosphate stimulates PPARγ expression and adipogenesis through the inhibition of osteoblast differentiation. Bone 2012; 50:467-76. [PMID: 22019459 DOI: 10.1016/j.bone.2011.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/31/2011] [Accepted: 09/26/2011] [Indexed: 01/04/2023]
Abstract
Osteoblasts and adipocytes are derived from mesenchymal stem cells and play important roles in skeletal homeostasis. Osteoblast differentiation results in a decrease in the cellular concentration of the isoprenoid geranylgeranyl pyrophosphate (GGPP), and the statin-mediated depletion of GGPP stimulates osteoblast differentiation. Adipogenic differentiation, in contrast, results in increased expression of GGPP synthase (GGPPS), and GGPP lowering agents inhibit adipogenesis in vitro. In this study, we tested the hypothesis that GGPP inhibits osteoblast differentiation and enhances adipogenesis. We found that treatment with exogenous GGPP reduced osteoblastic gene expression and matrix mineralization in primary calvarial osteoblast cultures. GGPP treatment of primary calvarial osteoblasts and bone marrow stromal cells (BMSCs) led to increased expression of total peroxisome proliferator activated receptor (PPAR)-γ as well as the adipocyte specific splice variant PPARγ2. Inhibition of PPARγ transcriptional activity did not prevent the effects of GGPP on osteoblasts, suggesting that enhanced PPARγ expression is secondary to the inhibition of osteoblast differentiation. Enhanced PPARγ expression correlated with the increased formation of Oil Red O-positive cells in osteoblast cultures. Additionally, primary calvarial osteoblasts treated with GGPP exhibited increased expression of the adipokine adiponectin. Consistent with a role for GGPP in adipogenesis, adipogenic differentiation of BMSCs could be impaired by specific depletion of cellular GGPP. In contrast to previous reports utilizing other cell types, treatment of osteoblasts with GGPP did not increase geranylgeranylation, suggesting that GGPP itself may be acting as a signaling molecule. GGPP treatment of MC3T3-E1 pre-osteoblasts and primary calvarial osteoblasts led to enhanced insulin-induced Erk signaling which has been previously demonstrated to inhibit insulin receptor substrate (IRS)-1 activity. Additionally, GGPP treatment of MC3T3-E1 pre-osteoblasts resulted in a decrease in the insulin-induced phosphorylation of the insulin receptor. Altogether these findings demonstrate a negative role for GGPP in osteoblast differentiation, leading to increased adipogenesis. Additionally, the effects of GGPP on insulin signaling suggest a potential mechanism for inhibition of osteoblast differentiation and also implicate a role for this isoprenoid in physiological energy homeostasis.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Pharmacology, 51 Newton Road, Iowa City, IA 52242, USA
| | | |
Collapse
|
24
|
Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. THE PHARMACOGENOMICS JOURNAL 2010; 12:227-32. [PMID: 21151198 DOI: 10.1038/tpj.2010.88] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Farnesyl diphosphate synthase (FDPS) is necessary for osteoclast survival and activity and is considered as a major molecular target of aminobisphosphonates. Our objective was to analyze the influence of FDPS polymorphisms on bone mineral density (BMD) and the response to antiresortive drugs. Three single-nucleotide polymorphisms of FDPS were analyzed in 1186 postmenopausal women. There was only a marginally significant association of baseline hip BMD with rs11264359 alleles (P=0.043). However, among 191 women receiving antiresortive therapy, there was a very significant association between rs2297480 or rs11264359 alleles and the BMD changes after aminobisphosphonate therapy for an average period of 2.5 years (P=0.001). The genotype explained 7.2% of the variance in the BMD response. On the other hand, there was no association between the BMD changes after raloxifene therapy and any of the polymorphisms studied. These results suggest that common polymorphisms of the FDPS gene influence the response to aminobisphosphonates.
Collapse
|
25
|
Abstract
Osteoporosis is the most common and serious skeletal disorder of the elderly; it is characterized by reduced bone mass and deterioration of bone microarchitecture, with an increased risk of low-trauma fractures. Genetic factors are important predisposing elements influencing individual bone strength variability and susceptibility to osteoporosis and related complications. The genetics of osteoporosis encompasses two main areas: disease susceptibility and pharmacogenetics of drug response. The former has been widely studied while the latter is still largely untouched. Pharmacogenetics is the study of relationships between genetic variations and inter-individual differences in drug response in terms of efficacy and adverse effects, representing an opportunity to identify new biomarkers for drug development and drug response. However, pharmacogenetic approaches to osteoporosis are still in their infancy, needing to be developed further and combined with functional studies. This article provides an overview on the current basic research applications in the pharmacogenetics of osteoporosis and their implications for clinical practice.
Collapse
Affiliation(s)
- Francesca Marini
- a Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6 50139 Florence, Italy
| | - Maria Luisa Brandi
- a Metabolic Bone Unit, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6 50139 Florence, Italy
- b
| |
Collapse
|
26
|
Abstract
Osteoporosis is a complex bone disorder with a strong genetic basis. The genetics of osteoporosis encompasses two main areas: genetics of disease susceptibility and pharmacogenetics of drug response. The former has been widely studied in the past few decades, while the latter is still largely untouched. This review will provide an overview of the pharmacogenetics of osteoporosis, focusing on the major recent advances in the past two years.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Internal Medicine, University of Florence Viale Pieraccini 6, 50139 Florence Italy
| | | |
Collapse
|