1
|
Wu Y, Xiong J, Chen G, Liu Y, Zhao C, Zhang Z, Xu H. Oxymatrine relieves non-alcoholic fatty liver disease by promoting sirtuin 1/adenosine 5'-monophosphate-activated protein kinase pathway and peroxisome proliferator activated receptor alpha-mediated hepatic fatty acid oxidation. Eur J Pharmacol 2025; 987:177173. [PMID: 39637931 DOI: 10.1016/j.ejphar.2024.177173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disease without approved treatment. Oxymatrine (OMT) has protective effects in various liver diseases. We aimed to investigate the roles and mechanisms of OMT in NAFLD. NAFLD models were established using high-fat and high-sucrose diet-fed rats and oleic acid (OA)-stimulated hepatocytes, respectively. Then, OMT was used to treat the NAFLD models, with metformin as a positive control. Liver damage, lipid accumulation and hepatic lipid profile of NAFLD rats were assessed. Peroxisome proliferator activated receptor alpha (PPARα), sirtuin 1 (Sirt1)/adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway- and fatty acid oxidation (acyl-CoA oxidase 1 and carnitine palmitoyltransferase 1A)-associated proteins were measured both in vivo and in vitro. Furthermore, hepatocytes were transfected with si-Sirt1 and oe-PPARα to verify the mechanisms of OMT in NAFLD. NAFLD rats supplemented with OMT displayed reduced liver damage and lipid accumulation. After OMT intervention, the liver lipid profile of NAFLD rats was changed greatly, most of the top differentially expressed lipid metabolites were triglyceride, moreover, diacylglycerol content was decreased in NAFLD rats. OMT activated the Sirt1/AMPK pathway and PPARα, and upregulated acyl-CoA oxidase 1 and carnitine palmitoyltransferase 1A expressions in NAFLD models. In vitro, OMT enhanced viability, and improved lipid accumulation in OA-stimulated hepatocytes. However, the protective functions of OMT in OA-exposed hepatocytes were offset by Sirt1 knockdown, while PPARα overexpression further counteracted the effects of Sirt1 knockdown. OMT could relieve NAFLD by promoting Sirt1/AMPK pathway- and PPARα-mediated hepatic fatty acid oxidation, indicating that OMT is a potential approach for NAFLD treatment.
Collapse
Affiliation(s)
- Yijun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Changqing Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Hirayama K, Koshizaka M, Ishibashi R, Shoji M, Horikoshi T, Sakurai K, Yokote K. Effects of the SGLT2 inhibitor ipragliflozin and metformin on hepatic steatosis and liver fibrosis: Sub-analysis of a randomized controlled study. Diabetes Obes Metab 2025. [PMID: 39806556 DOI: 10.1111/dom.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
AIMS To compare the effects of ipragliflozin, a sodium-dependent glucose transporter-2 inhibitor, and those of metformin on the visceral fat area (VFA), a prospective, multi-centre, open-label, blinded-endpoint, randomized, controlled study was undertaken. The generated data were used to examine the effects of ipragliflozin and metformin on indices of hepatic steatosis and liver fibrosis. MATERIALS AND METHODS In total, 103 Japanese patients with type-2 diabetes (T2D), body mass index (BMI) of ≥22 kg/m2 and glycated haemoglobin level of 7%-10% were randomly administered ipragliflozin 50 mg or metformin 1000 mg for 24 weeks. Various parameters, including hepatic steatosis indices, fatty liver index (FLI), hepatic steatosis index (HSI), non-alcoholic fatty liver disease-liver fat score (NAFLD-LFS), liver fibrosis indices, AST to platelet ratio index (APRI) and fibrosis-4 (FIB-4) index, were compared in the sub-analyses. The correlations between changes in each index and VFA were evaluated. RESULTS At baseline, patients demonstrated moderate hepatic steatosis, with FLI scores of 52.9 ± 26.6 and 57.8 ± 29.0 in the ipragliflozin and metformin groups, respectively. At 24 weeks, compared with metformin, ipragliflozin showed improvements in hepatic steatosis indices: FLI (-9.24 ± 10.7 vs. -3.45 ± 11.8, p = 0.013), HSI (-1.45 ± 2.32 vs. -0.45 ± 1.87, p = 0.021), NAFLD-LFS (-0.70 ± 1.46 vs. -0.04 ± 0.98, p = 0.011) and liver fibrosis index: APRI (-0.110 ± 0.323 vs. 0.033 ± 0.181, p = 0.010). In the ipragliflozin group, changes in FLI and HSI were correlated with VFA reduction (r = 0.340, p = 0.024; r = 0.367, p = 0.011, respectively). CONCLUSIONS Compared with metformin, ipragliflozin improved multiple hepatic steatosis and liver fibrosis indices, suggesting that ipragliflozin exerts potential hepatoprotective effects in early-stage liver disease associated with T2D.
Collapse
Affiliation(s)
- Kiichi Hirayama
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Science, Chiba University, Chiba, Japan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Kisarazu, Japan
- Department of Internal Medicine, Minami-Boso City Tomiyama National Health Insurance Hospital, Minami-Boso, Japan
| | - Masaya Koshizaka
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Science, Chiba University, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryoichi Ishibashi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Kimitsu Chuo Hospital, Kisarazu, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayumi Shoji
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Takuro Horikoshi
- Diagnostic Radiology and Radiation Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Science, Chiba University, Chiba, Japan
| | | |
Collapse
|
3
|
Elmansi AM, Kassem A, Castilla RM, Miller RA. Downregulation of the NF-κB protein p65 is a shared phenotype among most anti-aging interventions. GeroScience 2024:10.1007/s11357-024-01466-9. [PMID: 39666139 DOI: 10.1007/s11357-024-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions. We found that the NF-κB protein p65 is significantly downregulated in the liver of several kinds of slow-aging mice. These included both sexes of GHRKO and Snell Dwarf mutant mice, and in females only of PAPPA KO mice. P65 is also lower in both sexes of mice treated with rapamycin, canagliflozin, meclizine, or acarbose, and in mice undergoing caloric restriction. Two drugs that extend lifespan of male mice, i.e. 17α-estradiol and astaxanthin, however, did not produce lower levels of p65. We also measured other canonical NF-κB signaling regulators, including the activators IKKα and IKKβ and the inhibitor IκB-α. We found that those regulators do not consistently change in a direction that would lead to of NF-κB inhibition. In contrast, we found that NCoR1, an HDAC3 cofactor and a transcription co-repressor that regulates p65 activity, was also downregulated in many of these mouse models. Finally, we report downregulation of three p65 target proteins that regulate the metabolic and inflammatory states of the liver (HNF4α, IL-1β, and CRP) in multiple slow-aging mouse models. Together, these data suggest that NF-κB signaling, might be inhibited in liver of multiple varieties of slow aging mice. This establishes p65 as a potential target for novel longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Abraham Kassem
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rafael M Castilla
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Kawaguchi T, Fujishima Y, Wakasugi D, Io F, Sato Y, Uchida S, Kitajima Y. Effects of SGLT2 inhibitors on the onset of esophageal varices and extrahepatic cancer in type 2 diabetic patients with suspected MASLD: a nationwide database study in Japan. J Gastroenterol 2024; 59:1120-1132. [PMID: 39392481 PMCID: PMC11541318 DOI: 10.1007/s00535-024-02158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIM SGLT2 inhibitors (SGLT2i) improve hepatic steatosis in patients with type 2 diabetes mellitus (T2DM) and MASLD. We aimed to investigate the impact of SGLT2i on the incidence of liver-related events and extrahepatic cancer compared to DPP4 inhibitors (DPP4i) in patients with T2DM and suspected MASLD using a medical claims database in Japan. METHODS We conducted a retrospective study using a Japanese medical claims database. Among patients with T2DM who were prescribed SGLT2i or DPP4i (n = 1,628,656), patients with suspected MASLD were classified into SGLT2i (n = 4204) and DPP4i (n = 4204) groups. Effects of SGLT2i on the following outcomes were compared to DPP4i: (1) changes in HbA1c and ALT levels after 6 months, (2) changes in hepatic fibrosis index, and (3) the incidence of liver-related events/extrahepatic cancer over 12 months. RESULTS After 6 months, DPP4i significantly decreased HbA1c levels compared to SGLT2i. In contrast, SGLT2i significantly decreased ALT levels compared to DPP4i. SGLT2i significantly decreased FIB-4 index compared to DPP4i over 12 months. Although no significant difference was observed in the incidence of overall liver-related events between the two groups, SGLT2i significantly reduced the incidence of esophageal varices (HR 0.12, 95%CI 0.01-0.95, P = 0.044). Moreover, SGLT2i significantly suppressed the incidence of extrahepatic cancer (HR 0.50, 95%CI 0.30-0.84, P = 0.009) compared to DPP4i. CONCLUSION SGLT2i was more beneficial than DPP4i in improving the hepatic inflammation and fibrosis indices. Moreover, SGLT2i suppressed the incidence of esophageal varices and extrahepatic cancer compared to DPP4i. SGLT2i may suppress life-threatening events in patients with T2DM and suspected MASLD.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | | | | | - Fusayo Io
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yuri Sato
- Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
5
|
Farrash WF, Idris S, Elzubier ME, Khidir EBA, Aslam A, Mujalli A, Almaimani RA, Obaid AA, El-Readi MZ, Alobaidy MA, Salaka A, Shakoori AM, Saleh AM, Minshawi F, Samkari JA, Alshehre SM, Refaat B. Enhanced hepatoprotective effects of empagliflozin and vitamin D dual therapy against metabolic dysfunction-associated steatohepatitis in mice by boosted modulation of metabolic, oxidative stress, and inflammatory pathways. Int J Exp Pathol 2024; 105:219-234. [PMID: 39397269 DOI: 10.1111/iep.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Although single treatment with sodium-glucose cotransporter-2 inhibitors (SGLT2i) or vitamin D3 (VD3) inhibited metabolic dysfunction-associated steatohepatitis (MASH) development in diabetic patients, their combination has not been explored previously. Hence, this study investigated the hepatoprotective effects of SGLT2i (empagliflozin) and/or VD3 against MASH in type 2 diabetic mice. Forty Mice were assigned into negative (NC) and positive (PC) controls, SGLT2i, VD3, and SGLT2i + VD3 groups. All animals, except the NC group, received high-fructose/high-fat diet (8 weeks) followed by diabetes induction. Diabetic mice then received another cycle of high-fructose/high-fat diet (4 weeks) followed by 8 weeks of treatment (five times/week) with SGLT2i (5.1 mg/kg/day) and/or VD3 (410 IU/Kg/day). The PC group demonstrated hyperglycaemia, dyslipidaemia, elevated liver enzymes, and increased non-alcoholic fatty liver disease activity score (NAS) with fibrosis. Hepatic glucose transporting molecule (SGLT2) with lipogenesis (SREBP-1/PPARγ), oxidative stress (MDA/H2O2), inflammation (IL1β/IL6/TNF-α), fibrosis (TGF-β1/α-SMA), and apoptosis (TUNEL/Caspase-3) markers alongside the PI3K/AKT/mTOR pathway increased in the PC group. Conversely, hepatic insulin-dependent glucose transporter (GLUT4), lipolytic (PPARα/INSIG1), antioxidant (GSH/GPx1/SOD1/CAT), and anti-inflammatory (IL-10) molecules with the inhibitor of PI3K/AKT/mTOR pathway (PTEN) decreased in the PC group. Whilst SGLT2i monotherapy outperformed VD3, their combination showed the best attenuation of hyperglycaemia, dyslipidaemia, and fibrosis with the strongest modulation of hepatic glucose-transporting and lipid-regulatory molecules, PI3K/AKT/mTOR pathway, and markers of oxidative stress, inflammation, fibrosis, and apoptosis. This study is the first to reveal boosted hepatoprotection for SGLT2i and VD3 co-therapy against diabetes-induced MASH, possibly via enhanced metabolic control and modulation of hepatic PI3K/AKT/mTOR, anti-inflammatory, anti-oxidative, and anti-fibrotic pathways.
Collapse
Affiliation(s)
- Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elshiekh B A Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Z El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohammad A Alobaidy
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Salaka
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan M Shakoori
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa M Saleh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jamil A Samkari
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sallwa M Alshehre
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Pradhan S, Kalanski S, Tintut Y, Demer LL. Complex actions of sodium glucose transporter-2 inhibitors on lipids, calcific atherosclerosis, and bone density. Curr Opin Lipidol 2024; 35:253-257. [PMID: 39052539 DOI: 10.1097/mol.0000000000000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Inhibitors of sodium-glucose cotransporter-2 (SGLT2) lower renal glucose reabsorption and, thus, are used to treat patients with type 2 diabetes mellitus. Clinical trials coincidentally showed that SGLT2 inhibitors also benefitted patients with heart failure. This review explores the impact of SGLT2 inhibitors on other aspects of cardiovascular disease and skeletal health. RECENT FINDINGS In some, but not all, clinical and preclinical studies, SGLT2 inhibitors are found to reduce serum levels of free fatty acids and triglycerides. Their effects on total and low-density lipoprotein cholesterol and cardiac function also vary. However, SGLT2 inhibitors reduce lipid accumulation in the liver, kidney, and heart, and alter expression of lipid metabolism genes. Effects on free fatty acid uptake in abdominal fat depots depend on the location of adipose tissue. In male, but not female, mice, SGLT2 inhibitors reduce the atherosclerotic lesions and aortic calcium deposition. With respect to skeletal health, recent literature has reported conflicting associations with the risks of fracture and amputation. SUMMARY Studies suggest that SGLT2 inhibitors reduce tissue lipid accumulation, and in a sex-dependent manner, atherosclerosis and vascular calcification. However, their effects on lipid levels and bone health are complex and remain to be established.
Collapse
Affiliation(s)
| | | | - Yin Tintut
- Department of Medicine
- Department of Orthopaedic Surgery
- Department of Physiology
| | - Linda L Demer
- Department of Medicine
- Department of Physiology
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhang R, Xie Q, Lu X, Fan R, Tong N. Research advances in the anti-inflammatory effects of SGLT inhibitors in type 2 diabetes mellitus. Diabetol Metab Syndr 2024; 16:99. [PMID: 38735956 PMCID: PMC11089742 DOI: 10.1186/s13098-024-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 05/14/2024] Open
Abstract
Diabetes mellitus is one of the most significant global burden diseases. It is well established that a chronic, systemic, low-grade inflammatory condition is strongly correlated with type 2 diabetes mellitus (T2D) and the development of target-organ damage (TOD). Sodium-glucose cotransporter inhibitors (SGLTis), novel oral drugs for the treatment of diabetes, act mainly by reducing glucose reabsorption in proximal renal tubules and/or the intestine. Several high-quality clinical trials and large observational studies have revealed that SGLTis significantly improve cardiovascular and renal outcomes in T2D patients. Increasing evidence suggests that this is closely related to their anti-inflammatory properties, which are mainly manifested by a reduction in plasma concentrations of inflammatory biomarkers. This review analyses the potential mechanisms behind the anti-inflammatory effects of SGLTis in diabetes and presents recent evidence of their therapeutic efficacy in treating diabetes and related TOD.
Collapse
Affiliation(s)
- Ruining Zhang
- Department of Endocrinology, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Lu
- Department of Endocrinology, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Rongping Fan
- Department of Endocrinology, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology, Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Gan T, Wang Q, Song Y, Shao M, Zhao Y, Guo F, Wei F, Fan X, Zhang W, Luo Y, Chen D, Wang S, Qin G. Canagliflozin improves fatty acid oxidation and ferroptosis of renal tubular epithelial cells via FOXA1-CPT1A axis in diabetic kidney disease. Mol Cell Endocrinol 2024; 582:112139. [PMID: 38128823 DOI: 10.1016/j.mce.2023.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Impaired fatty acid oxidation (FAO) is a metabolic hallmark of renal tubular epithelial cells (RTECs) under diabetic conditions. Disturbed FAO may promote cellular oxidative stress and insufficient energy production, leading to ferroptosis subsequently. Canagliflozin, an effective anti-hyperglycemic drug, may exert potential reno-protective effects by upregulating FAO and inhibiting ferroptosis in RTECs. However, the mechanisms involved remain unclear. The present study is aimed to characterize the detailed mechanisms underlying the impact of canagliflozin on FAO and ferroptosis. Type 2 diabetic db/db mice were administrated daily by gavage with canagliflozin (20 mg/kg/day, 40 mg/kg/day) or positive control drug pioglitazone (10 mg/kg/day) for 12 weeks. The results showed canagliflozin effectively improved renal function and structure, reduced lipid droplet accumulation, enhanced FAO with increased ATP contents and CPT1A expression, a rate-limiting enzyme of FAO, and relieved ferroptosis in diabetic mice. Moreover, overexpression of FOXA1, a transcription factor related with lipid metabolism, was observed to upregulate the level of CPT1A, and further alleviated ferroptosis in high glucose cultured HK-2 cells. Whereas FOXA1 knockdown had the opposite effect. Mechanistically, chromatin immunoprecipitation assay and dual-luciferase reporter gene assay results demonstrated that FOXA1 transcriptionally promoted the expression of CPT1A through a sis-inducible element located in the promoter region of the protein. In conclusion, these data suggest that canagliflozin improves FAO and attenuates ferroptosis of RTECs via FOXA1-CPT1A axis in diabetic kidney disease.
Collapse
Affiliation(s)
- Tian Gan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qingzhu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fangyi Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xunjie Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wei Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Luo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Duo Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shanshan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Xiao Y, Yang Y, Xiong H, Dong G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis 2024; 15:88. [PMID: 38272906 PMCID: PMC10810964 DOI: 10.1038/s41419-024-06463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Fatty acid metabolism, particularly fatty acid synthesis, is a very important cellular physiological process in which nutrients are used for energy storage and biofilm synthesis. As a key enzyme in the fatty acid metabolism, fatty acid synthase (FASN) is receiving increasing attention. Although previous studies on FASN have mainly focused on various malignancies, many studies have recently reported that FASN regulates the survival, differentiation, and function of various immune cells, and subsequently participates in the occurrence and development of immune-related diseases. However, few studies to date systematically summarized the function and molecular mechanisms of FASN in immune cell biology and related diseases. In this review, we discuss the regulatory effect of FASN on immune cells, and the progress in research on the implications of FASN in immune-related diseases. Understanding the function of FASN in immune cell biology and related diseases can offer insights into novel treatment strategies for clinical diseases.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
11
|
Danielewski M, Rapak A, Kruszyńska A, Małodobra-Mazur M, Oleszkiewicz P, Dzimira S, Kucharska AZ, Słupski W, Matuszewska A, Nowak B, Szeląg A, Piórecki N, Zaleska-Dorobisz U, Sozański T. Cornelian Cherry ( Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2024; 25:1199. [PMID: 38256272 PMCID: PMC10816641 DOI: 10.3390/ijms25021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland;
| | - Paweł Oleszkiewicz
- Department of Radiology and Imaging Diagnostics II, Lower Silesian Center of Oncology, Pulmonology and Hematology, Grabiszynska 105, 53-439 Wroclaw, Poland;
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland;
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, Cicha 2A, 35-326 Rzeszow, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Pediatric Radiology, Wroclaw Medical University, M. Sklodowskiej-Curie 50/52, 50-369 Wroclaw, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
12
|
Kwak JW, Lee YJ, Park B, Jung DH. Combined effect of serum carcinoembryonic antigen and hepatic steatosis on new-onset ischemic heart disease among middle-aged and older Korean adults: a cohort study. Front Nutr 2023; 10:1275450. [PMID: 37904789 PMCID: PMC10613517 DOI: 10.3389/fnut.2023.1275450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
Background Carcinoembryonic antigen (CEA) is a commonly used tumor marker in cancer screening. However, it has also been associated with metabolic alterations. Hepatic steatosis, the accumulation of fat in liver cells, is associated with various cardiovascular risk factors. This study investigated the risk of ischemic heart disease (IHD) in individuals with elevated CEA levels, hepatic steatosis, and their co-occurrence. Methods The study cohort comprised 5,580 Korean adults who underwent health examinations between November 2006 and June 2010. Data regarding baseline CEA levels, hepatic steatosis status, and development of IHD were collected. Hepatic steatosis was defined as more than two findings: deep attenuation, vascular blurring, and increased liver echogenicity on abdominal ultrasound. Participants were divided into four groups based on their CEA and hepatic steatosis status: no hepatic steatosis and low CEA (group 1), no hepatic steatosis and elevated CEA (group 2), low CEA and hepatic steatosis (group 3), and elevated CEA and hepatic steatosis (group 4). Results A total of 226 (4.1%) participants developed IHD during the follow-up period. Participants with elevated CEA levels and hepatic steatosis (group 4) had the highest cumulative incidence of IHD in comparison to other groups (p < 0.001). The combined effect of elevated CEA levels and hepatic steatosis showed significantly greater area under the receiver operating characteristic curve than hepatic steatosis alone (p < 0.001). Furthermore, participants with elevated CEA and hepatic steatosis (group 4) had higher risk of developing IHD compared to those with low CEA and no hepatic steatosis (group 1) (hazard ratio: 1.63, 95% confidence interval: 1.04-2.55, p = 0.034). Conclusion Co-occurrence of elevated CEA levels and hepatic steatosis increases the risk of IHD. Comprehensive risk assessment is crucial to guide interventions and improve cardiovascular health in individuals with both the conditions.
Collapse
Affiliation(s)
| | | | - Byoungjin Park
- Yonsei University Health System, Seoul, Republic of Korea
| | - Dong Hyuk Jung
- Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
13
|
Pathak M, Parveen R, Khan P, Saha N, Agarwal N. Impact of tofogliflozin on hepatic outcomes: a systematic review. Eur J Clin Pharmacol 2023; 79:1281-1290. [PMID: 37462748 DOI: 10.1007/s00228-023-03537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Studies have demonstrated a high prevalence of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes mellitus (T2DM) patients. The aim was to review the effect of tofogliflozin on hepatic outcomes in T2DM patients. METHODS A literature search in PubMed, Science Direct and Cochrane Central Register of Controlled Trials was conducted for randomised clinical trials of tofogliflozin by applying predetermined inclusion and exclusion criteria. RESULTS A total number of four randomised clinical trials, including 226 subjects, were included in the review. There was a significant decrease in aspartate aminotransferase (AST) and alanine transaminase (ALT) levels in the tofogliflozin group as compared to the control or active comparator groups. Additionally, gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) levels were also significantly decreased in the tofogliflozin group. However, no significant difference was observed in levels of adiponectin. CONCLUSION Overall, an improvement in levels of hepatic parameters was observed in T2DM patients with concurrent liver disorders. However, a large number of clinical trials are needed to prove the efficacy of tofogliflozin on hepatic outcomes in patients with T2DM.
Collapse
Affiliation(s)
- Mani Pathak
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rizwana Parveen
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Parvej Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nilanjan Saha
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi Agarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
14
|
Gu S, Fan B, Wan F, Gao T, Qi Y, Zhou J, Zhang Y, Gu D, Xie W. Antibacterial Activity and Mechanism of Canagliflozin against Methicillin-Resistant Staphylococcus aureus. Molecules 2023; 28:5668. [PMID: 37570637 PMCID: PMC10420104 DOI: 10.3390/molecules28155668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Diabetic foot infection (DFI) is a common complication in diabetes patients, with foot infections being the leading cause of amputations. Staphylococcus aureus is frequently found in diabetic foot infections, of which methicillin-resistant Staphylococcus aureus (MRSA) has become a major clinical and epidemiological challenge. Since MRSA strains are resistant to most β-lactam antibiotics, and also partially resistant to other antibiotics, treatment is difficult and costly. The emergence of drug-resistant bacteria often arises from overuse or misuse of antibiotics. Clinically, canagliflozin is commonly used for the treatment of type 2 diabetes. On this basis, we investigated the antibacterial activity and mechanism of canagliflozin against MRSA, with the aim to discover novel functions of canagliflozin and provide new insights for the treatment of MRSA. Using the microbroth dilution method to determine the half maximal inhibitory concentration of drugs, we found that canagliflozin not only can inhibit the growth of methicillin-sensitive Staphylococcus aureus (MSSA) but also exhibits antibacterial activity against MRSA. The IC50 values, at approximately 56.01 μM and 57.60 μM, were almost the same. At 12 h, canagliflozin showed a significant antibacterial effect against MRSA at and above 30 μM. In addition, its combined use with penicillin achieved better antibacterial effects, which were increased by about three times. Additive antibacterial activity (FICI = 0.69) was found between penicillin and canagliflozin, which was better than that of doxycycline and canagliflozin (FICI = 0.95). Canagliflozin also affected bacterial metabolic markers, such as glucose, ATP, and lactic acid. The results of crystal violet staining indicate that canagliflozin disrupted the formation of bacterial biofilm. Our electron microscopy results showed that canagliflozin distorted the bacterial cell wall. The results of RT-PCR suggest that canagliflozin down-regulated the expressions of biofilm-related gene (clfA, cna, agrC, mgrA, hld) and methicillin-resistance gene (mecA), which was related to MRSA. Molecular docking also indicated that canagliflozin affected some interesting targets of MRSA, such as the sarA, crtM and fnbA proteins. In conclusion, canagliflozin exhibits antibacterial activity against MRSA by affecting bacterial metabolism, inhibiting its biofilm formation, distorting the bacterial cell wall, and altering the gene expression of biofilm formation and its virulence. Our study reveals the antibacterial activity of canagliflozin against MRSA, providing a new reference for treating diabetic foot infections.
Collapse
Affiliation(s)
- Siyao Gu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.G.); (F.W.); (T.G.); (Y.Q.); (Y.Z.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China;
| | - Bing Fan
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China;
| | - Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.G.); (F.W.); (T.G.); (Y.Q.); (Y.Z.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.G.); (F.W.); (T.G.); (Y.Q.); (Y.Z.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuanyuan Qi
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.G.); (F.W.); (T.G.); (Y.Q.); (Y.Z.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.G.); (F.W.); (T.G.); (Y.Q.); (Y.Z.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China;
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (S.G.); (F.W.); (T.G.); (Y.Q.); (Y.Z.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
15
|
Hajika Y, Kawaguchi Y, Hamazaki K, Kumeda Y. Beneficial effects of luseogliflozin on lipid profile and liver function in patients with type 2 diabetes mellitus (BLUE trial): a single-center, single-arm, open-label prospective study. Diabetol Metab Syndr 2023; 15:97. [PMID: 37165443 PMCID: PMC10173585 DOI: 10.1186/s13098-023-01074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Arteriosclerosis and non-alcoholic fatty liver disease are major complications of diabetes mellitus. Hyperglycemia, insulin resistance, obesity, and metabolic syndrome are associated with the progression of these complications. Sodium-glucose transporter 2 inhibitors such as luseogliflozin are oral hypoglycemic agents that reduce glucose levels, induce loss of weight or body fat, and improve liver function. However, the effects of these agents on lipid profiles are unclear. Therefore, this study aimed to investigate these effects and their relationship with arteriosclerosis and non-alcoholic fatty liver disease. METHODS This single-center, single-arm, open-labeled prospective study enrolled 25 outpatients with type 2 diabetes mellitus who visited Minami Osaka Hospital. Laboratory tests and body measurements were performed at weeks 0 and 24. Luseogliflozin was started at 2.5 mg/day after breakfast, and data from weeks 0 and 24 were evaluated. There were no changes in the doses of other antidiabetic and dyslipidemia drugs a month prior to or during the study. RESULTS The patients showed significant reductions in the levels of triglycerides, remnant-like particle cholesterol, and triglyceride/high-density lipoprotein cholesterol ratio, along with significant increases in the levels of high-density lipoprotein cholesterol and apolipoprotein A-1. Alanine aminotransferase, γ-glutamyl transpeptidase, and the fatty liver index were significantly reduced. CONCLUSIONS Luseogliflozin-induced changes in the lipid profile were related to the suppression or improvement of arteriosclerosis and liver function, respectively. Patients who received this drug also showed improvements in the levels of liver enzymes and reductions in the fatty liver index. Earlier use of luseogliflozin might prevent diabetic complications. Trial registration This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (UMIN 000043595) on April 6th, 2021.
Collapse
Affiliation(s)
- Yuriko Hajika
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan.
| | - Yuji Kawaguchi
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| | - Kenji Hamazaki
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| | - Yasuro Kumeda
- Department of Internal Medicine, Minami Osaka Hospital, 1-18-18 Higashikagaya, Suminoe-Ku, Osaka, 559-0012, Japan
| |
Collapse
|
16
|
Xu Q, Wu H, Zhu H, Lu C, Tao J, Zhou Z, Zhang J. Grain-sized moxibustion at Zusanli (ST36) promotes hepatic autophagy in rats with hyperlipidemia by regulating the ULK1 and TFEB expression through the AMPK/mTOR signaling pathway. Heliyon 2023; 9:e15316. [PMID: 37144182 PMCID: PMC10151263 DOI: 10.1016/j.heliyon.2023.e15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Objective Grain-sized moxibustion is an effective treatment for hyperlipidemia, but how it regulates dyslipidemia and liver lipid deposits still needs to be fully understood. This study explored the molecular biological mechanism of grain-sized moxibustion to regulate hepatic autophagy in hyperlipidemic rats by affecting ULK1 and TFEB through the AMPK/mTOR signaling pathway. Methods Thirty male Sprague-Dawley (SD) rats were fed a high-fat diet for eight weeks to induce hyperlipidemia. Hyperlipidemic rats were divided into the HFD group, HFD + Statin group, HFD + CC + Moxi group, and grain-sized moxibustion intervention group (HFD + Moxi group). The control (Blank) group consisted of normal rats without any intervention. Grain-sized moxibustion and drug interventions were initiated eight weeks after high-fat diet induction and continued for ten weeks. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), as well as hepatic triglyceride (TG), were measured after treatment. Hepatic steatosis and the expression of LC3I, LC3II, p62, p-AMPK, AMPK, p-mTOR, mTOR, ULK1, p-ULK1, and TFEB in the liver were analyzed. Results Compared with the HFD group, grain-sized moxibustion improved hyperlipidemia and hepatocyte steatosis, increased the LC3, p-AMPK, p-ULK1, and nuclear TFEB expression in the liver, but decreased the p62 and p-mTOR expression. Conclusion Grain-sized moxibustion at ST36 acupoints could regulate the blood lipid level of SD rats with hyperlipidemia, increase the expression level of ULK1 and TFEB by activating the AMPK/mTOR signaling pathway in liver tissues, and initiate the transcription of autophagy genes such as LC3.
Collapse
Affiliation(s)
- Qian Xu
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Huanxi Wu
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Haibin Zhu
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Chengxuan Lu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, China
| | - Jiangjia Tao
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Ziqiu Zhou
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
| | - Jianbin Zhang
- Jiangsu Second Hospital of Chinese Medicine, China
- The Second Clinical Medical College/the Second Affiliated Hospital of Nanjing University of Chinese Medicine, China
- Corresponding author.Jiangsu Second Hospital of Chinese Medicine, China
| |
Collapse
|
17
|
Joki Y, Konishi H, Takasu K, Minamino T. Tofogliflozin, a sodium-glucose cotransporter 2 inhibitor, improves pulmonary vascular remodeling due to left heart disease in mice. J Cardiol 2023; 81:347-355. [PMID: 36244565 DOI: 10.1016/j.jjcc.2022.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Group 2 pulmonary hypertension (PH) represents PH caused by left heart disease (PH-LHD). LHD induces left-sided filling and PH, finally leading to pulmonary vascular remodeling. Tofogliflozin (TOFO) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor used in the treatment of diabetes. Recent studies have shown that SGLT2 inhibitors have beneficial effects on heart failure, but the effects of SGLT2 inhibitors on PH-LHD remain unclear. We hypothesized that TOFO has protective effects against pulmonary vascular remodeling in PH-LHD mice. METHODS We generated two murine models of PH-LHD: a transverse aortic constriction (TAC) model; and a high-fat diet (HFD) model. C57BL/6J mice were subjected to TAC and treated with TOFO (3 mg/kg/day) for 3 weeks. AKR/J mice were fed HFD and treated with TOFO (3 mg/kg/day) for 20 weeks. We then measured physical data and right ventricular systolic pressure (RVSP) and performed cardiography. Human pulmonary artery smooth muscle cells (PASMCs) were cultured and treated with TOFO. RESULTS Mice treated with TOFO demonstrated increased urine glucose levels. TAC induced left ventricular hypertrophy and increased RVSP. TOFO treatment improved RVSP. HFD increased body weight (BW) and RVSP compared with the normal chow group. TOFO treatment ameliorated increases in BW and RVSP induced by HFD. Moreover, PASMCs treated with TOFO showed suppressed migration. CONCLUSIONS TOFO treatment ameliorated right heart overload and pulmonary vascular remodeling for PH-LHD models, suggesting that SGLT2 inhibitors are effective for treating PH-LHD.
Collapse
Affiliation(s)
- Yusuke Joki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakuoh Konishi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kiyoshi Takasu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Sinha RA. Autophagy: A Cellular Guardian against Hepatic Lipotoxicity. Genes (Basel) 2023; 14:553. [PMID: 36874473 PMCID: PMC7614268 DOI: 10.3390/genes14030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Lipotoxicity is a phenomenon of lipid-induced cellular injury in nonadipose tissue. Excess of free saturated fatty acids (SFAs) contributes to hepatic injury in nonalcoholic fatty liver disease (NAFLD), which has been growing at an unprecedented rate in recent years. SFAs and their derivatives such as ceramides and membrane phospholipids have been shown to induce intrahepatic oxidative damage and ER stress. Autophagy represents a cellular housekeeping mechanism to counter the perturbation in organelle function and activation of stress signals within the cell. Several aspects of autophagy, including lipid droplet assembly, lipophagy, mitophagy, redox signaling and ER-phagy, play a critical role in mounting a strong defense against lipotoxic lipid species within the hepatic cells. This review provides a succinct overview of our current understanding of autophagy-lipotoxicity interaction and its pharmacological and nonpharmacological modulation in treating NAFLD.
Collapse
Affiliation(s)
- Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
19
|
Barrientos-Riosalido A, Real M, Bertran L, Aguilar C, Martínez S, Parada D, Vives M, Sabench F, Riesco D, Castillo DD, Richart C, Auguet T. Increased Hepatic ATG7 mRNA and ATG7 Protein Expression in Nonalcoholic Steatohepatitis Associated with Obesity. Int J Mol Sci 2023; 24:ijms24021324. [PMID: 36674839 PMCID: PMC9867349 DOI: 10.3390/ijms24021324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The autophagy gene ATG7 has been shown to be essential for the induction of autophagy, a process that used to be suppressed in nonalcoholic fatty liver disease (NAFLD). However, the specific role of ATG7 in NAFLD remains unclear. The aim of this study was to analyze hepatic ATG7 mRNA and ATG7 protein expression regarding obesity-associated NAFLD. Patients included women classified into normal weight (NW, n = 6) and morbid obesity (MO, n = 72). The second group was subclassified into normal liver (NL, n = 11), simple steatosis (SS, n= 29), and nonalcoholic steatohepatitis (NASH, n = 32). mRNA expression was analyzed by RT-qPCR and protein expression was evaluated by Western blotting. Our results showed that NASH patients presented higher ATG7 mRNA and ATG7 protein levels. ATG7 mRNA expression was increased in NASH compared with SS, while ATG7 protein abundance was enhanced in NASH compared with NL. ATG7 mRNA correlated negatively with the expression of some hepatic lipid metabolism-related genes and positively with endocannabinoid receptors, adiponectin hepatic expression, and omentin levels. These results suggest that ATG7-mediated autophagy may play an important role in the pathogenesis of NAFLD, especially in NASH, perhaps playing a possible protective role. However, this is a preliminary study that needs to be further studied.
Collapse
Affiliation(s)
- Andrea Barrientos-Riosalido
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Monica Real
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Laia Bertran
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Salomé Martínez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - David Parada
- Servei Anatomia Patològica, Hospital Universitari Sant Joan de Reus, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Margarita Vives
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Fàtima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - David Riesco
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, URV, IISPV, Avinguda Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili (IISPV), 43007 Tarragona, Spain
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, 43007 Tarragona, Spain
- Correspondence: ; Tel.: +34-977-29-58-33
| |
Collapse
|
20
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|