1
|
Etayo A, Bjørgen H, Koppang EO, Lie KK, Bjelland RM, Hordvik I, Øvergård AC, Sæle Ø. The ontogeny of lymphoid organs and IgM + B-cells in ballan wrasse (Labrus bergylta) reveals a potential site for extrarenal B-cell lymphopoiesis: The pancreas. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109273. [PMID: 38072139 DOI: 10.1016/j.fsi.2023.109273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Vaccination of farmed fish is the most effective prophylactic measure against contagious diseases but requires specific knowledge on when the adaptive immune system is fully developed. The present work describes kidney and spleen morphogenesis as well as B-cell development in the ballan wrasse (Labrus bergylta). The kidney was present at hatching (0 days pot hatching, dph) but was not lymphoid before larvae was 50-60 dph (stage 5), containing abundant Igμ+ cells. The spleen anlage was first observed in larvae at 20-30 dph and was later populated with B-cells. Unexpectedly, we found strong RAG1 signal together with abundant Igμ+ and IgM + cells in the exocrine pancreas of larvae from when the kidney was lymphoid and onwards, suggesting that B-cell lymphopoiesis occurs not only in the head kidney (HK) but also in pancreatic tissue. In this agastric fish, the pancreas is diffused along the intestine and the early presence of IgM+ B-cells in pancreatic tissue might have a role in maintain immune homeostasis in the peritoneal cavity, making a substantial contribution to early protection. IgM-secreting cells in HK indicate the presence of systemic IgM at stage 5, before the first IgM+ cells were identified in mucosal sites. This work together with our previous study on T-cell development in this species indicates that although T- and B-cells start to develop around the same time, B-cells migrate to mucosal tissues ahead of T-cells. This early migration likely involves the production of natural antibodies, contributing significantly to early protection. Moreover, a diet composed of barnacle nauplii did not result in an earlier onset of B-cell lymphopoiesis, as seen in the previous study analysing T-cell development. Nevertheless, components for adaptive immunity indicating putative immunocompetence is likely achieved in early juveniles (>100 dph). Additionally, maternal transfer of IgM to the offspring is also described. These findings provide important insights into the development of the immune system in ballan wrasse and lay the foundation for optimizing prophylactic strategies in the future. Furthermore, this work adds valuable information to broaden the knowledge on the immune system in lower vertebrates.
Collapse
Affiliation(s)
- Angela Etayo
- Institute of Marine Research, Bergen, Norway; Fish Health group, Department of Biological Sciences, University of Bergen, Norway.
| | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erling O Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | - Reidun M Bjelland
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Ivar Hordvik
- Fish Health group, Department of Biological Sciences, University of Bergen, Norway
| | | | | |
Collapse
|
2
|
Papadopoulou A, Monaghan SJ, Bagwell N, Alves MT, Verner-Jeffreys D, Wallis T, Davie A, Adams A, Migaud H. Efficacy testing of an immersion vaccine against Aeromonas salmonicida and immunocompetence in ballan wrasse (Labrus bergylta, Ascanius). FISH & SHELLFISH IMMUNOLOGY 2022; 121:505-515. [PMID: 34673256 DOI: 10.1016/j.fsi.2021.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The development of effective vaccines is a critical step towards the domestication of emerging fish species for aquaculture. However, traditional vaccine delivery through intraperitoneal (i.p.) injection requires fish to reach a minimum size and age and therefore cannot provide protection at early developmental stages when infection may occur. This study investigated the effectiveness of immersion vaccination with respect to immunocompetence in a cleaner fish species (ballan wrasse, Labrus bergylta, Ascanius) used in Atlantic salmon farming as an alternative means to control sea lice. The species is susceptible to atypical strains of Aeromonas salmonicida (aAs) at early life stages (<15 g), when i.p. vaccination is not applicable. While immersion vaccination is currently used in commercial hatcheries, the optimal fish size for vaccination, and efficacy of the vaccine delivered by this route has not yet been established. Importantly, efficacy depends on the capability of the species immune system to recognise antigens and process antigens to trigger and produce an adaptive immune response, (process known as immunocompetence). In this study, the efficacy of a polyvalent autogenous vaccine administered by immersion in juvenile ballan wrasse and the subsequent immune response induced was investigated after prime and booster vaccination regimes. In addition, temporal expression (0-150 days post hatch) of adaptive immune genes including major histocompatibility complex (MHC II CD74 molecule) and immunoglobulin M (IgM) was assessed using quantitative PCR (qPCR). Prime and/or boost vaccination by immersion of juvenile ballan wrasse (0.5 g and 1.5 g corresponding to 80 and 170 days post hatch (dph), respectively) did not provide significant protection against aAs vapA V after bath challenge under experimental conditions. Despite no evident protection >80 dph, MHC II and IgM transcripts were first reported at 35 and 75 dph, respectively, suggesting a window of immunocompetence. The results provide important new information on the onset of adaptive immunity in ballan wrasse and highlight that immersion vaccination in the species for protection against aAs should be performed at later developmental stages (>1.5 g) in the hatchery.
Collapse
Affiliation(s)
- Athina Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK; Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Sean J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Nicola Bagwell
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - David Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, the Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Tim Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, RG20 6NE, UK
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
3
|
Saldarriaga-Córdoba M, Irgang R, Avendaño-Herrera R. Comparison between genome sequences of Chilean Tenacibaculum dicentrarchi isolated from red conger eel (Genypterus chilensis) and Atlantic salmon (Salmo salar) focusing on bacterial virulence determinants. JOURNAL OF FISH DISEASES 2021; 44:1843-1860. [PMID: 34369594 DOI: 10.1111/jfd.13503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Tenacibaculum dicentrarchi is an emerging pathogen for salmonid cultures and red conger eel (Genypterus chilensis) in Chile, causing high economic losses not only in Chile but also to the global salmon industry. Infected fish show severe gross skin lesions that are sometimes accompanied by bone exposure. Despite pathogenicity demonstrated by Koch's postulates, no knowledge is currently available regarding the virulence machinery of T. dicentrarchi strains. Comparisons between the genome sequences of the eight T. dicentrarchi strains obtained from G. chilensis and Atlantic salmon (Salmo salar) provide insights on the existence of genomic diversity within this bacterium. The T. dicentrarchi type strain 3509T was used as a reference genome. Depending on the T. dicentrarchi strain, the discovered diversity included genes associated with iron acquisition mechanisms, copper homeostasis encoding, resistance to tetracycline and fluoroquinolones, pathogenic genomic islands and phages. Interestingly, genes encoding the T9SS membrane protein PorP/SprF were retrieved in all of the analysed T. dicentrarchi strains, regardless of the host fish (i.e. red conger eel or Atlantic salmon). However, the T6SS core component protein VgrG was identified in only one Atlantic salmon strain. Three types of peptidase genes and proteins associated with quorum sensing were detected in all of the T. dicentrarchi strains. In turn, all eight strains presented a total of 17 proteins associated with biofilm formation, which was previously confirmed through physiological studies. This comparative analysis will help elucidate and describe the genes and pathways that are likely involved in the virulence process of T. dicentrarchi. All or part of these predicted genes could aid the pathogen during the infective process in fish, making further physiological research necessary for clarification.
Collapse
Affiliation(s)
- Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
4
|
Papadopoulou A, Garvey K, Hill T, Ramirez-Paredes JG, Monaghan SJ, Baily JL, Davie A, Katsiadaki I, Verner-Jeffreys D, Wallis T, Migaud H, Adams A. Novel atypical Aeromonas salmonicida bath challenge model for juvenile ballan wrasse (Labrus bergylta, Ascanius). JOURNAL OF FISH DISEASES 2021; 44:823-835. [PMID: 33277726 DOI: 10.1111/jfd.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Atypical Aeromonas salmonicida (aAs) is currently one of the most routinely recovered bacterial pathogens isolated during disease outbreaks in farmed cleaner fish, ballan wrasse (Labrus bergylta, Ascanius). Vibrionaceae family bacteria have also been isolated from ballan wrasse in Scotland. This study determined the infectivity, pathogenicity and virulence of aAs and Vibrionaceae isolates in juvenile farmed ballan wrasse (n = 50; approx. 2 g) using a bath challenge, and fish were monitored for a period of 16 days. Atypical As caused significant mortalities in contrast to Vibrionaceae isolates. Notably, differential virulence was observed between two aAs vapA type V strains at similar challenge doses. Diseased fish exhibited a systemic infection where aAs was detected in all analysed tissues (liver, spleen and kidney) by PCR and qPCR. Macroscopically, moribund and survivor fish exhibited hepatomegaly and splenomegaly. In moribund and surviving fish, histopathology showed granulomatous hepatitis with eosinophilic granular cells surrounding bacterial colonies and endocarditis along with splenic histiocytosis. This is the first report of a successful aAs bath challenge model for juvenile ballan wrasse which provides an important tool for future studies on vaccine efficacy and immunocompetence.
Collapse
Affiliation(s)
- Athina Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Kathryn Garvey
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Tom Hill
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Jose G Ramirez-Paredes
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Ridgeway Biologicals Ltd. a Ceva Santé Animale company, Compton, UK
| | - Sean J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Johanna L Baily
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Andrew Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | | | - Timothy Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale company, Compton, UK
| | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Alexandra Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
5
|
Ramirez-Paredes JG, Verner-Jeffreys DW, Papadopoulou A, Monaghan SJ, Smith L, Haydon D, Wallis TS, Davie A, Adams A, Migaud H. A commercial autogenous injection vaccine protects ballan wrasse (Labrus bergylta, Ascanius) against Aeromonas salmonicida vapA type V. FISH & SHELLFISH IMMUNOLOGY 2020; 107:43-53. [PMID: 33011432 DOI: 10.1016/j.fsi.2020.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Atypical Aeromonas salmonicida (aAs) and Vibrionaceae related species are bacteria routinely recovered from diseased ballan wrasse used as cleaner fish in the Atlantic salmon farming industry. Autogenous (i.e. farm specific inactivated) multivalent vaccines formulated from these microorganisms are widely used to protect farmed wrasse despite limited experimental proof that they are primary pathogens. In this study, the components of a commercial multivalent injection vaccine containing four strains of Aeromonas salmonicida and one strain of Vibrio splendidus previously isolated from ballan wrasse in Scotland, were tested for infectivity, pathogenicity and virulence via intra peritoneal injection at pre-deployment size (25-50 g) and the efficacy of the vaccine for protection against aAs assessed. Injection with 3.5 × 109, 8 × 109 1.8 × 109 and 5 × 109 cfu/fish of Vibrio splendidus, V. ichthyoenteri, Aliivibrio logeii and A. salmonicida, respectively, did not cause significant mortalities, lesions or clinical signs after a period of 14 days. IP injection with both aAs and Photobacterium indicum successfully reproduced the clinical signs and internal lesions observed during natural outbreaks of the disease. Differences in virulence (LD50 at day 8-post infection of 3.6 × 106 cfu/fish and 1.6 × 107 cfu/fish) were observed for two aAs vapA type V isolates. In addition, the LD50 for Photobacterium indicum was 2.2 × 107 cfu/fish. The autogenous vaccine was highly protective against the two aAs vapA type V isolates after 700-degree days of immunisation. The RPSFINAL values for the first isolate were 95 and 91% at 1 × 106 cfu/fish and 1 × 107 cfu/fish, respectively, and 79% at 1 × 107 cfu/fish for the second isolate tested. In addition, significantly higher anti aAs seral antibodies (IgM), were detected by ELISA in vaccinated fish in contrast with control (mock vaccinated) fish. These results suggest wrasse can be effectively immunised and protected against aAs infection by injection with oil adjuvanted vaccines prepared with inactivated homologous isolates.
Collapse
Affiliation(s)
- J G Ramirez-Paredes
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK; Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England, RG20 6NE, UK
| | - D W Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road - the Nothe, Weymouth, Dorset, England, DT4 8UB, UK
| | - A Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - S J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - L Smith
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road - the Nothe, Weymouth, Dorset, England, DT4 8UB, UK
| | - D Haydon
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England, RG20 6NE, UK
| | - T S Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England, RG20 6NE, UK
| | - A Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - A Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - H Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK.
| |
Collapse
|
6
|
Desbois AP, Cook KJ, Buba E. Antibiotics modulate biofilm formation in fish pathogenic isolates of atypical Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2020; 43:1373-1379. [PMID: 32856330 DOI: 10.1111/jfd.13232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Atypical Aeromonas salmonicida causes furunculosis infections of non-salmonid fish, which requires antibiotic therapy. However, antibiotics may induce biofilm in some bacteria, which protects them against hostile conditions while allowing them to persist on surfaces, thus forming a reservoir for infection. The aim of this study was to determine whether atypical isolates of A. salmonicida increased biofilm in the presence of two antibiotics, florfenicol and oxytetracycline. A microtitre plate assay was used to quantify biofilm in the presence and absence of each antibiotic. Fifteen of 28 isolates formed biofilms under control conditions, while 23 of 28 isolates increased biofilm formation in the presence of at least one concentration of at least one antibiotic. For oxytetracycline, the most effective concentration causing biofilm to increase was one-quarter of that preventing visible bacterial growth, whereas for florfenicol it was one-half of this value. This is the first study to demonstrate that a bacterial pathogen of fish increases biofilm in response to antibiotics. Biofilm formation may increase the risk of re-infection in culture systems and this lifestyle favours the transmission of genetic material, which has implications for the dissemination of antibiotic-resistance genes and demonstrates the need for enhanced disease prevention measures against atypical A. salmonicida.
Collapse
Affiliation(s)
- Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Kira J Cook
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Elizabeth Buba
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|