1
|
Weinandt SA, Child ZJ, Lartey D, Santos A, Maxfield H, Sevigny JK, Garrett FES, Smith PD, Giersch RM, Hart SFM, Perez F, Rabins L, Kaiser S, Boyar A, Newton J, Kerr J, Dimond JL, Metzger MJ. Identification of an Outbreak of Bivalve Transmissible Neoplasia in Soft-Shell Clams ( Mya arenaria) in the Puget Sound Using Hemolymph and eDNA Surveys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626659. [PMID: 39677800 PMCID: PMC11642872 DOI: 10.1101/2024.12.03.626659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer-cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam (Mya arenaria) populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due to Mya arenaria BTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast. In 2022, we collected soft-shell clams from several sites in Puget Sound, Washington, USA, and unexpectedly found high prevalence of BTN in two sites (Triangle Cove on Camano Island and near Stanwood in South Skagit Bay). Prevalence of BTN increased in subsequent years, reaching >75% in both sites in 2024, while it was not observed in other sites, suggesting the early stages of a severe disease outbreak following recent introduction. We observed that these cancer cells contain several somatic transposing insertion sites found only in the USA-sublineage of MarBTN, showing that it likely was recently transplanted from New England to this location. We then developed a sensitive environmental DNA (eDNA) assay, using qPCR to target somatic mutations in the MarBTN mitogenome, and showed that MarBTN can be detected in seawater at Triangle Cove, as well as several kilometers outside of the cove. We then used this assay to survey 50 sites throughout Puget Sound, confirming that the disease can be detected at high levels at Triangle Cove and South Skagit Bay, and showing that it extends beyond these known sites. However, while normal soft-shell clam mtDNA was widely detected, MarBTN was undetectable throughout most of Puget Sound and currently remains limited to the South Skagit Bay area and north Port Susan. These results identify a previously unknown severe outbreak of a transmissible cancer due to long-distance transplantation of disease from another ocean, and they demonstrate the utility of eDNA methods to track the spread of BTN through the environment.
Collapse
Affiliation(s)
| | - Zachary J Child
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Dorothy Lartey
- Pacific Northwest Research Institute, Seattle, Washington, USA
- University of Washington, Seattle, Washington. USA
| | - Angel Santos
- Shannon Point Marine Center, Western Washington University, Anacortes, Washington, USA
- Environmental Science & Management Department, Portland State University, Portland, Oregon, USA
| | - Holden Maxfield
- Shannon Point Marine Center, Western Washington University, Anacortes, Washington, USA
- Colorado College, Colorado Springs, Colorado, USA
| | - Jordana K Sevigny
- Pacific Northwest Research Institute, Seattle, Washington, USA
- Department of Ocean Sciences, University of California, Santa Cruz, California, USA
| | | | - Peter D Smith
- Pacific Northwest Research Institute, Seattle, Washington, USA
| | - Rachael M Giersch
- Pacific Northwest Research Institute, Seattle, Washington, USA
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Samuel F M Hart
- Pacific Northwest Research Institute, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Franchesca Perez
- Natural Resources Department, Stillaguamish Tribe, Arlington, WA, USA
| | - Lucas Rabins
- Natural and Cultural Resources Department Shellfish Program, Tulalip Tribes of Washington, Tulalip, USA
| | - Samuel Kaiser
- Natural and Cultural Resources Department Shellfish Program, Tulalip Tribes of Washington, Tulalip, USA
| | - Anna Boyar
- Washington Ocean Acidification Center, University of Washington, Seattle, Washington, USA
| | - Jan Newton
- Washington Ocean Acidification Center, University of Washington, Seattle, Washington, USA
| | - Jesse Kerr
- PEI Department of Fisheries, Tourism, Sport and Culture, Prince Edward Island, Canada
| | - James L Dimond
- Shannon Point Marine Center, Western Washington University, Anacortes, Washington, USA
| | | |
Collapse
|
2
|
Suh DC, Lance SL, Park AW. Abiotic and biotic factors jointly influence the contact and environmental transmission of a generalist pathogen. Ecol Evol 2024; 14:e70167. [PMID: 39157664 PMCID: PMC11329300 DOI: 10.1002/ece3.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The joint influence of abiotic and biotic factors is important for understanding the transmission of generalist pathogens. Abiotic factors such as temperature can directly influence pathogen persistence in the environment and will also affect biotic factors, such as host community composition and abundance. At intermediate spatial scales, the effects of temperature, community composition, and host abundance are expected to contribute to generalist pathogen transmission. We use a simple transmission model to explain and predict how host community composition, host abundance, and environmental pathogen persistence times can independently and jointly influence transmission. Our transmission model clarifies how abiotic and biotic factors can synergistically support the transmission of a pathogen. The empirical data show that high community competence, high abundance, and low temperatures correlate with high levels of transmission of ranavirus in larval amphibian communities. Discrete wetlands inhabited by larval amphibians in the presence of ranavirus provide a compelling case study comprising distinct host communities at a spatial scale anticipated to demonstrate abiotic and biotic influence on transmission. We use these host communities to observe phenomena demonstrated in our theoretical model. These findings emphasize the importance of considering both abiotic and biotic factors, and concomitant direct and indirect mechanisms, in the study of pathogen transmission and should extend to other generalist pathogens with the capacity for environmental transmission.
Collapse
Affiliation(s)
- Daniel C. Suh
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Stacey L. Lance
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Andrew W. Park
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
3
|
Mérou N, Lecadet C, Pouvreau S, Arzul I. An eDNA/eRNA-based approach to investigate the life cycle of non-cultivable shellfish micro-parasites: the case of Bonamia ostreae, a parasite of the European flat oyster Ostrea edulis. Microb Biotechnol 2020; 13:1807-1818. [PMID: 32608578 PMCID: PMC7533330 DOI: 10.1111/1751-7915.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Environmental DNA approaches are increasingly used to detect microorganisms in environmental compartments, including water. They show considerable advantages to study non-cultivable microorganisms like Bonamia ostreae, a protozoan parasite inducing significant mortality in populations of flat oyster Ostrea edulis. Although B. ostreae development within the host has been well described, questions remain about its behaviour in the environment. As B. ostreae transmission is direct, seawater appears as an interesting target to develop early detection tools and improve our understanding of disease transmission mechanisms. In this context, we have developed an eDNA/eRNA approach allowing detecting and quantifying B. ostreae 18S rDNA/rRNA as well as monitoring its presence in seawater by real-time PCR. B. ostreae DNA could be detected up to 4 days while RNA could be detected up to 30 days, suggesting a higher sensitivity of the eRNA-based tool. Additionally, more than 90% of shed parasites were no longer detected after 2 days outside the oysters. By allowing B. ostreae detection in seawater, this approach would not only be useful to monitor the presence of the parasite in oyster production areas but also to evaluate the effect of changing environmental factors on parasite survival and transmission.
Collapse
Affiliation(s)
- Nicolas Mérou
- Laboratoire de Génétique et Pathologie des Mollusques MarinsIfremerSG2M‐LGPMMAvenue de Mus de Loup17390La TrembladeFrance
| | - Cyrielle Lecadet
- Laboratoire de Génétique et Pathologie des Mollusques MarinsIfremerSG2M‐LGPMMAvenue de Mus de Loup17390La TrembladeFrance
| | - Stéphane Pouvreau
- Laboratoire des Sciences de l'Environnement MarinUMR 6539, Ifremer/UBO/IRD/CNRSIfremer11 Presqu'île du Vivier29840Argenton‐en‐LandunvezFrance
| | - Isabelle Arzul
- Laboratoire de Génétique et Pathologie des Mollusques MarinsIfremerSG2M‐LGPMMAvenue de Mus de Loup17390La TrembladeFrance
| |
Collapse
|
4
|
Abstract
This article updates the understanding of two extirpation-driving infectious diseases, Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, and Ranavirus. Experimental studies and dynamic, multifactorial population modeling have outlined the epidemiology and future population impacts of B dendrobatidis, B salamandrivorans, and Ranavirus. New genomic findings on divergent fungal and viral pathogens can help optimize control and disease management strategies. Although there have been major advances in knowledge of amphibian pathogens, controlled studies are needed to guide population recovery to elucidate and evaluate transmission routes for several pathogens, examine environmental control, and validate new diagnostic tools to confirm the presence of disease.
Collapse
|
5
|
Ismail NS, Olive M, Fernandez-Cassi X, Bachmann V, Kohn T. Viral Transfer and Inactivation through Zooplankton Trophic Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9418-9426. [PMID: 32662638 DOI: 10.1021/acs.est.0c02545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Waterborne viruses are responsible for numerous diseases and are abundant in aquatic systems. Understanding the fate of viruses in natural systems has important implications for human health. This research quantifies the uptake of the bacteriophage T4 and the enteric virus echovirus 11 when exposed to the filter feeders Tetrahymena pyriformis and Daphnia magna, and also examines the potential of viral transfer due to trophic interactions. Experiments co-incubating each species with the viruses over 72-96 h showed up to a 4 log virus removal for T. pyriformis, while direct viral uptake by D. magna was not observed. However, viral uptake by D. magna occurred indirectly by viral transfer from prey to predator, through D. magna feeding on virus-loaded T. pyriformis. This prey-predator interaction resulted in a 1 log additional virus removal compared to removal by T. pyriformis alone. Incomplete viral inactivation by D. magna was observed through recovery of infective viruses from the daphnid tissue. This research furthers our understanding of the impacts of zooplankton filter feeding on viral inactivation and shows the potential for viral transfer through the food chain. The viral-zooplankton interactions observed in these studies indicate that zooplankton may improve water quality through viral uptake or may serve as vectors for infection by accumulating viruses.
Collapse
Affiliation(s)
- Niveen S Ismail
- Picker Engineering Program, Smith College, Northampton, Massachusetts 01063, United States
| | - Margot Olive
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Virginie Bachmann
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Brunner JL. Pooled samples and eDNA-based detection can facilitate the "clean trade" of aquatic animals. Sci Rep 2020; 10:10280. [PMID: 32581260 PMCID: PMC7314758 DOI: 10.1038/s41598-020-66280-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
The regional and international trade of live animals facilitates the movement, spillover, and emergence of zoonotic and epizootic pathogens around the world. Detecting pathogens in trade is critical for preventing their continued movement and introduction, but screening a sufficient fraction to ensure rare infections are detected is simply infeasible for many taxa and settings because of the vast numbers of animals involved—hundreds of millions of live animals are imported into the U.S.A. alone every year. Batch processing pools of individual samples or using environmental DNA (eDNA)—the genetic material shed into an organism’s environment—collected from whole consignments of animals may substantially reduce the time and cost associated with pathogen surveillance. Both approaches, however, lack a framework with which to determine sampling requirements and interpret results. Here I present formulae for pooled individual samples (e.g,. swabs) and eDNA samples collected from finite populations and discuss key assumptions and considerations for their use with a focus on detecting Batrachochytrium salamandrivorans, an emerging pathogen that threatens global salamander diversity. While empirical validation is key, these formulae illustrate the potential for eDNA-based detection in particular to reduce sample sizes and help bring clean trade into reach for a greater number of taxa, places, and contexts.
Collapse
Affiliation(s)
- Jesse L Brunner
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, USA.
| |
Collapse
|
7
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
8
|
Hall EM, Brunner JL, Hutzenbiler B, Crespi EJ. Salinity stress increases the severity of ranavirus epidemics in amphibian populations. Proc Biol Sci 2020; 287:20200062. [PMID: 32370671 DOI: 10.1098/rspb.2020.0062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8-1.6 g l-1 Cl-) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics.
Collapse
Affiliation(s)
- Emily M Hall
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jesse L Brunner
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Brandon Hutzenbiler
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Erica J Crespi
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| |
Collapse
|
9
|
Deng L, Geng Y, Zhao R, Gray MJ, Wang K, Ouyang P, Chen D, Huang X, Chen Z, Huang C, Zhong Z, Guo H, Fang J. CMTV-like ranavirus infection associated with high mortality in captive catfish-like loach, Triplophysa siluorides, in China. Transbound Emerg Dis 2020; 67:1330-1335. [PMID: 31904194 DOI: 10.1111/tbed.13473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/11/2019] [Accepted: 01/02/2020] [Indexed: 11/27/2022]
Abstract
Ranaviruses are important emerging pathogens of ectothermic vertebrates that threaten aquaculture and wildlife worldwide. A mortality event occurred in a cultured population of catfish-like loach (Triplophysa siluorides) in Sichuan Province, China. Gross clinical signs of the affected fish included skin lesions and haemorrhagic ulcers, which are often associated with ranaviruses. Inoculation of liver, kidney and spleen tissue homogenates in epithelioma papulosum cyprini (EPC) cells at 25°C resulted in cytopathic effect within 24 hr. Transmission electron microscopy of infected EPC cells revealed hexagonal viral arrays in the cytoplasm and icosahedral geometry of the virions. Following exposure of T. siluroides to the isolated virus, similar clinical signs were observed and the fish experienced 40% and 90% mortality after 21 days at 103.58 and 107.8 TCID50 /0.1 ml doses, respectively, providing evidence the isolated virus was the main causative agent of the mortality event. Diagnostic PCR of the major capsid protein gene of ranavirus showed that all samples of diseased fish and isolated virus were positive. Phylogenetic analysis revealed that the isolated virus, designated as FYLl40220, was associated with the Common Midwife Toad Virus (CMTV)-like ranavirus clade. To our knowledge, this case represents the first report of CMTV-associated mortality in a fish species. Collectively, these results suggest that the host range of CMTV-like ranaviruses is greater than previously thought, and this clade of ranaviruses could have significant economic and biodiversity impacts.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ruoxuan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Kaiyu Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang, China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
10
|
A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Miaud C, Arnal V, Poulain M, Valentini A, Dejean T. eDNA Increases the Detectability of Ranavirus Infection in an Alpine Amphibian Population. Viruses 2019; 11:E526. [PMID: 31174349 PMCID: PMC6631829 DOI: 10.3390/v11060526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/12/2023] Open
Abstract
The early detection and identification of pathogenic microorganisms is essential in order to deploy appropriate mitigation measures. Viruses in the Iridoviridae family, such as those in the Ranavirus genus, can infect amphibian species without resulting in mortality or clinical signs, and they can also infect other hosts than amphibian species. Diagnostic techniques allowing the detection of the pathogen outside the period of host die-off would thus be of particular use. In this study, we tested a method using environmental DNA (eDNA) on a population of common frogs (Rana temporaria) known to be affected by a Ranavirus in the southern Alps in France. In six sampling sessions between June and September (the species' activity period), we collected tissue samples from dead and live frogs (adults and tadpoles), as well as insects (aquatic and terrestrial), sediment, and water. At the beginning of the breeding season in June, one adult was found dead; at the end of July, a mass mortality of tadpoles was observed. The viral DNA was detected in both adults and tadpoles (dead or alive) and in water samples, but it was not detected in insects or sediment. In live frog specimens, the virus was detected from June to September and in water samples from August to September. Dead tadpoles that tested positive for Ranavirus were observed only on one date (at the end of July). Our results indicate that eDNA can be an effective alternative to tissue/specimen sampling and can detect Ranavirus presence outside die-offs. Another advantage is that the collection of water samples can be performed by most field technicians. This study confirms that the use of eDNA can increase the performance and accuracy of wildlife health status monitoring and thus contribute to more effective surveillance programs.
Collapse
Affiliation(s)
- Claude Miaud
- CEFE, EPHE-PSL, CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier 3, IRD, Biogeography and Vertebrate Ecology, 1919 route de Mende, 34293 Montpellier, France.
| | - Véronique Arnal
- CEFE, EPHE-PSL, CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier 3, IRD, Biogeography and Vertebrate Ecology, 1919 route de Mende, 34293 Montpellier, France.
| | - Marie Poulain
- CEFE, EPHE-PSL, CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier 3, IRD, Biogeography and Vertebrate Ecology, 1919 route de Mende, 34293 Montpellier, France.
| | - Alice Valentini
- SPYGEN, 17 Rue du Lac Saint-André, 73370 Le Bourget-du-Lac, France.
| | - Tony Dejean
- SPYGEN, 17 Rue du Lac Saint-André, 73370 Le Bourget-du-Lac, France.
| |
Collapse
|
12
|
Le Sage MJ, Towey BD, Brunner JL. Do scavengers prevent or promote disease transmission? The effect of invertebrate scavenging on
Ranavirus
transmission. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mitchell J. Le Sage
- School of Biological Sciences Washington State University Pullman Washington
| | - Bailey D. Towey
- School of Biological Sciences Washington State University Pullman Washington
| | - Jesse L. Brunner
- School of Biological Sciences Washington State University Pullman Washington
| |
Collapse
|
13
|
Casais R, Larrinaga AR, Dalton KP, Domínguez Lapido P, Márquez I, Bécares E, Carter ED, Gray MJ, Miller DL, Balseiro A. Water sports could contribute to the translocation of ranaviruses. Sci Rep 2019; 9:2340. [PMID: 30787411 PMCID: PMC6382805 DOI: 10.1038/s41598-019-39674-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/28/2019] [Indexed: 02/05/2023] Open
Abstract
Ranaviruses have been identified as the cause of explosive disease outbreaks in amphibians worldwide and can be transmitted between hosts both via direct and indirect contact, in which humans might contribute to the translocation of contaminated material. The aim of this study was to evaluate the possible role of water sports in the human translocation of ranavirus, Batrachochytrium dendrobatidis (Bd), and B. salamandrivorans (Bsal). A total of 234 boats were sampled during the spring Spanish Canoe Championship which took place in Pontillón de Castro, a reservoir with a history of ranavirosis, in May 2017. Boats were tested for the presence of ranavirus and Batrachochytrium spp. DNA, using quantitative real-time polymerase chain reaction techniques (qPCR). A total of 22 swabs (22/234, 9.40%) yielded qPCR-positive results for Ranavirus DNA while Bd or Bsal were not detected in any of the samples. We provide the first evidence that human-related water sports could be a source of ranavirus contamination, providing justification for public disinfecting stations in key areas where human traffic from water sports is high.
Collapse
Affiliation(s)
- Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain
| | | | - Kevin P Dalton
- Departamento de Bioquímica, Universidad de Oviedo, Oviedo, Spain
| | | | - Isabel Márquez
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain
| | - Eloy Bécares
- Facultad de Biología, Universidad de León, Campus de Vegazana, León, Spain
| | - E Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Ana Balseiro
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Gijón, Asturias, Spain.
| |
Collapse
|
14
|
Seasonal dynamics and potential drivers of ranavirus epidemics in wood frog populations. Oecologia 2018; 188:1253-1262. [DOI: 10.1007/s00442-018-4274-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
|
15
|
Youker-Smith TE, Boersch-Supan PH, Whipps CM, Ryan SJ. Environmental Drivers of Ranavirus in Free-Living Amphibians in Constructed Ponds. ECOHEALTH 2018; 15:608-618. [PMID: 30094775 PMCID: PMC6245063 DOI: 10.1007/s10393-018-1350-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Amphibian ranaviruses occur globally, but we are only beginning to understand mechanisms for emergence. Ranaviruses are aquatic pathogens which can cause > 90% mortality in larvae of many aquatic-breeding amphibians, making them important focal host taxa. Host susceptibilities and virulence of ranaviruses have been studied extensively in controlled laboratory settings, but research is needed to identify drivers of infection in natural environments. Constructed ponds, essential components of wetland restoration, have been associated with higher ranavirus prevalence than natural ponds, posing a conundrum for conservation efforts, and emphasizing the need to understand potential drivers. In this study, we analyzed 4 years of Frog virus 3 prevalence and associated environmental parameters in populations of wood frogs (Lithobates sylvaticus) and green frogs (Lithobates clamitans) in a constructed pond system. High prevalence was best predicted by low temperature, high host density, low zooplankton concentrations, and Gosner stages approaching metamorphosis. This study identified important variables to measure in assessments of ranaviral infection risk in newly constructed ponds, including effects of zooplankton, which have not been previously quantified in natural settings. Examining factors mediating diseases in natural environments, particularly in managed conservation settings, is important to both validate laboratory findings in situ, and to inform future conservation planning, particularly in the context of adaptive management.
Collapse
Affiliation(s)
- Tess E Youker-Smith
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Philipp H Boersch-Supan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, 3128 Turlington Hall, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Christopher M Whipps
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, 3128 Turlington Hall, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
Tornabene BJ, Blaustein AR, Briggs CJ, Calhoun DM, Johnson PTJ, McDevitt-Galles T, Rohr JR, Hoverman JT. The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage. FRESHWATER BIOLOGY 2018; 63:639-651. [PMID: 30127540 PMCID: PMC6097636 DOI: 10.1111/fwb.13100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
A fundamental goal of disease ecology is to determine the landscape and environmental processes that drive disease dynamics at different biological levels to guide management and conservation. Although ranaviruses (family Iridoviridae) are emerging amphibian pathogens, few studies have conducted comprehensive field surveys to assess potential drivers of ranavirus disease dynamics.We examined the factors underlying patterns in site-level ranavirus presence and individual-level ranavirus infection in 76 ponds and 1,088 individuals representing 5 amphibian species within the East Bay region of California.Based on a competing-model approach followed by variance partitioning, landscape and biotic variables explained the most variation in site-level presence. However, biotic and individual-level variables explained the most variation in individual-level infection.Distance to nearest ranavirus-infected pond (the landscape factor) was more important than biotic factors at the site-level; however, biotic factors were most influential at the individual-level. At the site level, the probability of ranavirus presence correlated negatively with distance to nearest ranavirus-positive pond, suggesting that the movement of water or mobile taxa (e.g., adult amphibians, birds, reptiles) may facilitate the movement of ranavirus between ponds and across the landscape.Taxonomic richness associated positively with ranavirus presence at the site-level, but vertebrate richness associated negatively with infection prevalence in the host population. This might reflect the contrasting influences of diversity on pathogen colonization versus transmission among hosts.Amphibian host species differed in their likelihood of ranavirus infection: American bullfrogs (Rana catesbeiana) had the weakest association with infection while rough-skinned newts (Taricha granulosa) had the strongest. After accounting for host species effects, hosts with greater snout-vent length had a lower probability of infection.Our study demonstrates the array of landscape, environmental, and individual-level factors associated with ranavirus epidemiology. Moreover, our study helps illustrate that the importance of these factors varies with biological level.
Collapse
Affiliation(s)
- Brian J Tornabene
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061
| | - Andrew R Blaustein
- Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331-2914
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610
| | - Dana M Calhoun
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309-0334
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309-0334
| | - Travis McDevitt-Galles
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309-0334
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061
| |
Collapse
|
17
|
Evaluating the Importance of Environmental Persistence for Ranavirus Transmission and Epidemiology. Adv Virus Res 2018; 101:129-148. [PMID: 29908588 DOI: 10.1016/bs.aivir.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Viruses persist outside their hosts in a variety of forms, from naked virions to virus protected in sloughed tissues or carcasses, and for a range of times, all of which affect the likelihood and importance of transmission from the environment. This review synthesizes the literature on environmental persistence of viruses in the genus Ranavirus (family Iridoviridae), which are large double-stranded DNA viruses of ectothermic, often aquatic or semiaquatic vertebrates. Ranaviruses have been associated with mass mortality events in natural and captive settings around the world, and with population and community-wide declines in Europe. Early work suggested ranaviruses are environmentally robust and transmission from the environment should be common. More recent work has shown a large effect of temperature and microbial action on persistence times, although other aspects of the environment (e.g., water chemistry) and aquatic communities (e.g., zooplankton) may also be important. Ranaviruses may persist in the carcasses of animals that have died of infection, and so decomposing organisms and invertebrate scavengers may reduce these persistence times. The question is, do persistence times vary enough to promote or preclude substantial transmission from the environment. We built an epidemiological model with transmission from contacts, free virus in water, and carcasses, to explore the conditions in which environmental persistence could be important for ranavirus epidemiology. Based on prior work, we expected a substantial amount of transmission from the water and that longer persistence times would make this route of transmission dominant. However, neither water-borne nor transmission from carcasses played an important role in the simulated epidemics except under fairly restrictive conditions, such as when there were high rates of virus shedding or high rates of scavenging on highly infectious carcasses. While many aspects of environmental persistence of ranaviruses are being resolved by experiments, key parameters such as viral shedding rates are virtually unknown and will need to be empirically constrained if we are to determine whether environmental persistence and transmission from the environment are essential or insignificant features of Ranavirus epidemiology. We conclude by emphasizing the need to place environmental persistence research in an epidemiological framework.
Collapse
|
18
|
Abstract
Human-mediated disease outbreaks due to poor biosecurity practices when processing animals in wild populations have been suspected. We tested whether not changing nitrile gloves between processing wood frog (Lithobates sylvaticus) tadpoles and co-housing individuals increased pathogen transmission and subsequent diseased-induced mortality caused by the emerging pathogen, ranavirus. We found that not changing gloves between processing infected and uninfected tadpoles resulted in transmission of ranavirus and increased the risk of mortality of uninfected tadpoles by 30X. Co-housing tadpoles for only 15 minutes with 10% of individuals infected resulted in ranavirus transmission and 50% mortality of uninfected tadpoles. More extreme mortality was observed when the co-housing infection prevalence was >10%. Our results illustrate that human-induced disease outbreaks due to poor biosecurity practices are possible in wild animal populations.
Collapse
|
19
|
Brunner JL, Beaty L, Guitard A, Russell D. Heterogeneities in the infection process drive ranavirus transmission. Ecology 2017; 98:576-582. [PMID: 27859036 DOI: 10.1002/ecy.1644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Abstract
Transmission is central to our understanding and efforts to control the spread of infectious diseases. Because transmission generally requires close contact, host movements and behaviors can shape transmission dynamics: random and complete mixing leads to the classic density-dependent model, but if hosts primarily interact locally (e.g., aggregate) or within groups, transmission may saturate. Manipulating host behavior may thus change both the rate and functional form of transmission. We used the ranavirus-wood frog (Lithobates sylvaticus) tadpole system to test whether transmission rates reflect contacts, and whether the functional form of transmission can be influenced by the distribution of food in mesocosms (widely dispersed, promoting random movement and mixing vs. a central pile, promoting aggregations). Contact rates increased with density, as expected, but transmission rapidly saturated. Observed rates of transmission were not explained by observed contact rates or the density-dependent model, but instead transmission in both treatments followed models allowing for heterogeneities in the transmission process. We argue that contacts were not generally limiting, but instead that our results are better explained by heterogeneities in host susceptibility. Moreover, manipulating host behavior to manage the spread of infectious disease may prove difficult to implement.
Collapse
Affiliation(s)
- Jesse L Brunner
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164, USA.,Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA
| | - Lynne Beaty
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Alexandra Guitard
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA
| | - Deanna Russell
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA
| |
Collapse
|
20
|
Earl JE, Chaney JC, Sutton WB, Lillard CE, Kouba AJ, Langhorne C, Krebs J, Wilkes RP, Hill RD, Miller DL, Gray MJ. Ranavirus could facilitate local extinction of rare amphibian species. Oecologia 2016; 182:611-23. [DOI: 10.1007/s00442-016-3682-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
|
21
|
|
22
|
Hall EM, Crespi EJ, Goldberg CS, Brunner JL. Evaluating environmental DNA-based quantification of ranavirus infection in wood frog populations. Mol Ecol Resour 2015; 16:423-33. [PMID: 26308150 DOI: 10.1111/1755-0998.12461] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 08/13/2015] [Accepted: 08/21/2015] [Indexed: 11/26/2022]
Abstract
A variety of challenges arise when monitoring wildlife populations for disease. Sampling tissues can be invasive to hosts, and obtaining sufficient sample sizes can be expensive and time-consuming, particularly for rare species and when pathogen prevalence is low. Environmental DNA (eDNA)-based detection of pathogens is an alternative approach to surveillance for aquatic communities that circumvents many of these issues. Ranaviruses are emerging pathogens of ectothermic vertebrates linked to die-offs of amphibian populations. Detecting ranavirus infections is critical, but nonlethal methods have the above issues and are prone to false negatives. We report on the feasibility and effectiveness of eDNA-based ranavirus detection in the field. We compared ranavirus titres in eDNA samples collected from pond water to titres in wood frog (Lithobates sylvaticus; n = 5) tadpoles in sites dominated by this one species (n = 20 pond visits). We examined whether ranavirus DNA can be detected in eDNA from pond water when infections are present in the pond and if viral titres detected in eDNA samples correlate with the prevalence or intensity of ranavirus infections in tadpoles. With three 250 mL water samples, we were able to detect the virus in all visits with infected larvae (0.92 diagnostic sensitivity). Also, we found a strong relationship between the viral eDNA titres and titres in larval tissues. eDNA titres increased prior to observed die-offs and declined afterwards, and were two orders of magnitude higher in ponds with a die-off. Our results suggest that eDNA is useful for detecting ranavirus infections in wildlife and aquaculture.
Collapse
Affiliation(s)
- Emily M Hall
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Erica J Crespi
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Caren S Goldberg
- School of the Environment, Washington State University, PO Box 646410, Pullman, WA, 99164-2812, USA
| | - Jesse L Brunner
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| |
Collapse
|
23
|
Kolby JE, Smith KM, Ramirez SD, Rabemananjara F, Pessier AP, Brunner JL, Goldberg CS, Berger L, Skerratt LF. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar. PLoS One 2015; 10:e0125330. [PMID: 26083349 PMCID: PMC4471163 DOI: 10.1371/journal.pone.0125330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/11/2015] [Indexed: 12/03/2022] Open
Abstract
We performed a rapid response investigation to evaluate the presence and distribution of amphibian pathogens in Madagascar following our identification of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranavirus in commercially exported amphibians. This targeted risk-based field surveillance program was conducted from February to April 2014 encompassing 12 regions and 47 survey sites. We simultaneously collected amphibian and environmental samples to increase survey sensitivity and performed sampling both in wilderness areas and commercial amphibian trade facilities. Bd was not detected in any of 508 amphibian skin swabs or 68 water filter samples, suggesting pathogen prevalence was below 0.8%, with 95% confidence during our visit. Ranavirus was detected in 5 of 97 amphibians, including one adult Mantidactylus cowanii and three unidentified larvae from Ranomafana National Park, and one adult Mantidactylus mocquardi from Ankaratra. Ranavirus was also detected in water samples collected from two commercial amphibian export facilities. We also provide the first report of an amphibian mass-mortality event observed in wild amphibians in Madagascar. Although neither Bd nor ranavirus appeared widespread in Madagascar during this investigation, additional health surveys are required to disentangle potential seasonal variations in pathogen abundance and detectability from actual changes in pathogen distribution and rates of spread. Accordingly, our results should be conservatively interpreted until a comparable survey effort during winter months has been performed. It is imperative that biosecurity practices be immediately adopted to limit the unintentional increased spread of disease through the movement of contaminated equipment or direct disposal of contaminated material from wildlife trade facilities. The presence of potentially introduced strains of ranaviruses suggests that Madagascar's reptile species might also be threatened by disease. Standardized population monitoring of key amphibian and reptile species should be established with urgency to enable early detection of potential impacts of disease emergence in this global biodiversity hotspot.
Collapse
Affiliation(s)
- Jonathan E. Kolby
- One Health Research Group, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- EcoHealth Alliance, New York, New York, United States of America
- * E-mail:
| | | | - Sara D. Ramirez
- Sustainability Studies Program, Ramapo College of New Jersey, Mahwah, New Jersey, United States of America
| | | | - Allan P. Pessier
- Amphibian Disease Laboratory, Institute for Conservation Research, San Diego Zoo Global, San Diego, California, United States of America
| | - Jesse L. Brunner
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Caren S. Goldberg
- School of the Environment, Washington State University, Pullman, Washington, United States of America
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Lee F. Skerratt
- One Health Research Group, College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|