1
|
Liu W, Zhou Y, Jiang N, Xu C, Zhong Q, Fan Y. A droplet digital PCR assay to detect Chinese rice-field eels rhabdovirus. JOURNAL OF FISH DISEASES 2024; 47:e14020. [PMID: 39282798 DOI: 10.1111/jfd.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 11/10/2024]
Abstract
Chinese rice-field eels rhabdovirus (CrERV) causes haemorrhagic disease in Chinese rice-field eels (Monopterus albus), leading to significant mortality and economic losses. Sensitive detection of CrERV nucleic acids is essential to control the spread of this pathogen and to treat infected individuals. Herein, we developed an efficient and sensitive droplet digital PCR (ddPCR) method to rapidly detect and quantify CrERV. The ddPCR assay optimal conditions were an annealing temperature of 53°C, and primer and probe concentrations of 0.5 and 0.25 μM, respectively. The assay had a diagnostic sensitivity of 0.23 copies/μL, and was highly specific, showing no cross reactivity with other viruses (infectious haematopoietic necrosis virus, grass carp reovirus, spring viremia of carp virus, largemouth bass ranavirus, carp edema virus, Chinese giant salamander iridovirus, and white spot syndrome virus). Real-time quantitative PCR testing of 30 Chinese rice-field eels samples detected CrERV in 7 samples (23.3%), whereas ddPCR detected CrERV in 12 samples (40%), demonstrating its higher sensitivity. Thus, ddPCR represents an advanced method to absolutely quantify CrERV in infected fish with low virus concentrations, providing a valuable tool to manage the spread and impact of CrERV.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiwang Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
2
|
Rao H, Tian H, Wang X, Huo C, Zhu L, Li Z, Li Y. Diversification of Toll-like receptor 1 in swamp eel (Monopterus albus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105190. [PMID: 38697378 DOI: 10.1016/j.dci.2024.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Toll-like receptor 1 (TLR1) is a pattern recognition receptor that plays critical roles in triggering immune activation via detecting bacterial lipoproteins and lipopeptides. In this study, the genetic characteristic of TLR1 was studied for an important aquaculture fish, swamp eel Monopterus albus. The eel has been seriously threatened by infectious diseases. However, a low level of genetic heterogeneity in the fish that has resulted from a demographic bottleneck presents further challenges in breeding for disease resistance. A comparison with the homologue of closely related species M. javanensis revealed that amino acid replacement (nonsynonymous) but not silent (synonymous) differences have accumulated nonrandomly over the coding sequences of the receptors at the early stage of their phylogenetic split. The combined results from comparative analyses of nonsynonymous-to-synonymous polymorphisms showed that the receptor has undergone significant diversification in M. albus driven by adaptive selection likely after the genetic bottleneck. Some of the changes reported here have taken place in the structures mediating heterodimerization with co-receptor TLR2, ligand recognition, and/or formation of active signaling complex with adaptor, which highlighted key structural elements and strategies of TLR1 in arms race against exogenous challenges. The findings of this study will add to the knowledge base of genetic engineering and breeding for disease resistance in the eel.
Collapse
Affiliation(s)
- Han Rao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Xueting Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Lilan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China.
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
3
|
Mao Y, Lv W, Huang W, Yuan Q, Yang H, Zhou W, Li M. Effects on growth performance and immunity of Monopterus albus after high temperature stress. Front Physiol 2024; 15:1397818. [PMID: 38720786 PMCID: PMC11076714 DOI: 10.3389/fphys.2024.1397818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
To investigate the impact of the effect of high temperature stimulation on Monopterus albus larvae after a certain period of time, five experimental groups were established at different temperatures. Then, the M. albus under high temperature stress was fed at 30°C for 70 days. After that, the growth index of the M. albus was counted and analyzed. In terms of growth index, high temperature stress had significant effects on FCR, FBW, WGR, and SGR of M. albus (p < 0.05). The SR increased after being stimulated by temperature (p < 0.1). The study revealed that liver cells of M. albus were harmed by elevated temperatures of 36°C and 38°C. In the experimental group, the activities of digestive enzymes changed in the same trend, reaching the highest point in the 32°C group and then decreasing, and the AMS activity in the 38°C group was significantly different from that in the 30°C group (p < 0.05). The activities of antioxidase in liver reached the highest at 34°C, which was significantly different from those at 30°C (p < 0.05). In addition, the expression levels of TLR1, C3, TNF-α, and other genes increased in the experimental group, reaching the highest point at 34°C, and the expression level of the IL-1β gene reached the highest point at 32°C, which was significantly different from that at 30°C (p < 0.05). However, the expression level of the IRAK3 gene decreased in the experimental group and reached its lowest point at 34°C (p < 0.05). The expression level of the HSP90α gene increased with the highest temperature stimulus and reached its highest point at 38°C (p < 0.05). In the α diversity index of intestinal microorganisms in the experimental group, the observed species, Shannon, and Chao1 indexes in the 34°C group were the highest (p < 0.05), and β diversity analysis revealed that the intestinal microbial community in the experimental group was separated after high temperature stimulation. At the phylum level, the three dominant flora are Proteus, Firmicutes, and Bacteroides. Bacteroides and Macrococcus abundance increased at the genus level, but Vibrio and Aeromonas abundance decreased. To sum up, appropriate high-temperature stress can enhance the immunity and adaptability of M. albus. These results show that the high temperature stimulation of 32°C-34°C is beneficial to the industrial culture of M. albus.
Collapse
Affiliation(s)
- Yifan Mao
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Weiwei Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Huang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Quan Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hang Yang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Huo C, Tian H, Rao H, Zeng B, Li D, Li Z, Li Y. Genetic diversity of Toll-like receptor 9 in swamp eels (Monopterus albus). JOURNAL OF FISH BIOLOGY 2023; 102:1149-1156. [PMID: 36879356 DOI: 10.1111/jfb.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023]
Abstract
The swamp eel, Monopterus albus, is an important aquaculture species in Asia (mainly China) whose production has seriously suffered from infectious diseases. In spite of the critical requirement for aquaculture practices, to date there is scant information on its immune defence. Here, the genetic characteristics of Toll-like receptor 9 (TLR9), which plays crucial roles in the initiation of host defence against microbial invasion, were analysed. It exhibits a striking lack of genetic variation resulting from a recent demographic bottleneck. A comparison with the homologue of M. javanensis revealed that replacement but not silent differences have nonrandomly accumulated in the coding sequences at the early stage following their split from a common ancestor. Furthermore, the replacements relevant to the type II functional divergence have mainly occurred in structural motifs mediating ligand recognition and receptor homodimerization. These results provide hints to understand the diversity-based strategy of TLR9 in the arms race against pathogens. Furthermore, the findings reported here give credence to the importance of basic immunology knowledge, especially for the key elements, in genetic engineering and breeding for disease resistance in the eel and other fishes.
Collapse
Affiliation(s)
- Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, People's Republic of China
| | - Han Rao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, People's Republic of China
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, People's Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Debing Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, People's Republic of China
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, People's Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Liu W, Fan Y, Zhou Y, Jiang N, Li Y, Meng Y, Xue M, Li Z, Zeng L. Susceptibility of a cell line derived from the kidney of Chinese rice-field eel, Monopterus albus to the infection of rhabdovirus, CrERV. JOURNAL OF FISH DISEASES 2022; 45:361-371. [PMID: 34843633 DOI: 10.1111/jfd.13563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Chinese rice-field eels rhabdovirus (CrERV), belonging to the genus Perhabdovirus in the family Rhabdoviridae, is the causative agent of the haemorrhagic disease of Chinese rice-field eels, Monopterus albus. The present study aims to establish a cell line derived from the kidney of Chinese rice-field eel (CrEK) for the further study of the pathogenic virus. CrEK cells were epithelioid-like and grew well in M199 medium supplemented with 10% foetal bovine serum at 28°C, and the cell line has been subcultured for more than 80 times. Karyotyping analysis of CrEK cells at 25th passage indicated a modal chromosome number of 24. Significant cytopathic effect (CPE) was observed in CrEK cells after infection with CrERV, and the virus titre reached 107.8 ± 0.45 TCID50 /mL. The transmission electron microscopy revealed that there were a large number of virus particles in the cytoplasm of cells. The virus infection in cells was also assayed by using indirect immunofluorescence assay (IFA), fluorescence in situ hybridization (FISH), reverse transcription PCR (RT-PCR) and quantitative real-time reverse transcription-PCR (qRT-PCR). In experimental infection, CrERV cultured by cells could cause over 90% mortality in fish. CrEK represents the first kidney cell line originated from Chinese rice-field eels and be a potential material for investigating the mechanism of virus infection in this fish and the control methods for the disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
6
|
Shi Y, Zhong L, Liu Y, Zhang J, Lv Z, Li Y, Hu Y. Effects of Dietary Andrographolide Levels on Growth Performance, Antioxidant Capacity, Intestinal Immune Function and Microbioma of Rice Field Eel ( Monopterus Albus). Animals (Basel) 2020; 10:E1744. [PMID: 32992929 PMCID: PMC7599621 DOI: 10.3390/ani10101744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
An eight-week feeding trial was conducted to investigate the effects of dietary andrographolide on the growth performance, antioxidant capacity in the liver, intestinal inflammatory response and microbiota of Monopterus albus. A total of 900 health fish (25.00 ± 0.15 g) were randomly divided into five groups: AD1 (the basal diet) as the control, and AD2, AD3, AD4 and AD5 groups, which were fed the basal diet supplemented with 75, 150, 225 and 300 mg/kg andrographolide, respectively. The results showed that compared with the control group, dietary andrographolide supplementation (1) significantly increased trypsin and lipase activities in the intestine, and increased the weight gain rate but not significantly; (2) significantly increased the levels of glutathione reductase (GR), glutathione (GSH) and glutathione peroxidase (GPx) and the content of in the liver; significantly decreased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA); remarkably upregulated the Nrf2, SOD1, GSTK and GSTO mRNA levels in the liver; downregulated the Keap1 mRNA level; (3) significantly increased the villi length and goblet cell numbers in the intestine, remarkably upregulated the Occludin mRNA level in the intestine, downregulated the Claudin-15 mRNA level; (4) remarkably upregulated the IL-10, TGF-β1 and TGF-β3 mRNA levels in the intestine; downregulated the IL-12β and TLR-3 mRNA levels; (5) significantly decreased the richness and diversity of the intestinal microbioma, increased the percentages of Fusobacteria and Firmicutes and significantly decreased the percentages of Cyanobacteria and Proteobacteria. In conclusion, these results showed that dietary low-dose andrographolide (75 and 150 mg/kg) promoted growth and antioxidant capacity, regulated the intestinal microbioma, enhanced intestinal physical and immune barrier function in rice field eel.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Lei Zhong
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yanli Liu
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Junzhi Zhang
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Zhao Lv
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Yao Li
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Yi Hu
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Yuan H, Li Y, Tian G, Zhang W, Guo H, Xu Q, Wang T. Identification and characterization of three CXC chemokines in Asian swamp eel (Monopterus albus) uncovers a third CXCL11_like group in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103454. [PMID: 31326565 DOI: 10.1016/j.dci.2019.103454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Chemokines direct cell migration in development and immune defense, and bridge between innate and adaptive immune responses. The chemokine gene family has been rapidly evolving and has undergone species/lineage-specific expansion. Mammals possess inflammatory CXC chemokines CXCL1-8/15 and CXCL9-11 sub-groups, and homeostatic CXCL12-14, 16-17. Orthologues of mammalian CXCL12-14, three chemokines related to CXCL1-8/15 (CXCL8_L1-3), two chemokines related to CXC9-11 (CXCL11_L1-2), and five fish-specific chemokines (CXCL_F1-5) have been described in teleosts. In this study, we reported three novel CXC chemokines in Asian swamp eel Monopterus albus, a commercially important freshwater fish species in China. Two of them belong to the fish-specific CXCL_F2 group, named CXCL_F2a/b, that share 89.5% amino acid identity. The other (CXCL11_L3) belongs to a third CXCL11_L related to the mammalian CXCL9-11 subfamily found only in percomorph fish species, and is the only CXCL9-11 related molecules in this lineage. Mammalian CXCL9-11 attract Th1 cells, and block the migration of Th2 cells in an immune response. This study suggests that all major lineages of teleosts have a CXCL9-11 related chemokine that will aid future functional investigation of CXCL11_L in fish. Cxcl_f2a is highly expressed constitutively in the skin of swamp eels that may attract immune cells to protect the skin in the absence of scales. Cxcl11_l3 and cxcl_f2b are highly expressed in immune tissues/organs and are up-regulated by the viral mimic poly I:C, but not bacterial infection in vivo, suggesting their role in anti-viral defense. The two cxcl_f2 paralogues are differentially expressed and modulated, indicating sub- and/or neo-functionalization.
Collapse
Affiliation(s)
- Hanwen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, PR China
| | - Youshen Li
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Guangming Tian
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Wenbing Zhang
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Huizhi Guo
- School of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, PR China.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
8
|
Zhang W, Li Z, Xiang Y, Jia P, Liu W, Yi M, Jia K. Isolation and identification of a viral haemorrhagic septicaemia virus (VHSV) isolate from wild largemouth bass Micropterus salmoides in China. JOURNAL OF FISH DISEASES 2019; 42:1563-1572. [PMID: 31441949 DOI: 10.1111/jfd.13078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Fish rhabdoviruses are a family of viruses responsible for large-scale fish die-offs worldwide. Here, we reported the isolation and identification of a member of rhabdoviruses from wild largemouth bass (Micropterus salmoides) in the coastal area of the Pearl River Estuary, China. This virus isolate was identified as viral haemorrhagic septicaemia virus (VHSV) by specific RT-PCR. Furthermore, the virus (VHSVLB2018) was isolated by cell culture using fathead minnow cells and confirmed by RT-PCR. Electron microscopy showed the presence of bullet-shaped viral particles in the cytoplasm of infected cells. The complete sequencing of VHSVLB2018 confirmed that it was genome configuration typical of rhabdoviruses. Phylogenetic analysis based on whole-genome sequences and G gene nucleotides sequences revealed that VHSVLB2018 was assigned to VHSV genogroup Ⅳa. The pathogenicity of VHSVLB2018 was determined in infection experiments using specific pathogen-free largemouth bass juveniles. VHSVLB2018-infected fish showed typical clinical signs of VHSV disease, including darkened skin, petechial haemorrhages and pale enlarged livers, with the cumulative mortalities reached 63.3%-93.3% by 7 days post-infection. VHSVLB2018 was re-isolated from dead fish and confirmed by RT-PCR. Together, this is the first report of isolation and identification of a VHSV isolate from wild largemouth bass in China.
Collapse
Affiliation(s)
- Wanwan Zhang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zelin Li
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Peng Jia
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
9
|
Liu X, Qin Z, Babu V S, Zhao L, Li J, Zhang X, Lin L. Transcriptomic profiles of striped snakehead cells (SSN-1) infected with snakehead vesiculovirus (SHVV) identifying IFI35 as a positive factor for SHVV replication. FISH & SHELLFISH IMMUNOLOGY 2019; 86:46-52. [PMID: 30447429 DOI: 10.1016/j.fsi.2018.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Snakehead vesiculovirus (SHVV) has caused great economic loss in snakehead fish culture in China. However, there is no effective strategy to prevent the epidemic of the virus. Understanding the host factors in response to virus infection is the basis for the prevention of viral disease. In this study, the transcriptomic profiles of SHVV-infected and mock-infected SSN-1 cells (derived from striped snakehead, Channa striatus) at 3 and 24 h (h) post of infection (poi) were obtained using high-throughput sequencing technique. A total of 93,372 unigenes were obtained. The differently expressed genes (DEGs) of SSN-1 cells upon SHVV infection were thereby identified, including 3668 and 3536 DEGs at 3 and 24 h poi, respectively. These DEGs were involved in many pathways of viral pathogenesis, including retinoic acid-inducible gene I (RIG-I) like receptors pathway, Toll-like receptor signaling pathway, NF-kappa B signaling pathway, PI3K-Akt signaling pathway and MAPK signaling pathway. Therefore, several immune-related DEGs were randomly selected and confirmed by quantitative real-time PCR (qRT-PCR). In addition, the effects of the interferon inducible protein 35 (IFI35) on SHVV replication were further investigated. Over-expression or inhibition of IFI35 significantly promoted or reduced SHVV replication at the level of viral gene expression, which indicated that IFI35 might be a positive factor for SHVV replication in SSN-1 cells. Our findings presented some valuable information, which will benefit for future study on SHVV-host interactions.
Collapse
Affiliation(s)
- Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Sarath Babu V
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
10
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Liu W, Fan Y, Li Z, Zhao J, Zhou Y, Jiang N, Zeng J, Cain K, Zeng L. Isolation, identification, and classification of a novel rhabdovirus from diseased Chinese rice-field eels (Monopterus albus). Arch Virol 2018; 164:105-116. [PMID: 30284632 DOI: 10.1007/s00705-018-4054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022]
Abstract
In 2017, a clinical disease outbreak resulted in substantial mortality of adults and larvae of cultured Chinese rice-field eels (Monopterus albus) on a farm in Hubei, Central China. A rhabdovirus was isolated from moribund specimens, and typical clinical symptoms associated with an outbreak included an enlarged and swollen head. This differed from previous observations. Histological changes included necrosis and cavities of various sizes within the brain and kidney. Homogenized tissues of diseased Chinese rice-field eels were screened for viral isolation using six different fish cell lines. A rhabdovirus was isolated following observation of cytopathic effect (CPE) in a gibel carp brain (GiCB) cell line and confirmed by RT-PCR. Electron microscopy showed large numbers of rhabdovirus-shaped particles in the cytoplasm of the brain cells of the diseased Chinese rice-field eels and in the infected GiCB cell line. This virus has been named "Chinese rice-field eel rhabdovirus" (CrERV), and the complete nucleotide sequence of CrERV was cloned. This rhabdovirus is composed of 11,545 nucleotides with the following genomic organization: 3'-N-P-M-G-L-5'. The genes are separated by conserved gene junctions, and phylogenetic analysis of the L sequence revealed that CrERV forms a separate branch with Siniperca chuatsi rhabdovirus (SCRV) and hybrid snakehead rhabdovirus C1207 (HSHRV-C1207). This is the first report of the complete sequence of CrERV from the Chinese rice-field eel in China.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jianqing Zhao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jia Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kenneth Cain
- Department of Fish and Wildlife Sciences and the Aquaculture Research Institute, University of Idaho, Moscow, ID, 83843-1136, USA
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
12
|
Gui L, Chinchar VG, Zhang Q. Molecular basis of pathogenesis of emerging viruses infecting aquatic animals. AQUACULTURE AND FISHERIES 2018. [DOI: 10.1016/j.aaf.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Sun L, Tu J, Yi L, Chen W, Zhao L, Huang Y, Liang R, Li J, Zhou M, Lin L. Pathogenicity of snakehead vesiculovirus in rice field eels (Monopterus albus). Microb Pathog 2017; 110:578-585. [PMID: 28782597 DOI: 10.1016/j.micpath.2017.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Snakehead vesiculovirus (SHVV) has caused mass mortality to cultured snakehead fish in China, resulting in enormous economic losses in snakehead fish culture. In this report, the whole genome of SHVV was sequenced. Interestingly, it shared more than 94% nucleotide sequence identity with Monopterus albus rhabdovirus (MoARV), which has caused great economic loss to cultured rice field eel (Monopterus albus). Therefore, the concern of cross-species infection of these viruses prompted us to investigate the susceptibility of rice field eel to SHVV infection. The results showed that rice field eel was susceptible to SHVV in both intracoelomical injection and immersion routes. Severe hemorrhage was observed on the skin and visceral organs of SHVV-infected rice field eels. Histopathological examination showed vacuoles in the tissues of infected liver, kidney and heart. Viral RNA or protein was detected in the tissues of infected fish by reverse transcription polymerization chain reaction (RT-PCR), in situ hybridization (ISH), or immunohistochemistry assay (IHC). Investigation of the epidemic of vesiculovirus in rice field eel as well as other co-cultured fish is invaluable for the prevention of vesiculovirus infection.
Collapse
Affiliation(s)
- Lindan Sun
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lizhu Yi
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenjie Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunmao Huang
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Rishen Liang
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Meng Zhou
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
14
|
Xu QQ, Xu P, Zhou JW, Pan TS, Tuo R, Ai K, Yang DQ. Cloning and expression analysis of two pro-inflammatory cytokines, IL-1β and its receptor, IL-1R2, in the Asian swamp eel Monopterus albus. Mol Biol 2016. [DOI: 10.1134/s0026893316030122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Lee SB, Choe Y, Chon TS, Kang HY. Analysis of zebrafish (Danio rerio) behavior in response to bacterial infection using a self-organizing map. BMC Vet Res 2015; 11:269. [PMID: 26497220 PMCID: PMC4619490 DOI: 10.1186/s12917-015-0579-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Animal behavioral responses have been recently established as a suitable tool for detecting contaminants in the environment for risk assessment in situ. In this study, we observed movement behavior of zebrafish (Danio rerio) before and after infection with Edwardsiella tarda CK41 for 3 days until death. METHODS Infection status of zebrafish was confirmed through PCR and colonization assay as time progressed and lesion development in the tails of zebrafish was also examined. Movement behaviors in response to bacterial infection were patterned by self-organizing map (SOM) based on movement parameters, including speed (mm/s), acceleration (mm/s (2) ), stop duration (t), stop number (n), locomotory rate (mm/s), turning rate (rad/s), and meander (rad/mm). RESULTS According to SOM result, clusters were identified firstly according to time and secondly according to infection. Two movement patterns were observed in the early period of infection: one group with minimum turning rate and meander (i.e., stiff movement) and the other group with maximum strop number. Late infection was characterized by long stop duration. CONCLUSION SOM was suitable for extracting complex behavioral data and thus can serve as a referencing system for diagnosing disease development in order to reveal the mechanism of the infection process.
Collapse
Affiliation(s)
- Sang-Bin Lee
- Department of Biological Sciences, Pusan National University, Busan, 609-735, Republic of Korea.
| | - Yunjeong Choe
- Department of Microbiology, Pusan National University, Busandaehak-ro, 63beon-gill, Geumjeong-gu, Busan, 609-735, Republic of Korea.
| | - Tae-Soo Chon
- Department of Biological Sciences, Pusan National University, Busan, 609-735, Republic of Korea. .,Ecology & Future Research Association (EnFRA), 21 Dusil-ro, 45 beon-gil, Geumjeong-gu, Busan, 609-802, Republic of Korea.
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busandaehak-ro, 63beon-gill, Geumjeong-gu, Busan, 609-735, Republic of Korea.
| |
Collapse
|
16
|
Antiviral genes in the Asian swamp eel Monopterus albus: comparison of tissue expression and inducible expression of six interferon regulatory factors. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0271-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
18
|
Liu X, Wen Y, Hu X, Wang W, Liang X, Li J, Vakharia V, Lin L. Breaking the host range: mandarin fish is susceptible to a vesiculovirus derived from snakehead fish. J Gen Virol 2014; 96:775-781. [PMID: 25537376 DOI: 10.1099/vir.0.000037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Vesiculovirus, which belongs to the family Rhabdoviridae, can cause great economic loss in fish culture. In the present report, a vesiculovirus [named snakehead fish vesiculovirus (SHVV)] was isolated from diseased hybrid snakehead fish. SHVV shared 94 % nucleotide sequence identity at the genomic level with Siniperca chuatsi rhabdovirus (SCRV), which infects mandarin fish (S. chuatsi). We showed that SHVV was able to replicate and proliferate well in SSN-1 cells, which originate from striped snakehead fish (Channa striatus). Furthermore, mandarin fish was susceptible to SHVV by bath exposure, as well as by intraperitoneal injection. The infected fish showed typical clinical signs of rhabdovirus infection, including haemorrhage and oedema. Histopathological analysis revealed that extensive inflammation and necrosis were observed in the spleen, kidney, liver, heart and brain of the moribund mandarin fish. These results will shed new light on the epidemic of vesiculovirus infections among fish.
Collapse
Affiliation(s)
- Xiaodan Liu
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, PR China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yi Wen
- Division of Science and Technology, Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, Guangdong 519085, PR China
| | - Xianqin Hu
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, PR China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Wenwen Wang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, PR China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xufang Liang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, PR China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Vikram Vakharia
- Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD 21202, USA
| | - Li Lin
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, Hubei 430070, PR China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, PR China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
19
|
Ou T, Lei XY, He LB, Zhou FJ, Zhang QY. Development of an Ussuri catfish Pseudobagrus ussuriensis skin cell line displaying differential cytopathic effects to three aquatic animal viruses. Virus Res 2014; 189:56-62. [PMID: 24794839 DOI: 10.1016/j.virusres.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
An Ussuri catfish Pseudobagrus ussuriensis skin (UCS) cell line was developed and subcultured for more than 60 passages. UCS cells consisted of mostly epithelial-like cells and multiplied well in TC199 medium supplemented with 10% fetal bovine serum at 25°C. Chromosome analysis revealed that most UCS cells had a normal diploid karyotype with 2n=52. UCS cells showed differential cytopathic effects (CPEs) after inoculation of spring viremia of carp virus (SVCV, a negative-strand RNA virus), grass carp reovirus (GCRV, a multi-segmented double-stranded RNA virus) and Rana grylio virus (RGV, a large double-stranded DNA virus), and were indicative of high sensitivities to these three aquatic animal viruses by a virus titration study. The CPE caused by SVCV appeared as rounded and granular cells, grape-like clusters and small lytic plaques. Characteristic CPE containing plaque-like syncytia was induced by GCRV. RGV-infected cells produced typical CPE characterized by cells shrinkage and aggregation, formation of clear plaques and cell sheet detachment. Furthermore, significant fluorescent signals were observed after UCS cells were transfected with green fluorescent protein reporter plasmids, and the development of CPE induced by a recombinant RGV, ΔTK-RGV, in UCS cells was illustrated using a combination of light and fluorescence microscopy. The data from this study suggested that UCS cell line can potentially serve as a useful tool for the comparison study of different aquatic animal viruses and the isolation of some newly emerging viruses in Ussuri catfish farming.
Collapse
Affiliation(s)
- Tong Ou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Ying Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li-Bo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng-Jian Zhou
- Huaian Fisheries Scientific Research Institute of Jiangsu Province, Huaian 223001, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|