1
|
Singh V, Negi R, Jacob M, Gayathri A, Rokade A, Sarma H, Kalita J, Tasfia ST, Bharti R, Wakid A, Suthar S, Kolipakam V, Qureshi Q. Polycyclic Aromatic Hydrocarbons (PAHs) in aquatic ecosystem exposed to the 2020 Baghjan oil spill in upper Assam, India: Short-term toxicity and ecological risk assessment. PLoS One 2023; 18:e0293601. [PMID: 38019821 PMCID: PMC10686499 DOI: 10.1371/journal.pone.0293601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
This study focuses on the short-term contamination and associated risks arising from the release of Polycyclic Aromatic Hydrocarbons (PAHs) due to the 2020 Baghjan oil blowout in upper Assam, India. Shortly after the Baghjan oil blowout, samples were collected from water, sediment, and fish species and examined for PAHs contents. The results of the analysis revealed ΣPAHs concentrations ranged between 0.21-691.31 μg L-1 (water); 37.6-395.8 μg Kg-1 (sediment); 104.3-7829.6 μg Kg-1 (fish). The prevalence of 3-4 ring low molecular weight PAHs compounds in water (87.17%), sediment (100%), and fish samples (93.17%) validate the petrogenic source of origin (oil spill). The geographic vicinity of the oil blowout is rich in wildlife; thus, leading to a significant mass mortality of several eco-sensitive species like fish, plants, microbes, reptiles, amphibians, birds and mammals including the Gangetic River dolphin. The initial ecological risk assessment suggested moderate to high-risk values (RQ >1) of majority PAHs concerning fish, daphnia, and algae species. This study highlights the need for recognizing the potential for short-term exposure to local species. To safeguard local ecosystems from potential future environmental disasters, it is imperative for the government to adopt a precautionary strategy.
Collapse
Affiliation(s)
- Vineet Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Ranjana Negi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Merin Jacob
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Aaranya Gayathri
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Anurag Rokade
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Hiyashri Sarma
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Jitul Kalita
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | | | | | - Abdul Wakid
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
- Aaranyak, Guwahati, Assam, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, India
| | | | - Qamar Qureshi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Integrated Population Models: Achieving Their Potential. JOURNAL OF STATISTICAL THEORY AND PRACTICE 2023. [DOI: 10.1007/s42519-022-00302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractPrecise and accurate estimates of abundance and demographic rates are primary quantities of interest within wildlife conservation and management. Such quantities provide insight into population trends over time and the associated underlying ecological drivers of the systems. This information is fundamental in managing ecosystems, assessing species conservation status and developing and implementing effective conservation policy. Observational monitoring data are typically collected on wildlife populations using an array of different survey protocols, dependent on the primary questions of interest. For each of these survey designs, a range of advanced statistical techniques have been developed which are typically well understood. However, often multiple types of data may exist for the same population under study. Analyzing each data set separately implicitly discards the common information contained in the other data sets. An alternative approach that aims to optimize the shared information contained within multiple data sets is to use a “model-based data integration” approach, or more commonly referred to as an “integrated model.” This integrated modeling approach simultaneously analyzes all the available data within a single, and robust, statistical framework. This paper provides a statistical overview of ecological integrated models, with a focus on integrated population models (IPMs) which include abundance and demographic rates as quantities of interest. Four main challenges within this area are discussed, namely model specification, computational aspects, model assessment and forecasting. This should encourage researchers to explore further and develop new practical tools to ensure that full utility can be made of IPMs for future studies.
Collapse
|
3
|
Patterns of association and distribution of estuarine-resident common bottlenose dolphins (Tursiops truncatus) in North Carolina, USA. PLoS One 2022; 17:e0270057. [PMID: 35969521 PMCID: PMC9377618 DOI: 10.1371/journal.pone.0270057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
The social structure of estuarine-resident bottlenose dolphins is complex and varied. Residing in habitats often utilized for resource exploitation, dolphins are at risk due to anthropogenic pressures while still federally protected. Effective conservation is predicated upon accurate abundance estimates. In North Carolina, two estuarine-resident stocks (demographically independent groups) of common bottlenose dolphin have been designated using spatiotemporal criteria. Both stocks are subjected to bycatch in fishing gear. The southern North Carolina estuarine stock was estimated at <200 individuals from surveys in 2006, which is outdated per US guidelines. Thus, we conducted a new capture-mark-recapture survey in 2018, identifying 547 distinct individuals, about three times higher than the prior abundance estimate. We compared those individuals to our long-term photo-identification catalog (1995–2018, n = 2,423 individuals), matching 228 individuals. Of those 228, 65 were also included in the 2013 abundance estimate for the northern North Carolina estuarine stock. Using sighting histories for all individuals in the long-term catalog, we conducted a social network analysis, which is independent of a priori stock assignments. The three primary clusters identified were inconsistent with current stock designations and not defined by spatiotemporal distribution. All three clusters had sighting histories in the estuary and on the coast, however, that with the highest within-cluster associations appeared to use estuarine waters more often. The within-cluster association strength was low for one cluster, possibly due to only part of that cluster inhabiting the southern North Carolina estuarine system. Between-cluster differences occurred in infestation rates by the pseudostalked barnacle, Xenobalanus globicipitis, but that did not predict clusters. We suggest the need to re-evaluate the stock structure of estuarine-resident common bottlenose dolphins in North Carolina and currently have insufficient information to assign an abundance estimate to a currently designated stock.
Collapse
|
4
|
Schwacke LH, Marques TA, Thomas L, Booth CG, Balmer BC, Barratclough A, Colegrove K, De Guise S, Garrison LP, Gomez FM, Morey JS, Mullin KD, Quigley BM, Rosel PE, Rowles TK, Takeshita R, Townsend FI, Speakman TR, Wells RS, Zolman ES, Smith CR. Modeling population effects of the Deepwater Horizon oil spill on a long-lived species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13878. [PMID: 34918835 PMCID: PMC9545999 DOI: 10.1111/cobi.13878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 06/01/2023]
Abstract
The 2010 Deepwater Horizon (DWH) oil spill exposed common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana to heavy oiling that caused increased mortality and chronic disease and impaired reproduction in surviving dolphins. We conducted photographic surveys and veterinary assessments in the decade following the spill. We assigned a prognostic score (good, fair, guarded, poor, or grave) for each dolphin to provide a single integrated indicator of overall health, and we examined temporal trends in prognostic scores. We used expert elicitation to quantify the implications of trends for the proportion of the dolphins that would recover within their lifetime. We integrated expert elicitation, along with other new information, in a population dynamics model to predict the effects of observed health trends on demography. We compared the resulting population trajectory with that predicted under baseline (no spill) conditions. Disease conditions persisted and have recently worsened in dolphins that were presumably exposed to DWH oil: 78% of those assessed in 2018 had a guarded, poor, or grave prognosis. Dolphins born after the spill were in better health. We estimated that the population declined by 45% (95% CI 14-74) relative to baseline and will take 35 years (95% CI 18-67) to recover to 95% of baseline numbers. The sum of annual differences between baseline and injured population sizes (i.e., the lost cetacean years) was 30,993 (95% CI 6607-94,148). The population is currently at a minimum point in its recovery trajectory and is vulnerable to emerging threats, including planned ecosystem restoration efforts that are likely to be detrimental to the dolphins' survival. Our modeling framework demonstrates an approach for integrating different sources and types of data, highlights the utility of expert elicitation for indeterminable input parameters, and emphasizes the importance of considering and monitoring long-term health of long-lived species subject to environmental disasters. Article impact statement: Oil spills can have long-term consequences for the health of long-lived species; thus, effective restoration and monitoring are needed.
Collapse
Affiliation(s)
| | - Tiago A. Marques
- Centre for Research into Ecological and Environmental Modelling (CREEM), University of St AndrewsThe ObservatoryLondonUK
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling (CREEM), University of St AndrewsThe ObservatoryLondonUK
| | - Cormac G. Booth
- SMRU Consulting, Scottish Oceans Institute, East SandsUniversity of St AndrewsSt AndrewsUK
| | - Brian C. Balmer
- National Marine Mammal FoundationJohns IslandSouth CarolinaUSA
| | | | - Kathleen Colegrove
- Zoological Pathology Program, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignBrookfieldIllinoisUSA
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Lance P. Garrison
- National Oceanic and Atmospheric Administration, National Marine Fisheries ServiceSoutheast Fisheries Science CenterMiamiFloridaUSA
| | | | | | - Keith D. Mullin
- National Oceanic and Atmospheric Administration, National Marine Fisheries ServiceSoutheast Fisheries Science CenterPascagoulaMississippiUSA
| | | | - Patricia E. Rosel
- National Oceanic and Atmospheric Administration, National Marine Fisheries ServiceSoutheast Fisheries Science CenterLafayetteLouisianaUSA
| | - Teresa K. Rowles
- National Oceanic and Atmospheric Administration, National Marine Fisheries ServiceOffice of Protected ResourcesSilver SpringMarylandUSA
| | - Ryan Takeshita
- National Marine Mammal FoundationJohns IslandSouth CarolinaUSA
| | | | | | - Randall S. Wells
- Chicago Zoological Society's Sarasota Dolphin Research Programc/o Mote Marine LaboratorySarasotaFloridaUSA
| | - Eric S. Zolman
- National Marine Mammal FoundationJohns IslandSouth CarolinaUSA
| | | |
Collapse
|
5
|
Allen AS, Read AJ, Shorter KA, Gabaldon J, Blawas AM, Rocho-Levine J, Fahlman A. Dynamic body acceleration as a proxy to predict the cost of locomotion in bottlenose dolphins. J Exp Biol 2022; 225:274390. [PMID: 35014667 DOI: 10.1242/jeb.243121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Estimates of the energetic costs of locomotion (COL) at different activity levels are necessary to answer fundamental eco-physiological questions and to understand the impacts of anthropogenic disturbance to marine mammals. We combined estimates of energetic costs derived from breath-by-breath respirometry with measurements of overall dynamic body acceleration (ODBA) from biologging tags to validate ODBA as a proxy for COL in trained common bottlenose dolphins (Tursiops truncatus). We measured resting metabolic rate (RMR); mean individual RMR was 0.71-1.42 times that of a similarly sized terrestrial mammal and agreed with past measurements which used breath-by-breath and flow-through respirometry. We also measured energy expenditure during submerged swim trials, at primarily moderate exercise levels. We subtracted RMR to obtain COL, and normalized COL by body size to incorporate individual swimming efficiencies. We found both mass-specific energy expenditure and mass-specific COL were linearly related with ODBA. Measurements of activity level and cost of transport (the energy required to move a given distance) improve understanding of the costs of locomotion in marine mammals. The strength of the correlation between ODBA and COL varied among individuals, but the overall relationship can be used at a broad scale to estimate the energetic costs of disturbance, daily locomotion costs to build energy budgets, and investigate the costs of diving in free-ranging animals where bio-logging data are available. We propose that a similar approach could be applied to other cetacean species.
Collapse
Affiliation(s)
| | | | - K Alex Shorter
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, Research Department, Valencia, Spain.,Global Diving Research S.L., Valencia, Spain
| |
Collapse
|
6
|
Linnehan BK, Gomez FM, Huston SM, Hsu A, Takeshita R, Colegrove KM, Harms CA, Barratclough A, Deming AC, Rowles TK, Musser WB, Zolman ES, Wells RS, Jensen ED, Schwacke LH, Smith CR. Cardiac assessments of bottlenose dolphins (Tursiops truncatus) in the Northern Gulf of Mexico following exposure to Deepwater Horizon oil. PLoS One 2021; 16:e0261112. [PMID: 34905585 PMCID: PMC8670661 DOI: 10.1371/journal.pone.0261112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
The Deepwater Horizon (DWH) oil spill profoundly impacted the health of bottlenose dolphins (Tursiops truncatus) in Barataria Bay, LA (BB). To comprehensively assess the cardiac health of dolphins living within the DWH oil spill footprint, techniques for in-water cardiac evaluation were refined with dolphins cared for by the U.S. Navy Marine Mammal Program in 2018 and applied to free-ranging bottlenose dolphins in BB (n = 34) and Sarasota Bay, Florida (SB) (n = 19), a non-oiled reference population. Cardiac auscultation detected systolic murmurs in the majority of dolphins from both sites (88% BB, 89% SB) and echocardiography showed most of the murmurs were innocent flow murmurs attributed to elevated blood flow velocity [1]. Telemetric six-lead electrocardiography detected arrhythmias in BB dolphins (43%) and SB dolphins (31%), all of which were considered low to moderate risk for adverse cardiac events. Echocardiography showed BB dolphins had thinner left ventricular walls, with significant differences in intraventricular septum thickness at the end of diastole (p = 0.002), and left ventricular posterior wall thickness at the end of diastole (p = 0.033). BB dolphins also had smaller left atrial size (p = 0.004), higher prevalence of tricuspid valve prolapse (p = 0.003), higher prevalence of tricuspid valve thickening (p = 0.033), and higher prevalence of aortic valve thickening (p = 0.008). Two dolphins in BB were diagnosed with pulmonary arterial hypertension based on Doppler echocardiography-derived estimates and supporting echocardiographic findings. Histopathology of dolphins who stranded within the DWH oil spill footprint showed a significantly higher prevalence of myocardial fibrosis (p = 0.003), regardless of age, compared to dolphins outside the oil spill footprint. In conclusion, there were substantial cardiac abnormalities identified in BB dolphins which may be related to DWH oil exposure, however, future work is needed to rule out other hypotheses and further elucidate the connection between oil exposure, pulmonary disease, and the observed cardiac abnormalities.
Collapse
Affiliation(s)
- Barbara K. Linnehan
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Forrest M. Gomez
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Sharon M. Huston
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Adonia Hsu
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Kathleen M. Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, Illinois, United States of America
| | - Craig A. Harms
- North Carolina State University, Center for Marine Sciences and Technology, Morehead City, North Carolina, United States of America
| | - Ashley Barratclough
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Alissa C. Deming
- Dauphin Island Sea Lab, Dauphin Island, Alabama, United States of America
| | - Teri K. Rowles
- National Oceanic and Atmospheric Administration, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | - Whitney B. Musser
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Eric S. Zolman
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Eric D. Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, United States of America
| | - Lori H. Schwacke
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Cynthia R. Smith
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
7
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
8
|
Cloyed CS, Wilson RM, Balmer BC, Hohn AA, Schwacke LH, Zolman ES, Tumlin MC, Wells RS, Barleycorn AA, Allen JB, Carmichael RH. Specialization of a mobile, apex predator affects trophic coupling among adjacent habitats. Sci Rep 2021; 11:19611. [PMID: 34608172 PMCID: PMC8490471 DOI: 10.1038/s41598-021-99017-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Mobile, apex predators are commonly assumed to stabilize food webs through trophic coupling across spatially distinct habitats. The assumption that trophic coupling is common remains largely untested, despite evidence that individual behaviors might limit trophic coupling. We used stable isotope data from common bottlenose dolphins across the Gulf of Mexico to determine if these apex predators coupled estuarine and adjacent, nearshore marine habitats. δ13C values differed among the sites, likely driven by environmental factors that varied at each site, such as freshwater input and seagrass cover. Within most sites, δ13C values differed such that dolphins sampled in the upper reaches of embayments had values indicative of estuarine habitats while those sampled outside or in lower reaches of embayments had values indicative of marine habitats. δ15N values were more similar among and within sites than δ13C values. Data from multiple tissues within individuals corroborated that most dolphins consistently used a narrow range of habitats but fed at similar trophic levels in estuarine and marine habitats. Because these dolphins exhibited individual habitat specialization, they likely do not contribute to trophic coupling between estuarine and adjacent marine habitats at a regional scale, suggesting that not all mobile, apex predators trophically couple adjacent habitats.
Collapse
Affiliation(s)
- Carl S Cloyed
- Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA. .,Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA.
| | - Rachel M Wilson
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Aleta A Hohn
- NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Beaufort, NC, 28516, USA
| | - Lori H Schwacke
- National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, CA, 92106, USA
| | - Mandy C Tumlin
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA, 70808, USA
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Aaron A Barleycorn
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Jason B Allen
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Ruth H Carmichael
- Dauphin Island Sea Lab, Dauphin Island, AL, 36528, USA.,Department of Marine Sciences, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
9
|
Takeshita R, Balmer BC, Messina F, Zolman ES, Thomas L, Wells RS, Smith CR, Rowles TK, Schwacke LH. High site-fidelity in common bottlenose dolphins despite low salinity exposure and associated indicators of compromised health. PLoS One 2021; 16:e0258031. [PMID: 34591903 PMCID: PMC8483354 DOI: 10.1371/journal.pone.0258031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
More than 2,000 common bottlenose dolphins (Tursiops truncatus) inhabit the Barataria Bay Estuarine System in Louisiana, USA, a highly productive estuary with variable salinity driven by natural and man-made processes. It was unclear whether dolphins that are long-term residents to specific areas within the basin move in response to fluctuations in salinity, which at times can decline to 0 parts per thousand in portions of the basin. In June 2017, we conducted health assessments and deployed satellite telemetry tags on dolphins in the northern portions of the Barataria Bay Estuarine System Stock area (9 females; 4 males). We analyzed their fine-scale movements relative to modeled salinity trends compared to dolphins tagged near the barrier islands (higher salinity environments) from 2011 to 2017 (37 females; 21 males). Even though we observed different movement patterns among individual dolphins, we found no evidence that tagged dolphins moved coincident with changes in salinity. One tagged dolphin spent at least 35 consecutive days, and 75 days in total, in salinity under 5 parts per thousand. Health assessments took place early in a seasonal period of decreased salinity. Nonetheless, we found an increased prevalence of skin lesions, as well as abnormalities in serum biochemical markers and urine:serum osmolality ratios for dolphins sampled in lower salinity areas. This study provides essential information on the likely behavioral responses of dolphins to changes in salinity (e.g., severe storms or from the proposed Mid-Barataria Sediment Diversion project) and on physiological markers to inform the timing and severity of impacts from low salinity exposure.
Collapse
Affiliation(s)
- Ryan Takeshita
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Brian C. Balmer
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Francesca Messina
- Water Institute of the Gulf, Baton Rouge, Louisiana, United States of America
| | - Eric S. Zolman
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Cynthia R. Smith
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Teresa K. Rowles
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | - Lori H. Schwacke
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
10
|
Cloyed CS, Balmer BC, Schwacke LH, Wells RS, Berens McCabe EJ, Barleycorn AA, Allen JB, Rowles TK, Smith CR, Takeshita R, Townsend FI, Tumlin MC, Zolman ES, Carmichael RH. Interaction between dietary and habitat niche breadth influences cetacean vulnerability to environmental disturbance. Ecosphere 2021. [DOI: 10.1002/ecs2.3759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Carl S. Cloyed
- Dauphin Island Sea Lab 101 Bienville Boulevard Dauphin Island Alabama 36608 USA
- Department of Marine Sciences University of South Alabama Mobile Alabama 36688 USA
| | - Brian C. Balmer
- National Marine Mammal Foundation 3419 Maybank Highway Johns Island South Carolina 29487 USA
| | - Lori H. Schwacke
- National Marine Mammal Foundation 3419 Maybank Highway Johns Island South Carolina 29487 USA
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota Florida 34236 USA
| | - Elizabeth J. Berens McCabe
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota Florida 34236 USA
| | - Aaron A. Barleycorn
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota Florida 34236 USA
| | - Jason B. Allen
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota Florida 34236 USA
| | - Teresa K. Rowles
- Office of Protected Resources National Marine Fisheries Service NOAA 1315 East West Highway Silver Spring Maryland 20910 USA
| | - Cynthia R. Smith
- National Marine Mammal Foundation 2240 Shelter Island Drive #200 San Diego California 92106 USA
| | - Ryan Takeshita
- National Marine Mammal Foundation 3419 Maybank Highway Johns Island South Carolina 29487 USA
| | - Forrest I. Townsend
- Bayside Hospital for Animals 251 Racetrack Road NE Fort Walton Beach Florida 32547 USA
| | - Mandy C. Tumlin
- Louisiana Department of Wildlife and Fisheries 2000 Quail Drive Baton Rouge Louisiana 70808 USA
| | - Eric S. Zolman
- National Marine Mammal Foundation 3419 Maybank Highway Johns Island South Carolina 29487 USA
| | - Ruth H. Carmichael
- Dauphin Island Sea Lab 101 Bienville Boulevard Dauphin Island Alabama 36608 USA
- Department of Marine Sciences University of South Alabama Mobile Alabama 36688 USA
| |
Collapse
|
11
|
Barratclough A, Gomez FM, Morey JS, Meegan JM, Parry C, Schwacke L, Jensen ED, Smith CR. Biochemical and hematological biomarkers of reproductive failure in bottlenose dolphins Tursiops truncatus. DISEASES OF AQUATIC ORGANISMS 2021; 144:197-208. [PMID: 34042067 DOI: 10.3354/dao03591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The physiological demands of pregnancy inevitably result in alterations in both biochemical and hematological parameters as fetal development occurs. The shifts observed in successful pregnancy in bottlenose dolphins Tursiops truncatus to support both fetal physiological needs and maternal basal requirements have been established according to each trimester. Detecting aberrations in blood-based biomarkers could help facilitate diagnosis of gestational abnormalities, improve our understanding of factors influencing reproductive outcomes and aid in prediction of reproductive failure. This study retrospectively analyzed 263 blood samples from 15 bottlenose dolphins in 21 failed pregnancies over 28 yr (1989-2017). Most samples remained within normal pregnancy reference ranges; however, significant shifts were observed between trimesters. Hematological alterations, compared to successful pregnancy reference ranges from previously published data, were consistent across failed pregnancies and included an increased prevalence of elevated 2nd and 3rd trimester neutrophils, elevated 2nd trimester monocytes and decreased 3rd trimester eosinophils. In addition, low hematocrit and low red blood cells were more prevalent in the 2nd trimester. Biochemical shifts included an increased prevalence of elevated creatine phosphokinase in the 3rd trimester outside of the normal reference ranges. Across failed pregnancies, calcium and iron were decreased in the 3rd trimester. Significantly decreased progesterone in the 3rd trimester was a negative prognostic indicator of pregnancy outcome with decreasing 3rd trimester progesterone associated with failed pregnancy. This study demonstrates the use of blood-based biomarkers as possible predictors of pregnancy outcome in bottlenose dolphins.
Collapse
Affiliation(s)
- Ashley Barratclough
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ruberg EJ, Elliott JE, Williams TD. Review of petroleum toxicity and identifying common endpoints for future research on diluted bitumen toxicity in marine mammals. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:537-551. [PMID: 33761025 PMCID: PMC8060214 DOI: 10.1007/s10646-021-02373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
Large volumes of conventional crude oil continue to be shipped by sea from production to consumption areas across the globe. In addition, unconventional petroleum products also transverse pelagic habitats; for example, diluted bitumen from Canada's oilsands which is shipped along the Pacific coast to the United States and Asia. Therefore, there is a continuing need to assess the toxicological consequences of chronic and catastrophic petroleum spillage on marine wildlife. Peer-reviewed literature on the toxicity of unconventional petroleum such as diluted bitumen exists for teleost fish, but not for fauna such as marine mammals. In order to inform research needs for unconventional petroleum toxicity we conducted a comprehensive literature review of conventional petroleum toxicity on marine mammals. The common endpoints observed in conventional crude oil exposures and oil spills include hematological injury, modulation of immune function and organ weight, genotoxicity, eye irritation, neurotoxicity, lung disease, adrenal dysfunction, metabolic and clinical abnormalities related to oiling of the pelage, behavioural impacts, decreased reproductive success, mortality, and population-level declines. Based on our findings and the body of literature we accessed, our recommendations for future research include: 1) improved baseline data on PAH and metals exposure in marine mammals, 2) improved pre- and post-spill data on marine mammal populations, 3) the use of surrogate mammalian models for petroleum toxicity testing, and 4) the need for empirical data on the toxicity of unconventional petroleum to marine mammals.
Collapse
Affiliation(s)
- E J Ruberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - J E Elliott
- Pacific Wildlife Research Centre, Environment and Climate Change Canada, Delta, BC, Canada.
| | - T D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
13
|
De Guise S, Levin M, Jasperse L, Herrman J, Wells RS, Rowles T, Schwacke L. Long-Term Immunological Alterations in Bottlenose Dolphin a Decade after the Deepwater Horizon Oil Spill in the Northern Gulf of Mexico: Potential for Multigenerational Effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1308-1321. [PMID: 33598929 DOI: 10.1002/etc.4980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Health assessments were conducted on bottlenose dolphins in Barataria Bay, Louisiana, USA, during 2011 to 2018, to assess potential health effects following the Deepwater Horizon oil spill, compared to the unoiled Sarasota Bay, Florida, USA, reference dolphin population. We previously reported significant increases in T-lymphocyte proliferation, as well as lower T helper 1 (Th1) cytokines, higher Th2 cytokine IL-4, and lower T regulatory (Treg) cytokine IL-10 in Barataria Bay in 2011 compared to Sarasota Bay, consistent with Deepwater Horizon oil exposure. Although values between 2013 and 2016 were more similar to those observed in Sarasota Bay, T-cell proliferation was again elevated and cytokine balance tilted toward Th2 in Barataria Bay during 2017-2018. In 2018, Barataria Bay dolphins had significantly more circulating Treg cells than Sarasota Bay dolphins. Mice experimentally exposed to oil also had significantly increased T-lymphocyte proliferation and circulating Treg cell number, including effects in their unexposed progeny. In vitro stimulation resulted in greater Th2 responsiveness in Barataria Bay compared to Sarasota Bay dolphins, and in vitro oil exposure of Sarasota Bay dolphin cells also resulted in enhanced Th2 responsiveness. Evidence points to Treg cells as a potential target for the immunomodulatory effects of oil exposure. The immunological trends observed in Barataria Bay appeared exaggerated in dolphins born after the spill, suggesting the possibility of continued oil exposure or multigenerational health consequences of exposure to oil, as observed in mice. Environ Toxicol Chem 2021;40:1308-1321. © 2021 SETAC.
Collapse
Affiliation(s)
- Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
- Connecticut Sea Grant Program, Groton, Connecticut, USA
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Lindsay Jasperse
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, USA
| | - Jean Herrman
- Companion Animal Dental Services, Bolton, Connecticut, USA
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, USA
| | - Teresa Rowles
- Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA
| | - Lori Schwacke
- National Marine Mammal Foundation, San Diego, California, USA
| |
Collapse
|
14
|
Currie JJ, van Aswegen M, Stack SH, West KL, Vivier F, Bejder L. Rapid weight loss in free ranging pygmy killer whales (Feresa attenuata) and the implications for anthropogenic disturbance of odontocetes. Sci Rep 2021; 11:8181. [PMID: 33854117 PMCID: PMC8046785 DOI: 10.1038/s41598-021-87514-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding the impacts of foraging disruptions to odontocete body condition is fundamental to quantifying biological effects of human disturbance and environmental changes on cetacean populations. Here, reductions in body volume of free-ranging pygmy killer whales (Feresa attenuata) were calculated using repeated measurements of the same individuals obtained through Unoccupied Aerial System (UAS)-photogrammetry during a prolonged disruption in foraging activity arising from a 21-day stranding event. Stranded individuals were used to verify UAS-derived volume and length estimates through 3D-imaging, water displacement, and post-mortem measurements. We show that (a) UAS estimates of length were within 1.5% of actual body length and UAS volume estimates were within 10-13% of actual volume, (b) foraging disruption resulted in a daily decrease of 2% of total body mass/day, and (c) pygmy killer whales can lose up to 27% of their total body weight within 17 days. These findings highlight the use of UAS as a promising new method to remotely monitor changes in body condition and animal health, which can be used to determine the potential effects of anthropogenic disturbance and environmental change on free-ranging odontocetes.
Collapse
Affiliation(s)
| | - Martin van Aswegen
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | | | - Kristi L West
- Hawaii Institute of Marine Biology, Kaneohe, HI, USA
- Human Nutrition Food and Animal Sciences, College of Tropical Agriculture and Human Resources, Honolulu, HI, USA
| | - Fabien Vivier
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Lars Bejder
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
15
|
Samuelson MM, Fujiwara M, Pulis EE, Pitchford J, Howard VA, Solangi M. Comprehensive Evaluation of Survival and Population Growth for Common Bottlenose Dolphins (Tursiops Truncatus) in the Mississippi Sound, Usa, Following the Deepwater Horizon Oil Spill. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Masami Fujiwara
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843
| | - Eric E. Pulis
- Math and Science Department, Northern State University, Aberdeen, SD 57401
| | | | - Victoria A. Howard
- The Institute for Marine Mammal Studies, 10801 Dolphin Lane, Gulfport, MS 39503
| | - Moby Solangi
- The Institute for Marine Mammal Studies, 10801 Dolphin Lane, Gulfport, MS 39503
| |
Collapse
|
16
|
Barratclough A, Wells RS, Schwacke LH, Rowles TK, Gomez FM, Fauquier DA, Sweeney JC, Townsend FI, Hansen LJ, Zolman ES, Balmer BC, Smith CR. Health Assessments of Common Bottlenose Dolphins ( Tursiops truncatus): Past, Present, and Potential Conservation Applications. Front Vet Sci 2019; 6:444. [PMID: 31921905 PMCID: PMC6923228 DOI: 10.3389/fvets.2019.00444] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
The common bottlenose dolphin (Tursiops truncatus) is a global marine mammal species for which some populations, due to their coastal accessibility, have been monitored diligently by scientists for decades. Health assessment examinations have developed a comprehensive knowledge base of dolphin biology, population structure, and environmental or anthropogenic stressors affecting their dynamics. Bottlenose dolphin health assessments initially started as stock assessments prior to acquisition. Over the last four decades, health assessments have evolved into essential conservation management tools of free-ranging dolphin populations. Baseline data enable comparison of stressors between geographic locations and associated changes in individual and population health status. In addition, long-term monitoring provides opportunities for insights into population shifts over time, with retrospective application of novel diagnostic tests on archived samples. Expanding scientific knowledge enables effective long-term conservation management strategies by facilitating informed decision making and improving social understanding of the anthropogenic effects. The ability to use bottlenose dolphins as a model for studying marine mammal health has been pivotal in our understanding of anthropogenic effects on multiple marine mammal species. Future studies aim to build on current knowledge to influence management decisions and species conservation. This paper reviews the historical approaches to dolphin health assessments, present day achievements, and development of future conservation goals.
Collapse
Affiliation(s)
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Mote Marine Laboratory, Sarasota, FL, United States
| | - Lori H Schwacke
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Teresa K Rowles
- NOAA, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD, United States
| | - Forrest M Gomez
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Deborah A Fauquier
- NOAA, National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD, United States
| | | | | | - Larry J Hansen
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Eric S Zolman
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Brian C Balmer
- National Marine Mammal Foundation, San Diego, CA, United States
| | - Cynthia R Smith
- National Marine Mammal Foundation, San Diego, CA, United States
| |
Collapse
|
17
|
Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus SD, Lusseau D, Moretti D, New LF, Schick RS, Schwarz LK, Simmons SE, Thomas L, Tyack PL, Weise MJ, Wells RS, Harwood J. Understanding the population consequences of disturbance. Ecol Evol 2018; 8:9934-9946. [PMID: 30386587 PMCID: PMC6202709 DOI: 10.1002/ece3.4458] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 11/25/2022] Open
Abstract
Managing the nonlethal effects of disturbance on wildlife populations has been a long-term goal for decision makers, managers, and ecologists, and assessment of these effects is currently required by European Union and United States legislation. However, robust assessment of these effects is challenging. The management of human activities that have nonlethal effects on wildlife is a specific example of a fundamental ecological problem: how to understand the population-level consequences of changes in the behavior or physiology of individual animals that are caused by external stressors. In this study, we review recent applications of a conceptual framework for assessing and predicting these consequences for marine mammal populations. We explore the range of models that can be used to formalize the approach and we identify critical research gaps. We also provide a decision tree that can be used to select the most appropriate model structure given the available data. Synthesis and applications: The implementation of this framework has moved the focus of discussion of the management of nonlethal disturbances on marine mammal populations away from a rhetorical debate about defining negligible impact and toward a quantitative understanding of long-term population-level effects. Here we demonstrate the framework's general applicability to other marine and terrestrial systems and show how it can support integrated modeling of the proximate and ultimate mechanisms that regulate trait-mediated, indirect interactions in ecological communities, that is, the nonconsumptive effects of a predator or stressor on a species' behavior, physiology, or life history.
Collapse
Affiliation(s)
- Enrico Pirotta
- Department of Mathematics and StatisticsWashington State UniversityVancouverWashington
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | | | - Daniel P. Costa
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCalifornia
| | - Erica Fleishman
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCalifornia
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColorado
| | - Scott D. Kraus
- Anderson‐Cabot Center for Ocean LifeNew England AquariumBostonMassachusetts
| | - David Lusseau
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | | | - Leslie F. New
- Department of Mathematics and StatisticsWashington State UniversityVancouverWashington
| | - Robert S. Schick
- Duke UniversityDurhamNorth Carolina
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| | - Lisa K. Schwarz
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzCalifornia
| | | | - Len Thomas
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| | - Peter L. Tyack
- Sea Mammal Research UnitScottish Oceans InstituteSchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Michael J. Weise
- Office of Naval ResearchMarine Mammal & Biology ProgramArlingtonVirginia
| | - Randall S. Wells
- Chicago Zoological Society's Sarasota Dolphin Research Programc/o Mote Marine LaboratorySarasotaFlorida
| | - John Harwood
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
18
|
Manlik O, Lacy RC, Sherwin WB. Applicability and limitations of sensitivity analyses for wildlife management. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Manlik
- School of Biological, Earth and Environmental Sciences; Evolution and Ecology Research Centre; University of New South Wales; Sydney NSW Australia
| | | | - William B. Sherwin
- School of Biological, Earth and Environmental Sciences; Evolution and Ecology Research Centre; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
19
|
Mullin KD, McDonald T, Wells RS, Balmer BC, Speakman T, Sinclair C, Zolman ES, Hornsby F, McBride SM, Wilkinson KA, Schwacke LH. Density, abundance, survival, and ranging patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound following the Deepwater Horizon oil spill. PLoS One 2017; 12:e0186265. [PMID: 29053728 PMCID: PMC5650146 DOI: 10.1371/journal.pone.0186265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
After the Deepwater Horizon (DWH) oil spill began in April 2010, studies were initiated on northern Gulf of Mexico common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound (MSS) to determine density, abundance, and survival, during and after the oil spill, and to compare these results to previous research in this region. Seasonal boat-based photo-identification surveys (2010–2012) were conducted in a section of MSS to estimate dolphin density and survival, and satellite-linked telemetry (2013) was used to determine ranging patterns. Telemetry suggested two different ranging patterns in MSS: (1) inshore waters with seasonal movements into mid-MSS, and (2) around the barrier islands exclusively. Based upon these data, dolphin density was estimated in two strata (Inshore and Island) using a spatially-explicit robust-design capture-recapture model. Inshore and Island density varied between 0.77–1.61 dolphins km−2 ( x¯ = 1.42, 95% CI: 1.28–1.53) and 3.32–5.74 dolphins km−2 ( x¯ = 4.43, 95% CI: 2.70–5.63), respectively. The estimated annual survival rate for dolphins with distinctive fins was very low in the year following the spill, 0.73 (95% CI: 0.67–0.78), and consistent with the occurrence of a large scale cetacean unusual mortality event that was in part attributed to the DWH oil spill. Fluctuations in density were not as large or seasonally consistent as previously reported. Total abundance for MSS extrapolated from density results ranged from 4,610 in July 2011 to 3,046 in January 2012 ( x¯ = 3,469, 95% CI: 3,113–3,725).
Collapse
Affiliation(s)
- Keith D. Mullin
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pascagoula, Mississippi, United States of America
- * E-mail:
| | - Trent McDonald
- Western Ecosystems Technology, Inc., Cheyenne, Wyoming, United States of America
| | - Randall S. Wells
- Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Brian C. Balmer
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Todd Speakman
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Carrie Sinclair
- Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pascagoula, Mississippi, United States of America
| | - Eric S. Zolman
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Fawn Hornsby
- Western Ecosystems Technology, Inc., Cheyenne, Wyoming, United States of America
| | - Shauna M. McBride
- Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Krystan A. Wilkinson
- Sarasota Dolphin Research Program, Chicago Zoological Society, % Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Lori H. Schwacke
- Hollings Marine Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| |
Collapse
|
20
|
Wallace BP, Brosnan T, McLamb D, Rowles T, Ruder E, Schroeder B, Schwacke L, Stacy B, Sullivan L, Takeshita R, Wehner D. Effects of the Deepwater Horizon oil spill on protected marine species. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Hornsby FE, McDonald TL, Balmer BC, Speakman TR, Mullin KD, Rosel PE, Wells RS, Telander AC, Marcy PW, Schwacke LH. Using salinity to identify common bottlenose dolphin habitat in Barataria Bay, Louisiana, USA. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Hohn AA, Thomas L, Carmichael RH, Litz J, Clemons-Chevis C, Shippee SF, Sinclair C, Smith S, Speakman TR, Tumlin MC, Zolman ES. Assigning stranded bottlenose dolphins to source stocks using stable isotope ratios following the Deepwater Horizon oil spill. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
McDonald TL, Hornsby FE, Speakman TR, Zolman ES, Mullin KD, Sinclair C, Rosel PE, Thomas L, Schwacke LH. Survival, density, and abundance of common bottlenose dolphins in Barataria Bay (USA) following the Deepwater Horizon oil spill. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00806] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Takeshita R, Sullivan L, Smith C, Collier T, Hall A, Brosnan T, Rowles T, Schwacke L. The Deepwater Horizon oil spill marine mammal injury assessment. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00808] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|