1
|
Rich AF, Naguib M. Shewanella xiamenensis-associated ulcerative dermatitis in koi carp (Cyprinus rubrofuscus). JOURNAL OF FISH DISEASES 2024; 47:e13942. [PMID: 38492216 DOI: 10.1111/jfd.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Ulcerative dermatitis (UD) is common in ornamental fish collections and is typically associated with a wide range of bacterial aetiologies. Clinical reports describing Shewanella xiamenensis-associated UD are limited, however, despite growing attention to pathogenic Shewanella species in fish. Two out of 95 koi carp with UD were presented for clinical assessment by a commercial collection (n = 3000 fish) and subsequently killed on welfare grounds for necropsy. Both specimens exhibited extensive cutaneous ulcers and coelomic fat necrosis with petechial haemorrhages on post-mortem examination. Shewanella xiamenensis was cultured from ulcerated skin tissues taken from both fish, with consistent intralesional gram-negative rod-like bacteria seen on skin scrape cytology. Histology also confirmed intralesional gram-negative rod-like bacteria within multiple ulcerative and erosive dermatitis lesions, plus myofibre necrosis and necrotising coelomic steatitis, in both specimens. Features associated with impaired generalised osmoregulation secondary to UD were detected within the striated muscle underlying the ulcers, the gills, and the caudal aspects of the kidneys. Additional histological features suggestive of sepsis were also seen in one of the fish. In the interim period, morbidity had increased from 3.2% to around 30% of the entire stock. Following culture results, increased pond water changes were implemented (q.2-3d) and the remaining stock was treated with florfenicol, resulting in complete resolution of UD in the collection (as per client). This article highlights the first description of S. xiamenensis-associated UD in koi carp/diseased ornamental fish in the United Kingdom.
Collapse
|
2
|
Wise AL, LaFrentz BR, Kelly AM, Liles MR, Griffin MJ, Beck BH, Bruce TJ. Coinfection of channel catfish (Ictalurus punctatus) with virulent Aeromonas hydrophila and Flavobacterium covae exacerbates mortality. JOURNAL OF FISH DISEASES 2024. [PMID: 38214100 DOI: 10.1111/jfd.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Flavobacterium covae and virulent Aeromonas hydrophila are prevalent bacterial pathogens within the US catfish industry that can cause high mortality in production ponds. An assessment of in vivo bacterial coinfection with virulent A. hydrophila (ML09-119) and F. covae (ALG-00-530) was conducted in juvenile channel catfish (Ictalurus punctatus). Catfish were divided into seven treatments: (1) mock control; (2) and (3) high and low doses of virulent A. hydrophila; (4) and (5) high and low doses of F. covae; (6) and (7) simultaneous challenge with high and low doses of virulent A. hydrophila and F. covae. In addition to the mortality assessment, anterior kidney and spleen were collected to evaluate immune gene expression, as well as quantify bacterial load by qPCR. At 96 h post-challenge (hpc), the high dose of virulent A. hydrophila infection (immersed in 2.3 × 107 CFU mL-1 ) resulted in cumulative percent mortality (CPM) of 28.3 ± 9.5%, while the high dose of F. covae (immersed in 5.2 × 106 CFU mL-1 ) yielded CPM of 23.3 ± 12.9%. When these pathogens were delivered in combination, CPM significantly increased for both the high- (98.3 ± 1.36%) and low-dose combinations (76.7 ± 17.05%) (p < .001). Lysozyme activity was found to be different at 24 and 48 hpc, with the high-dose vAh group demonstrating greater levels than unexposed control fish at each time point. Three proinflammatory cytokines (tnfα, il8, il1b) demonstrated increased expression levels at 48 hpc. These results demonstrate the additive effects on mortality when these two pathogens are combined. The synthesis of these mortality and health metrics advances our understanding of coinfections of these two important catfish pathogens and will aid fish health diagnosticians and channel catfish producers in developing therapeutants and prevention methods to control bacterial coinfections.
Collapse
Affiliation(s)
- Allison L Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | | | - Anita M Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Matt J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Benjamin H Beck
- USDA-ARS Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Zhong L, Carvalho LA, Gao S, Whyte SK, Purcell SL, Fast MD, Cai W. Transcriptome analysis revealed immune responses in the kidney of Atlantic salmon (Salmo salar) co-infected with sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109210. [PMID: 37951318 DOI: 10.1016/j.fsi.2023.109210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
Sea lice (Lepeophtheirus salmonis) and infectious salmon anemia virus (ISAv) are two of the most important pathogens in Atlantic salmon (Salmo salar) farming and typically cause substantial economic losses to the industry. However, the immune interactions between hosts and these pathogens are still unclear, especially in the scenario of co-infection. In this study, we artificially infected Atlantic salmon with sea lice and ISAv, and investigated the gene expression patterns of Atlantic salmon head kidneys in response to both lice only and co-infection with lice and ISAv by transcriptomic analysis. The challenge experiment indicated that co-infection resulted in a cumulative mortality rate of 47.8 %, while no mortality was observed in the lice alone infection. We identified 240 differentially expressed genes (DEGs) under the lice alone infection, of which 185 were down-regulated and 55 were up-regulated, while a total of 994 DEGs were identified in the co-infection, of which 206 were down-regulated and 788 were significantly up-regulated. The pathway enrichment analysis revealed that single-infection significantly suppressed the innate immune system (e.g., the complement system), whereas co-infection induced a strong immune response, leading to the activation of immune-related signaling pathways such as Toll-like receptors and NOD-like receptors pathways, as well as significant upregulation of genes related to the activation of interferon and MH class I protein complex. Our results provide the first global transcriptomic study of gene expression in the Atlantic salmon head kidney in response to co-infection with sea lice and ISAv, and provided the baseline knowledge for understanding the immune responses during co-infection.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Laura A Carvalho
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Shengnan Gao
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shona K Whyte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Sara L Purcell
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, and State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
4
|
Okon EM, Okocha RC, Taiwo AB, Michael FB, Bolanle AM. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100096. [PMID: 37250211 PMCID: PMC10213192 DOI: 10.1016/j.fsirep.2023.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Co-infections can affect the transmission of a pathogen within a population and the pathogen's virulence, ultimately affecting the disease's dynamics. In addition, co-infections can potentially affect the host's immunological responses, clinical outcomes, survival, and disease control efficacy. Co-infections significantly impact fish production and can change several fish diseases' progression and severity. However, the effect of co-infection has only recently garnered limited attention in aquatic animals such as fish, and there is currently a dearth of studies on this topic. This study, therefore, presents an in-depth summary of the dynamics of co-infection in fish. This study reviewed the co-infection of fish pathogens, the interaction of pathogens and fish, clinical outcomes and impacts on fish immune responses, and fish survival. Most studies described the prevalence of co-infections in fish, with various parameters influencing their outcomes. Bacterial co-infection increased fish mortality, ulcerative dermatitis, and intestinal haemorrhage. Viral co-infection resulted in osmoregulatory effects, increased mortality and cytopathic effect (CPE). More severe histological alterations and clinical symptoms were related to the co-infection of fish than in single-infected fish. In parasitic co-infection, there was increased mortality, high kidney swelling index, and severe necrotic alterations in the kidney, liver, and spleen. In other cases, there were more severe kidney lesions, cartilage destruction and displacement. There was a dearth of information on mitigating co-infections in fish. Therefore, further studies on the mitigation strategies of co-infections in fish will provide valuable insights into this research area. Also, more research on the immunology of co-infection specific to each fish pathogen class (bacteria, viruses, fungi, and parasites) is imperative. The findings from such studies would provide valuable information on the relationship between fish immune systems and targeted responses.
Collapse
Affiliation(s)
| | - Reuben Chukwuka Okocha
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Climate Action Research Group, Landmark University SDG 13, Nigeria
| | | | - Falana Babatunde Michael
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Life Below Water Research Group, Landmark University SDG 14, Nigeria
| | - Adeniran Moji Bolanle
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
5
|
Erfanmanesh A, Beikzadeh B, Khanzadeh M. Efficacy of polyvalent vaccine on immune response and disease resistance against streptococcosis/lactococcosis and yersiniosis in rainbow trout (Oncorhynchus mykiss). Vet Res Commun 2023; 47:1347-1355. [PMID: 36809599 DOI: 10.1007/s11259-023-10081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Diseases are the most significant challenge in the development and stability of aquaculture. In this study, the immunogenic efficiency of polyvalent streptococcosis/lactococcosis and yersiniosis vaccines was evaluated by injection and immersion methods in rainbow trout.. The 450 fish with an average weight of 50 ± 5 g were divided into three treatments and three replications as follows: injection vaccine treatment, immersion vaccine treatment and control group without vaccine administration. Fish were kept for 74 days and sampling was done on days 20, 40 and 60. Then, from the 60th to the 74th day, the immunized groups were challenged with three bacteria Streptococcus iniae (S. iniae), Lactococcus garvieae (L. garvieae) and Yersinia ruckeri (Y. ruckeri) separately. A significant difference was observed in the weight gained (WG) in the immunized groups compared to the control group (P < 0.05). The relative survival percentage (RPS) after 14 days of challenge with S. iniae, L. garvieae and Y. ruckeri in the injection group compared to the control group increased respectively (60%, 60% and 70%), (P < 0.05). Also, RPS in the immersion group had an increase respectively (30%, 40% and 50%) after the challenge with S. iniae, L.garvieae and Y. ruckeri compared to the control group. Immune indicators such as antibody titer, complement and lysozyme activity significantly increased in comparison to the control group (P < 0.05). In general, it can be concluded that applying three vaccines by injection and immersion method has significant effects on immune protection and survival rate. However, the injection method is more effective and more suitable than the immersion method.
Collapse
Affiliation(s)
- Ahmad Erfanmanesh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran
| | - Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Khanzadeh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran.
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
6
|
Han Z, Ge L, Wen S, Sun J. Dysfunction of the intestinal physical barrier in the intestinal inflammation of tongue sole, Cynoglossus semilaevis, induced by Shewanella algae infection. FISH & SHELLFISH IMMUNOLOGY 2023:108900. [PMID: 37315911 DOI: 10.1016/j.fsi.2023.108900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-β, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-β, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.
Collapse
Affiliation(s)
- Zhuoran Han
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Lunhua Ge
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Siyi Wen
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
7
|
Lattos A, Papadopoulos DK, Giantsis IA, Feidantsis K, Georgoulis I, Karagiannis D, Carella F, Michaelidis B. Investigation of the highly endangered Pinna nobilis' mass mortalities: Seasonal and temperature patterns of health status, antioxidant and heat stress responses. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105977. [PMID: 37043840 DOI: 10.1016/j.marenvres.2023.105977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/11/2023]
Abstract
Recently, P. nobilis populations have suffered a tremendous reduction, with pathogens potentially playing a crucial role. Considering its highly endangered status, mechanisms leading to mass mortalities were examined in one or multiple pathogens infected populations. Thus, seasonal antioxidant enzymatic activities, hsp70 and catalase mRNA levels, were investigated in two different Greek populations, during mass mortality events in summer of 2020. Samples were collected from Fthiotis and Lesvos during February (ToC 14 ± 1.2 and 15 ± 1 respectively), April (ToC 18 ± 1.2 and 17 ± 1.3 respectively), and June (ToC 24.5 ± 1.5 and 21.5 ± 1.5 respectively) 2020. In July of the same year (ToC 26.5 ± 1.7 in Fthiotis and 24.5 ± 1.7 in Lesvos), no live specimens were found. All biochemical parameters and phylogenetic analysis suggest that pathogen infection increases P. nobilis sensitivity to water temperature, subsequently leading to mass mortality. The latter was obvious in Fthiotis individuals, in which Haplosporidium pinnae was also observed with Mycobacterium spp., compared to Lesvos individuals.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100, Florina, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios Karagiannis
- National Reference Laboratory for Mollusc Diseases, Ministry of Rural Development and Food, 7 Frixou Street, GR-54627, Thessaloniki, Greece
| | - Francesca Carella
- University of Naples Federico II, Department of Biology, Complesso di MSA, 80126, Naples, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| |
Collapse
|
8
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
9
|
Yu K, Huang Z, Xiao Y, Wang D. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity. Virulence 2022; 13:1515-1532. [PMID: 36065099 PMCID: PMC9481105 DOI: 10.1080/21505594.2022.2117831] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Shewanella consists of Gram-negative proteobacteria that are ubiquitously distributed in environment. As the members of this genus have rapidly increased within the past decade, several species have become emerging pathogens worldwide, attracting the attention of the medical community. These species are also associated with severe community- and hospital-acquired infections. Patients infected with Shewanella spp. had experiences of occupational or recreational exposure; meanwhile, the process of infection is complex and the pathogenicity is influenced by a variety of factors. Here, an exhaustive internet-based literature search was carried out in PUBMED using terms “Achromobacter putrefaciens,” “Pseudomonas putrefaciens,” “Alteromonas putrefaciens” and “Shewanella” to search literatures published between 1978 and June 2022. We provided a comprehensive review on the epidemiology, clinical features and pathogenicity of Shewanella, which will contribute a better understanding of its clinical aetiology, and facilitate the timely diagnosis and effective treatment of Shewanella infection for clinicians and public health professionals.
Collapse
Affiliation(s)
- Keyi Yu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Zhenzhou Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Yue Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| |
Collapse
|
10
|
Mugetti D, Colussi S, Pastorino P, Varello K, Tomasoni M, Menconi V, Pedron C, Bozzetta E, Acutis PL, Prearo M. Episode of mortality associated with isolation of Streptococcus iniae in Adriatic sturgeon (Acipenser naccarii Bonaparte, 1836) reared in Northern Italy. JOURNAL OF FISH DISEASES 2022; 45:939-942. [PMID: 35263448 DOI: 10.1111/jfd.13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Davide Mugetti
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Silvia Colussi
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Mattia Tomasoni
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Vasco Menconi
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | | | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale of Piemonte, Liguria and Valle d'Aosta, Torino, Italy
| |
Collapse
|
11
|
Standish I, McCann R, Puzach C, Leis E, Bailey J, Dziki S, Katona R, Lark E, Edwards C, Keesler B, Reichley S, King S, Knupp C, Harrison C, Loch T, Phillips K. Development of duplex qPCR targeting Carnobacterium maltaromaticum and Vagococcus salmoninarum. JOURNAL OF FISH DISEASES 2022; 45:667-677. [PMID: 35195301 DOI: 10.1111/jfd.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
In November 2018, Vagococcus salmoninarum was identified as the causative agent of a chronic coldwater streptococcosis epizootic in broodstock brook trout (Salvelinus fontinalis) at the Iron River National Fish Hatchery in Wisconsin, USA. By February 2019, the epizootic spread to adjacent raceways containing broodstock lake trout (Salvelinus namaycush), whereby fish were found to be coinfected with Carnobacterium maltaromaticum and V. salmoninarum. To differentiate these two pathogens and determine the primary cause of the lake trout morbidity, a quantitative real-time PCR (qPCR) was developed targeting the C. maltaromaticum phenylalanyl-tRNA synthase alpha subunit (pheS) gene. The qPCR was combined with a V. salmoninarum qPCR, creating a duplex qPCR assay that simultaneously quantitates C. maltaromaticum and V. salmoninarum concentrations in individual lake trout tissues, and screens presumptive isolates from hatchery inspections and wild fish from national fish hatchery source waters throughout the Great Lakes basin. Vagococcus salmoninarum and C. maltaromaticum were co-detected in broodstock brook trout from two tribal hatcheries and C. maltaromaticum was present in wild fish in source waters of several national fish hatcheries. This study provides a powerful new tool to differentiate and diagnose two emerging Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Isaac Standish
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Rebekah McCann
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Corey Puzach
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Eric Leis
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Jennifer Bailey
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Sara Dziki
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Ryan Katona
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Ellen Lark
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| | - Carey Edwards
- Iron River National Fish Hatchery, United States Fish and Wildlife Service, Iron River, Wisconsin, USA
| | - Brandon Keesler
- Iron River National Fish Hatchery, United States Fish and Wildlife Service, Iron River, Wisconsin, USA
| | - Stephen Reichley
- Clear Springs Foods, Buhl, Idaho, USA
- College of Veterinary Medicine and Global Center for Aquatic Food Security, Mississippi State University, Starkville, Mississippi, USA
| | | | - Christopher Knupp
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Courtney Harrison
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
| | - Thomas Loch
- College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Kenneth Phillips
- La Crosse Fish Health Center, United States Fish and Wildlife Service, Onalaska, Wisconsin, USA
| |
Collapse
|
12
|
Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation. mSystems 2022; 7:e0151821. [PMID: 35311563 PMCID: PMC9040814 DOI: 10.1128/msystems.01518-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCEShewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.
Collapse
|
13
|
Wise AL, LaFrentz BR, Kelly AM, Khoo LH, Xu T, Liles MR, Bruce TJ. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals (Basel) 2021; 11:ani11113240. [PMID: 34827972 PMCID: PMC8614398 DOI: 10.3390/ani11113240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Catfish aquaculture is a prominent agricultural sector for foodfish production in the Southern United States. Catfish producers often experience high-level mortality events due to bacterial pathogens. In many instances, co-infections caused by multiple bacterial fish pathogens are isolated during diagnostic cases. These bacterial–bacterial interactions may alter the infection dynamics, and many of these mechanisms and interactions remain unclear. Furthermore, these co-infections may complicate disease management plans and treatment strategies. The current review provides an overview of the prevalent bacterial pathogens in catfish culture and previously reported instances of co-infections in catfish and other production fish species. Abstract Catfish production is a major aquaculture industry in the United States and is the largest sector of food fish production. As producers aim to optimize production yields, diseases caused by bacterial pathogens are responsible for high pond mortality rates and economic losses. The major bacterial pathogens responsible are Edwardsiella ictaluri, Aeromonas spp., and Flavobacterium columnare. Given the outdoor pond culture environments and ubiquitous nature of these aquatic pathogens, there have been many reports of co-infective bacterial infections within this aquaculture sector. Co-infections may be responsible for altering disease infection mechanics, increasing mortality rates, and creating difficulties for disease management plans. Furthermore, proper diagnoses of primary and secondary pathogens are essential in ensuring the correct treatment approaches for antimicrobials and chemical applications. A thorough understanding of the interactions and infectivity dynamics for these warm water bacterial pathogens will allow for the adoption of new prevention and control methods, particularly in vaccine development. This review aims to provide an overview of co-infective pathogens in catfish culture and present diagnostic case data from Mississippi and Alabama to define prevalence for these multiple-species infections better.
Collapse
Affiliation(s)
- Allison L. Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Benjamin R. LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA;
| | - Anita M. Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Lester H. Khoo
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Tingbi Xu
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Mark R. Liles
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
- Correspondence:
| |
Collapse
|
14
|
Yu K, Huang Z, Li Y, Fu Q, Lin L, Wu S, Dai H, Cai H, Xiao Y, Lan R, Wang D. Establishment and Application of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Detection of Shewanella Genus. Front Microbiol 2021; 12:625821. [PMID: 33679644 PMCID: PMC7930330 DOI: 10.3389/fmicb.2021.625821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 01/28/2023] Open
Abstract
Shewanella species are widely distributed in the aquatic environment and aquatic organisms. They are opportunistic human pathogens with increasing clinical infections reported in recent years. However, there is a lack of a rapid and accurate method to identify Shewanella species. We evaluated here matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for rapid identification of Shewanella. A peptide mass reference spectra (PMRS) database was constructed for the type strains of 36 Shewanella species. The main spectrum projection (MSP) cluster dendrogram showed that the type strains of Shewanella species can be effectively distinguished according to the different MS fingerprinting. The PMRS database was validated using 125 Shewanella test strains isolated from various sources and periods; 92.8% (n = 116) of the strains were correctly identified at the species level, compared with the results of multilocus sequence analysis (MLSA), which was previously shown to be a method for identifying Shewanella at the species level. The misidentified strains (n = 9) by MALDI-TOF MS involved five species of two groups, i.e., Shewanella algae-Shewanella chilikensis-Shewanella indica and Shewanella seohaensis-Shewanella xiamenensis. We then identified and defined species-specific biomarker peaks of the 36 species using the type strains and validated these selected biomarkers using 125 test strains. Our study demonstrated that MALDI-TOF MS was a reliable and powerful tool for the rapid identification of Shewanella strains at the species level.
Collapse
Affiliation(s)
- Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Ying Li
- Workstation for Microbial Infectious Disease, Shunyi District Center for Disease Control and Prevention, Beijing, China
| | | | | | | | - Hang Dai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Hongyan Cai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Yue Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
- Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| |
Collapse
|
15
|
Han Z, Sun J, Wang A, Lv A, Hu X, Chen L, Guo Y. Differentially expressed proteins in the intestine of Cynoglossus semilaevis Günther following a Shewanella algae challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 104:111-122. [PMID: 32525078 DOI: 10.1016/j.fsi.2020.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Fish intestine is an important constituent of the mucosal immune system. The gut and gut-associated lymphoid tissue construct a local immune environment. A Shewanella algae strain was previously reported to be a pathogen causing ascitic disease accompanied with intestinal inflammation in Cynoglossus semilaevis. This study aimed to investigate the intestine immune response in C. semilaevis to S. algae infection at the protein level. Two-dimensional electrophoresis coupled with mass spectrometry proteomics was utilized to compare protein expression in the intestines from normal and S. algae-infected C. semilaevis. A total of 70 differentially expressed proteins (DEPs), consisting of 16 upregulated and 54 downregulated proteins, were identified in the intestine tissue of C. Semilaevis. These protein expression changes were further validated using western blot analysis and quantitative real-time PCR. Gene ontology enrichment analysis showed that these 70 DEPs could be assigned across three categories: "cellular components", "molecular function", and "biological process". Forty-one DEPs (six up-regulated and 35 down-regulated proteins) related to metabolic processes were identified. In addition, 20 DEPs (eight up-regulated and 12 down-regulated proteins) related to stress and immune responses were identified. A protein-protein interaction network generated by the STRING (Search Tool for the Retrieval of Interacting Genes/protein) revealed that 30 DEPs interacted with one another to form an integrated network. Among them, 29 DEPs were related to stress, immune, and metabolism processes. In the network, some of the immune related proteins (C9, FGB, KNG1, apolipoprotein A-IV-like, and PDIA3) were up-regulated and most DEPs involved in metabolism processes were down-regulated. These results indicate that the immune defense response of the intestine was activated and the intestinal function associated with metabolism processes was disturbed. This study provides valuable information for further research into the functions of these DEPs in fish.
Collapse
Affiliation(s)
- Zhuoran Han
- Key Laboratory of Ecology and Environment Science of Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science of Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yongjun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
16
|
Kerddee P, Dong HT, Chokmangmeepisarn P, Rodkhum C, Srisapoome P, Areechon N, Del-Pozo J, Kayansamruaj P. Simultaneous detection of scale drop disease virus and Flavobacterium columnare from diseased freshwater-reared barramundi Lates calcarifer. DISEASES OF AQUATIC ORGANISMS 2020; 140:119-128. [PMID: 32759470 DOI: 10.3354/dao03500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freshwater farming of barramundi Lates calcarifer in Thailand is a growing sector in aquaculture, but mortalities due to infectious diseases are still a major threat to this industry. In 2018, an episode of severe mortality in juvenile barramundi was noted in a freshwater earth pond site. Fish presented with severe gill necrosis, as well as severe cutaneous hemorrhages, scale loss, and discoloration at the base of dorsal fin (saddleback lesions). Histopathology revealed extensive necrosis of skeletal muscle and gill filaments, as well as basophilic inclusion bodies and megalocytosis in muscle, gill, liver, and kidney. Scale drop disease virus (SDDV) infection was subsequently confirmed by virus-specific semi-nested PCR. Further, DNA sequences of the viral major capsid protein (MCP) and ATPase genes had a respective homology of 99.85 and 99.92% with sequences of SDDV infecting barramundi in saltwater culture. Gill necrosis and saddleback lesions are not typical lesions associated with scale drop syndrome. Their presence was explained by Flavobacterium columnare isolation from the gill, followed by positive F. columnare-specific PCR. To our knowledge, this is the first report of SDDV-associated mortality in freshwater-farmed barramundi. Furthermore, this mortality presented as a concurrent infection with SDDV and F. columnare, with typical lesions of both infections.
Collapse
Affiliation(s)
- Pattarawit Kerddee
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | | | | | | | | | | | | | | |
Collapse
|