1
|
McClure TS, Phillips J, Kernagis D, Coleman K, Chappe E, Cutter GR, Egan B, Norell T, Stubbs BJ, Bamman MM, Koutnik AP. Ketone monoester attenuates oxygen desaturation during weighted ruck exercise under acute hypoxic exposure but does not impact cognitive performance. Exp Physiol 2024; 109:1768-1781. [PMID: 39190570 PMCID: PMC11442785 DOI: 10.1113/ep091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Acute ingestion of exogenous ketone supplements in the form of a (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME) can attenuate declines in oxygen availability during hypoxic exposure and might impact cognitive performance at rest and in response to moderate-intensity exercise. In a single-blind randomized crossover design, 16 males performed assessments of cognitive performance before and during hypoxic exposure with moderate exercise [2 × 20 min weighted ruck (∼22 kg) at 3.2 km/h at 10% incline] in a normobaric altitude chamber (4572 m, 11.8% O2). The R-BD R-βHB KME (573 mg/kg) or a calorie- and taste-matched placebo (∼50 g maltodextrin) were co-ingested with 40 g of dextrose before exposure to hypoxia. The R-βHB concentrations were rapidly elevated and sustained (>3 mM; P < 0.001) by KME. The decline in oxygen saturation during hypoxic exposure was attenuated in KME conditions by 2.4%-4.2% (P < 0.05) compared with placebo. Outcomes of cognitive performance tasks, in the form of the Defense Automated Neurobehavioral Assessment (DANA) code substitution task, the Stroop color and word task, and a shooting simulation, did not differ between trials before and during hypoxic exposure. These data suggest that the acute exogenous ketosis induced by KME ingestion can attenuate declining blood oxygen saturation during acute hypoxic exposure both at rest and during moderate-intensity exercise, but this did not translate into differences in cognitive performance before or after exercise in the conditions investigated.
Collapse
Affiliation(s)
- Tyler S. McClure
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Jeffrey Phillips
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Dawn Kernagis
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kody Coleman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Ed Chappe
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Gary R. Cutter
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Todd Norell
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | | | - Marcas M. Bamman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Andrew P. Koutnik
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| |
Collapse
|
2
|
McClure TS, Phillips J, Koutnik AP, Coleman K, Chappe E, Cutter GR, Egan B, Norell T, Stubbs BJ, Bamman MM, Kernagis D. Ketone monoester attenuates declines in cognitive performance and oxygen saturation during acute severe hypoxic exposure under resting conditions. Exp Physiol 2024; 109:1672-1682. [PMID: 39190580 PMCID: PMC11442756 DOI: 10.1113/ep091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Exogenous ketone supplements are a potential augmentation strategy for cognitive resilience during acute hypoxic exposure due to their capacity to attenuate the decline in oxygen (O2) availability, and by providing an alternative substrate for cerebral metabolism. Utilizing a single-blind randomized crossover design, 16 male military personnel (age, 25.3 ± 2.4 year, body mass, 86.2 ± 9.3 kg) performed tests of cognitive performance at rest in three environments: room air (baseline), normoxia (20 min; 0 m; 20.9% O2) and hypoxia (20 min; 6096 m, 9.7% O2) using a reduced O2 breathing device (ROBD). (R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME; 650 mg/kg, split dose given at 30 min prior to each exposure) or taste-matched placebo (PLA) was ingested prior to normoxia and hypoxic exposure. Blood R-βHB and glucose concentrations, cognitive performance and O2 saturation (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) were collected throughout. KME ingestion increased blood R-βHB concentration, which was rapid and sustained (>4 mM 30 min post; P < 0.001) and accompanied by lower blood glucose concentration (∼20 mg/dL; P < 0.01) compared to PLA. Declines in cognitive performance during hypoxic exposure, assessed as cognitive efficiency during a Defense Automated Neurobehavioral Assessment (DANA) code substitution task, were attenuated with KME leading to 6.8 (95% CL: 1.0, 12.6) more correct responses per minute compared to PLA (P = 0.018). The decline inS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ during hypoxic exposure was attenuated (6.40%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; 95% CL: 0.04, 12.75; P = 0.049) in KME compared to PLA (KME, 76.8 ± 6.4%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; PLA, 70.4 ± 7.4%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ). Acute ingestion of KME attenuated the decline in cognitive performance during acute severe hypoxic exposure, which coincided with attenuation of declines in O2 saturation.
Collapse
Affiliation(s)
- Tyler S. McClure
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Jeffrey Phillips
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Andrew P. Koutnik
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Kody Coleman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Ed Chappe
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Gary R. Cutter
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Todd Norell
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | | | - Marcas M. Bamman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Dawn Kernagis
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
3
|
Stubbs BJ, Alvarez Azañedo G, Peralta S, Diaz SR, Gray W, Alexander L, Silverman-Martin W, Garcia TY, Blonquist TM, Upadhyay V, Turnbaugh PJ, Johnson JB, Newman JC. Rationale and protocol for a safety, tolerability and feasibility randomized, parallel arm, double-blind, placebo-controlled, pilot study of a novel ketone ester targeting frailty via immunometabolic geroscience mechanisms. PLoS One 2024; 19:e0307951. [PMID: 39292659 PMCID: PMC11410252 DOI: 10.1371/journal.pone.0307951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/14/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Frailty is a geriatric syndrome characterized by chronic inflammation and metabolic insufficiency that creates vulnerability to poor outcomes with aging. We hypothesize that interventions which target common underlying mechanism of aging could ameliorate frailty. Ketone bodies are metabolites produced during fasting or on a ketogenic diet that have pleiotropic effects on inflammatory and metabolic aging pathways in laboratory animal models. Ketone esters (KEs) are compounds that induce ketosis without dietary changes, but KEs have not been studied in an older adult population. Our long-term goal is to examine if KEs modulate aging biology mechanisms and clinical outcomes relevant to frailty in older adults. OBJECTIVES The primary objective of this randomized, placebo-controlled, double-blinded, parallel-group, pilot trial is to determine tolerability of 12-weeks of KE ingestion in a broad population of older adults (≥ 65 years). Secondary outcomes include safety and acute blood ketone kinetics. Exploratory outcomes include physical function, cognitive function, quality of life, aging biomarkers and inflammatory measures. METHODS Community-dwelling adults who are independent in activities of daily living, with no unstable acute medical conditions (n = 30) will be recruited. The study intervention is a KE or a taste, appearance, and calorie matched placebo beverage. Initially, acute 4-hour ketone kinetics after 12.5g or 25g of KE consumption will be assessed. After collection of baseline safety, functional, and biological measurements, subjects will randomly be allocated to consume KE 25g or placebo once daily for 12-weeks. Questionnaires will assess tolerability daily for 2-weeks, and then via phone interview at bi-monthly intervals. Safety assessments will be repeated at week 4. All measures will be repeated at week 12. CONCLUSION This study will evaluate feasibility, tolerability, and safety of KE consumption in older adults and provide exploratory data across a range of aging-related endpoints. This data will inform design of larger trials to rigorously test KE effects on aging mechanisms and clinical outcomes relevant to frailty.
Collapse
Affiliation(s)
- Brianna J. Stubbs
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - Sawyer Peralta
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Stephanie Roa Diaz
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Wyatt Gray
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Laura Alexander
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - Thelma Y. Garcia
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Traci M. Blonquist
- Biofortis, Mérieux NutriSciences, Addison, Illinois, United States of America
| | - Vaibhav Upadhyay
- Department of Microbiology & Immunology, UCSF, San Francisco, California, United States of America
- Independent Researcher, Greenbrae, California, United States of America
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, UCSF, San Francisco, California, United States of America
- Division of Geriatrics, UCSF, San Francisco, California, United States of America
| | - James B. Johnson
- Department of Medicine, UCSF, San Francisco, California, United States of America
| | - John C. Newman
- Buck Institute for Research on Aging, Novato, California, United States of America
- Chan Zuckerberg Biohub-San Francisco, San Francisco, California, United States of America
| |
Collapse
|
4
|
Stubbs BJ, Stephens EB, Senadheera C, Peralta S, Roa-Diaz S, Alexander L, Silverman-Martin W, Garcia TY, Yukawa M, Morris J, Blonquist TM, Johnson JB, Newman JC. Daily consumption of ketone ester, bis-octanoyl (R)-1,3-butanediol, is safe and tolerable in healthy older adults in a randomized, parallel arm, double-blind, placebo-controlled, pilot study. J Nutr Health Aging 2024; 28:100329. [PMID: 39137624 PMCID: PMC11695072 DOI: 10.1016/j.jnha.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES Ketone bodies are endogenous metabolites produced during fasting or a ketogenic diet that have pleiotropic effects on aging pathways. Ketone esters (KEs) are compounds that induce ketosis without dietary changes, but KEs have not been studied in an older adult population. The primary objective of this trial was to assess the tolerability and safety of KE ingestion in a cohort of older adults. DESIGN Randomized, placebo-controlled, double-blinded, parallel-arm trial (NCT05585762). SETTING General community, Northern California, USA. PARTICIPANTS Community-dwelling older adults, independent in activities of daily living, with no unstable acute medical conditions (n = 30; M = 15, F = 15; age = 76 y, range 65-90 y) were randomized and n = 23 (M = 14, F = 9) completed the protocol. INTERVENTION Participants were randomly allocated to consume either KE (25 g bis-octanoyl (R)-1,3-butanediol) or a taste, appearance, and calorie-matched placebo (PLA) containing canola oil daily for 12 weeks. MEASUREMENTS Tolerability was assessed using a composite score from a daily log for 2-weeks, and then via a bi-weekly phone interview. Safety was assessed by vital signs and lab tests at screening and weeks 0, 4 and 12, along with tabulation of adverse events. RESULTS There was no difference in the prespecified primary outcome of proportion of participants reporting moderate or severe nausea, headache, or dizziness on more than one day in a two-week reporting period (KE n = 2 (14.3% [90% CI = 2.6-38.5]); PLA n = 1 (7.1% [90% CI = 0.4-29.7]). Dropouts numbered four in the PLA group and two in the KE group. A greater number of symptoms were reported in both groups during the first two weeks; symptoms were reported less frequently between 2 and 12 weeks. There were no clinically relevant changes in safety labs or vital signs in either group. CONCLUSIONS This KE was safe and well-tolerated in this study of healthy older adults. These results provide an initial foundation for use of KEs in clinical research with older adults.
Collapse
Affiliation(s)
- Brianna J Stubbs
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA.
| | - Elizabeth B Stephens
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA
| | - Chatura Senadheera
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA
| | - Sawyer Peralta
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA
| | - Stephanie Roa-Diaz
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA
| | - Laura Alexander
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA
| | | | - Thelma Y Garcia
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA
| | - Michi Yukawa
- Division of Geriatrics, UCSF, 3575 Geary Blvd, Fl 1, San Francisco, CA 94118-3212, USA; Geriatrics, San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA 94121-1563, USA
| | - Jenifer Morris
- Geriatrics, San Francisco VA Medical Center, 4150 Clement St, San Francisco, CA 94121-1563, USA
| | - Traci M Blonquist
- Biofortis, Mérieux NutriSciences, 800-A South Rohling Rd, Addison, IL 60101-4219, USA
| | | | - John C Newman
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945-1400, USA; Division of Geriatrics, UCSF, 3575 Geary Blvd, Fl 1, San Francisco, CA 94118-3212, USA.
| |
Collapse
|
5
|
Stubbs BJ, Stephens EB, Senadheera C, Peralta S, Roa-Diaz S, Alexander L, Silverman-Martin W, Garcia TY, Yukawa M, Morris J, Blonquist TM, Johnson JB, Newman JC. Daily consumption of ketone ester, bis-octanoyl (R)-1,3-butanediol, is safe and tolerable in healthy older adults, a randomized, parallel arm, double-blind, placebo-controlled, pilot study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.03.24306699. [PMID: 38746215 PMCID: PMC11092707 DOI: 10.1101/2024.05.03.24306699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Objectives Ketone bodies are endogenous metabolites produced during fasting or a ketogenic diet that have pleiotropic effects on aging pathways. Ketone esters (KEs) are compounds that induce ketosis without dietary changes, but KEs have not been studied in an older adult population. The primary objective of this trial was to determine tolerability and safety of KE ingestion in older adults. Design Randomized, placebo-controlled, double-blinded, parallel-arm trial, with a 12-week intervention period ( NCT05585762 ). Setting General community, Northern California, USA. Participants Community-dwelling older adults, independent in activities of daily living, with no unstable acute medical conditions (n=30) were randomized and n=23 (M= 14, F=9) completed the protocol. Intervention Participants were randomly allocated to consume either KE (bis-octanoyl (R)-1,3-butanediol) or a taste, appearance, and calorie-matched placebo (PLA) containing canola oil. Measurements Tolerability was assessed using a composite score from a daily log for 2-weeks, and then via a bi-weekly phone interview. Safety was assessed by vital signs and lab tests at screening and weeks 0, 4 and 12, along with tabulation of adverse events. Results There was no difference in the prespecified primary outcome of proportion of participants reporting moderate or severe nausea, headache, or dizziness on more than one day in a two-week reporting period (KE n =2 (14.3% [90% CI = 2.6 - 38.5]); PLA n=1 (7.1% [90% CI = 0.4 - 29.7]). Dropouts numbered four in the PLA group and two in the KE group. A greater number of symptoms were reported in both groups during the first two weeks; symptoms were reported less frequently between 2 - 12 weeks. There were no clinically relevant changes in safety labs or vital signs in either group. Conclusions This KE was safe and well-tolerated in healthy older adults. These results provide a foundation for use of KEs in aging research. Highlights Ketones esters induce ketosis without dietary changes and may target aging biologyStudies of ketone esters were limited in duration and focused on younger adultsWe found ketone esters were safe and tolerable for 12 weeks in healthy older adults.
Collapse
|
6
|
Stephens EB, Senadheera C, Roa-Diaz S, Peralta S, Alexander L, Silverman-Martin W, Yukawa M, Morris J, Johnson JB, Newman JC, Stubbs BJ. A randomized open-label, observational study of the novel ketone ester, bis octanoyl (R)-1,3-butanediol, and its acute effect on ß-hydroxybutyrate and glucose concentrations in healthy older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305925. [PMID: 38699344 PMCID: PMC11065008 DOI: 10.1101/2024.04.16.24305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Bis-octanoyl (R)-1,3-butanediol (BO-BD) is a novel ketone ester (KE) ingredient which increases blood beta-hydroxybutyrate (BHB) concentrations rapidly after ingestion. KE is hypothesized to have beneficial metabolic effects on health and performance, especially in older adults. Whilst many studies have investigated the ketogenic effect of KE in young adults, they have not been studied in an exclusively older adult population, for whom age-related differences in body composition and metabolism may alter the effects. This randomized, observational, open-label study in healthy older adults (n = 30, 50% male, age = 76.5 years, BMI = 25.2 kg/m2) aimed to elucidate acute tolerance, blood BHB and blood glucose concentrations for 4 hours following consumption of either 12.5 or 25 g of BO-BD formulated firstly as a ready-to-drink beverage (n = 30), then as a re-constituted powder (n = 21), taken with a standard meal. Both serving sizes and formulations of BO-BD were well tolerated, and increased blood BHB, inducing nutritional ketosis (≥ 0.5mM) that lasted until the end of the study. Ketosis was dose responsive; peak BHB concentration (Cmax) and incremental area under the curve (iAUC) were significantly greater with 25 g compared to 12.5 g of BO-BD in both formulations. There were no significant differences in Cmax or iAUC between formulations. Blood glucose increased in all conditions following the meal; there were no consistent significant differences in glucose response between conditions. These results demonstrate that both powder and beverage formulations of the novel KE, BO-BD, induce ketosis in healthy older adults, facilitating future research on functional effects of this ingredient in aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michi Yukawa
- Veteran’s Affairs Medical Center, San Francisco, CA, USA
| | | | | | - John C. Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Division of Geriatrics, University of California, San Francisco, CA, USA
| | | |
Collapse
|
7
|
Stubbs BJ, Alvarez-Azanedo G, Peralta S, Roa-Diaz S, Gray W, Alexander L, Silverman-Martin W, Garcia T, Blonquist TM, Upadhyay V, Turnbaugh PJ, Johnson JB, Newman JC. Rationale and protocol for a safety, tolerability and feasibility randomized, parallel group, double-blind, placebo-controlled, pilot study of a novel ketone ester targeting frailty via immunometabolic geroscience mechanisms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.25.23297571. [PMID: 37961234 PMCID: PMC10635199 DOI: 10.1101/2023.10.25.23297571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Frailty is a geriatric syndrome characterized by chronic inflammation and metabolic insufficiency that creates vulnerability to poor outcomes with aging. We hypothesize that geroscience interventions, which target mechanisms of aging, could ameliorate frailty. Metabolites such as ketone bodies are candidate geroscience interventions, having pleiotropic effects on inflammo-metabolic aging mechanisms. Ketone esters (KEs) induce ketosis without dietary changes, but KEs have not been studied in an older adult population. Our long-term goal is to examine if KEs modulate geroscience mechanisms and clinical outcomes relevant to frailty in older adults. Objectives The primary objective of this randomized, placebo-controlled, double-blinded, parallel-group, pilot trial is to determine tolerability of 12-weeks of KE ingestion in a generalizable population of older adults (≥ 65 years). Secondary outcomes include safety and acute blood ketone kinetics. Exploratory outcomes include physical function, cognitive function, quality of life, aging biomarkers and inflammatory measures. Methods Community-dwelling adults who are independent in activities of daily living, with no unstable acute medical conditions (n=30) will be recruited. The study intervention is a KE or a taste, appearance, and calorie matched placebo beverage. Initially, acute 4-hour ketone kinetics after 12.5g or 25g of KE consumption will be assessed. After collection of baseline safety, functional, and biological measurements, subjects will randomly be allocated to consume KE 25g or placebo once daily for 12-weeks. Questionnaires will assess tolerability daily for 2-weeks, and then via phone interview at bi-monthly intervals. Safety assessments will be repeated at week 4. All measures will be repeated at week 12. Conclusion This study will evaluate feasibility, tolerability, and safety of KE consumption in older adults and provide exploratory data across a range of geroscience-related endpoints. This data will inform design of larger trials to rigorously test KE effects on geroscience mechanisms and clinical outcomes relevant to frailty.
Collapse
Affiliation(s)
| | | | | | | | - Wyatt Gray
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Thelma Garcia
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Vaibhav Upadhyay
- Department of Microbiology & Immunology, UCSF, San Francisco, CA, USA 94143
- Department of Medicine, UCSF, San Francisco California, USA
| | - Peter J. Turnbaugh
- Department of Microbiology & Immunology, UCSF, San Francisco, CA, USA 94143
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA 94158
| | | | - John C. Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Division of Geriatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Nieman KM, Anthony JC, Stubbs BJ. A Novel Powder Formulation of the Ketone Ester, Bis Hexanoyl (R)-1,3-Butanediol, Rapidly Increases Circulating ß-Hydroxybutyrate Concentrations in Healthy Adults. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:635-642. [PMID: 36278841 DOI: 10.1080/27697061.2022.2117743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022]
Abstract
Objective: Growing interest in the metabolic state of ketosis has driven development of exogenous ketone products to induce ketosis without dietary changes. Bis hexanoyl (R)-1,3-butanediol (BH-BD) is a novel ketone ester which, when consumed, increases blood beta-hydroxybutyrate (BHB) concentrations. BH-BD is formulated as a powder or ready-to-drink (RTD) beverage; the relative efficacy of these formulations is unknown, but hypothesized to be equivalent.Methods: This randomized, observer-blinded, controlled, crossover decentralized study in healthy adults (n = 15, mean age = 33.7 years, mean BMI = 23.6 kg/m2) aimed to elucidate blood BHB and glucose concentrations before and 15, 30, 45, 60, 90 and 120 minutes following two serving sizes of reconstituted BH-BD powder (POW 25 g, POW 12.5 g), compared to a RTD BH-BD beverage (RTD 12.5 g), and a non-ketogenic control, all taken with a standard meal.Results: All BH-BD products were well tolerated and increased BHB, inducing nutritional ketosis (BHB ≥0.5 mM) after ∼15 minutes, relative to the control. BHB remained elevated 2 h post-consumption. The control did not increase BHB. Ketosis was dose responsive; peak BHB concentration and area under the curve (AUC) were two-fold greater with POW 25 g compared to POW 12.5 g and RTD 12.5 g. There were no differences in peak BHB and AUC between matched powder and RTD formulas. Blood glucose increased in all conditions following the meal but there were neither significant differences in lowest observed concentrations, nor consistent differences at each time point between conditions. These results demonstrate that both powdered and RTD BH-BD formulations similarly induce ketosis with no differences in glucose concentrations in healthy adults.
Collapse
Affiliation(s)
- Kristin M Nieman
- Katalyses LLC, Ankeny, IA, USA
- BHB Therapeutics (Ireland) Ltd, Dublin, Ireland
| | | | - Brianna J Stubbs
- BHB Therapeutics (Ireland) Ltd, Dublin, Ireland
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
9
|
Renaud D, Scholl-Bürgi S, Karall D, Michel M. Comparative Metabolomics in Single Ventricle Patients after Fontan Palliation: A Strong Case for a Targeted Metabolic Therapy. Metabolites 2023; 13:932. [PMID: 37623876 PMCID: PMC10456471 DOI: 10.3390/metabo13080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Most studies on single ventricle (SV) circulation take a physiological or anatomical approach. Although there is a tight coupling between cardiac contractility and metabolism, the metabolic perspective on this patient population is very recent. Early findings point to major metabolic disturbances, with both impaired glucose and fatty acid oxidation in the cardiomyocytes. Additionally, Fontan patients have systemic metabolic derangements such as abnormal glucose metabolism and hypocholesterolemia. Our literature review compares the metabolism of patients with a SV circulation after Fontan palliation with that of patients with a healthy biventricular (BV) heart, or different subtypes of a failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan failure, heart failure (HF), ketosis, metabolism published in English from 1939 to 2023. Early evidence demonstrates that SV circulation is not only a hemodynamic burden requiring staged palliation, but also a metabolic issue with alterations similar to what is known for HF in a BV circulation. Alterations of fatty acid and glucose oxidation were found, resulting in metabolic instability and impaired energy production. As reported for patients with BV HF, stimulating ketone oxidation may be an effective treatment strategy for HF in these patients. Few but promising clinical trials have been conducted thus far to evaluate therapeutic ketosis with HF using a variety of instruments, including ketogenic diet, ketone esters, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. An initial trial on a small cohort demonstrated favorable outcomes for Fontan patients treated with SGLT2 inhibitors. Therapeutic ketosis is worth considering in the treatment of Fontan patients, as ketones positively affect not only the myocardial energy metabolism, but also the global Fontan physiopathology. Induced ketosis seems promising as a concerted therapeutic strategy.
Collapse
Affiliation(s)
- David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniela Karall
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Mah E, Blonquist TM, Kaden VN, Beckman D, Boileau AC, Anthony JC, Stubbs BJ. A randomized, open-label, parallel pilot study investigating metabolic product kinetics of the novel ketone ester, bis-hexanoyl (R)-1,3-butanediol, over one week of ingestion in healthy adults. Front Physiol 2023; 14:1196535. [PMID: 37427402 PMCID: PMC10324611 DOI: 10.3389/fphys.2023.1196535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Bis-hexanoyl (R)-1,3-butanediol (BH-BD) is a novel ketone ester that, when consumed, is hydrolyzed into hexanoic acid (HEX) and (R)-1,3-butanediol (BDO) which are subsequently metabolized into beta-hydroxybutyrate (BHB). Methods: We undertook a randomized, parallel, open-label study in healthy adults (n = 33) to elucidate blood BHB, HEX and BDO concentrations for 8 h following consumption of three different serving sizes (SS) of BH-BD (12.5, 25 and 50 g/day) before (Day 0) and after 7 days of daily BH-BD consumption (Day 7). Results: Maximal concentration and area under the curve of all metabolites increased proportionally to SS and were greatest for BHB followed by BDO then HEX on both Day 0 and 7. Metabolite half-life tended to decrease with increasing SS for BHB and HEX. Time to peak concentration increased with increasing SS for BHB and BDO on both days. In vitro incubation of BH-BD in human plasma demonstrated BH-BD undergoes rapid spontaneous hydrolysis. Conclusion: These results demonstrate that orally ingested BH-BD is hydrolyzed into products that appear in the plasma and undergo conversion to BHB in a SS dependent manner, and that metabolism of BH-BD neither becomes saturated at serving sizes up to 50 g nor displays consistent adaptation after 7 days of daily consumption.
Collapse
Affiliation(s)
- Eunice Mah
- Biofortis, Mérieux NutriSciences, Addison, IL, United States
| | | | | | - Dawn Beckman
- Biofortis, Mérieux NutriSciences, Addison, IL, United States
| | | | | | - Brianna J. Stubbs
- BHB Therapeutics Ltd., Dublin, Ireland
- Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
11
|
Gao L, Cao M, Du GH, Qin XM. Huangqin Decoction Exerts Beneficial Effects on Rotenone-Induced Rat Model of Parkinson's Disease by Improving Mitochondrial Dysfunction and Alleviating Metabolic Abnormality of Mitochondria. Front Aging Neurosci 2022; 14:911924. [PMID: 35912075 PMCID: PMC9334858 DOI: 10.3389/fnagi.2022.911924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and the pathogenesis of PD is closely related to mitochondrial dysfunction. Previous studies have indicated that traditional Chinese medicine composition of Huangqin Decoction (HQD), including Scutellariae Radix, licorice, and Paeoniae Radix Alba, has therapeutic effects on PD, but whether HQD has a therapeutic effect on PD has not been reported. In this study, the protective effects of HQD on rotenone-induced PD rats were evaluated by behavioral assays (open field, rotating rod, suspension, gait, inclined plate, and grid) and immunohistochemistry. The mechanisms of HQD on attenuation of mitochondrial dysfunction were detected by biochemical assays and mitochondrial metabolomics. The results showed that HQD (20 g/kg) can protect rats with PD by improving motor coordination and muscle strength, increasing the number of tyrosine hydroxylase (TH)-positive neurons in rats with PD. Besides, HQD can improve mitochondrial dysfunction by increasing the content of adenosine triphosphate (ATP) and mitochondrial complex I. Mitochondrial metabolomics analysis revealed that the ketone body of acetoacetic acid (AcAc) in the rotenone group was significantly higher than that of the control group. Ketone bodies have been known to be used as an alternative energy source to provide energy to the brain when glucose was deficient. Further studies demonstrated that HQD could increase the expression of glucose transporter GLUT1, the content of tricarboxylic acid cycle rate-limiting enzyme citrate synthase (CS), and the level of hexokinase (HK) in rats with PD but could decrease the content of ketone bodies [AcAc and β-hydroxybutyric acid (β-HB)] and the expression of their transporters (MCT1). Our study revealed that the decrease of glucose metabolism in the rotenone group was parallel to the increase of substitute substrates (ketone bodies) and related transporters, and HQD could improve PD symptoms by activating the aerobic glycolysis pathway.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- *Correspondence: Li Gao
| | - Min Cao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-hua Du
- Peking Union Medical College, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
- Xue-mei Qin
| |
Collapse
|
12
|
Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med 2022; 52:25-67. [PMID: 36214993 PMCID: PMC9734240 DOI: 10.1007/s40279-022-01756-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
The ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βHB) have pleiotropic effects in multiple organs including brain, heart, and skeletal muscle by serving as an alternative substrate for energy provision, and by modulating inflammation, oxidative stress, catabolic processes, and gene expression. Of particular relevance to athletes are the metabolic actions of ketone bodies to alter substrate utilisation through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. There has been long-standing interest in the development of ingestible forms of ketone bodies that has recently resulted in the commercial availability of exogenous ketone supplements (EKS). These supplements in the form of ketone salts and ketone esters, in addition to ketogenic compounds such as 1,3-butanediol and medium chain triglycerides, facilitate an acute transient increase in circulating AcAc and βHB concentrations, which has been termed 'acute nutritional ketosis' or 'intermittent exogenous ketosis'. Some studies have suggested beneficial effects of EKS to endurance performance, recovery, and overreaching, although many studies have failed to observe benefits of acute nutritional ketosis on performance or recovery. The present review explores the rationale and historical development of EKS, the mechanistic basis for their proposed effects, both positive and negative, and evidence to date for their effects on exercise performance and recovery outcomes before concluding with a discussion of methodological considerations and future directions in this field.
Collapse
|
13
|
Prins PJ, Buxton JD, McClure TS, D'Agostino DP, Ault DL, Welton GL, Jones DW, Atwell AD, Slack MA, Slack ML, Williams CE, Blanchflower ME, Kannel KK, Faulkner MN, Szmaciasz HL, Croll SM, Stanforth LM, Harris TD, Gwaltney HC, Koutnik AP. Ketone Bodies Impact on Hypoxic CO 2 Retention Protocol During Exercise. Front Physiol 2021; 12:780755. [PMID: 34966291 PMCID: PMC8711099 DOI: 10.3389/fphys.2021.780755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Exogenous ketone esters have demonstrated the capacity to increase oxygen availability during acute hypoxic exposure leading to the potential application of their use to mitigate performance declines at high altitudes. Voluntary hypoventilation (VH) with exercise reliably reduces oxygen availability and increases carbon dioxide retention without alterations to ambient pressure or gas content. Utilizing a double-blind randomized crossover design, fifteen recreational male distance runners performed submaximal exercise (4 × 5 min; 70% VO2 Max) with VH. An exogenous ketone ester (KME; 573 mg⋅kg–1) or iso-caloric flavor matched placebo (PLA) was consumed prior to exercise. Metabolites, blood gases, expired air, heart rate, oxygen saturation, cognition, and perception metrics were collected throughout. KME rapidly elevated R-β-hydroxybutyrate and reduced blood glucose without altering lactate production. KME lowered pH, bicarbonate, and total carbon dioxide. VH with exercise significantly reduced blood (SpO2) and muscle (SmO2) oxygenation and increased cognitive mean reaction time and respiratory rate regardless of condition. KME administration significantly elevated respiratory exchange ratio (RER) at rest and throughout recovery from VH, compared to PLA. Blood carbon dioxide (PCO2) retention increased in the PLA condition while decreasing in the KME condition, leading to a significantly lower PCO2 value immediately post VH exercise (IPE; p = 0.031) and at recovery (p = 0.001), independent of respiratory rate. The KME’s ability to rapidly alter metabolism, acid/base balance, CO2 retention, and respiratory exchange rate independent of respiratory rate changes at rest, during, and/or following VH exercise protocol illustrates a rapid countermeasure to CO2 retention in concert with systemic metabolic changes.
Collapse
Affiliation(s)
- Philip J Prins
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Jeffrey D Buxton
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Tyler S McClure
- Human Healthspan, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Dominic P D'Agostino
- Human Healthspan, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, FL, United States.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Dana L Ault
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Gary L Welton
- Department of Psychology, Grove City College, Grove City, PA, United States
| | - Dalton W Jones
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Adam D Atwell
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Macey A Slack
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Marah L Slack
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Chloe E Williams
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | | | - Kristia K Kannel
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Madison N Faulkner
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Hannah L Szmaciasz
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Stephanie M Croll
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Lindsey M Stanforth
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Tim D Harris
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Holton C Gwaltney
- Department of Exercise Science, Grove City College, Grove City, PA, United States
| | - Andrew P Koutnik
- Human Healthspan, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, FL, United States
| |
Collapse
|