1
|
Cheong S, Peng Y, Lu F, He Y. Structural extracellular matrix-mediated molecular signaling in wound repair and tissue regeneration. Biochimie 2025; 229:58-68. [PMID: 39369941 DOI: 10.1016/j.biochi.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The extracellular matrix (ECM) is a complex, non-cellular network of molecules that offers structural support for cells and tissues. The ECM is composed of various structural components, including collagen, fibronectin, laminin, perlecan, nidogen, tenascin, and fibulin, which are capable of binding to each other and to cell-to-adhesion receptors, endowing the ECM with unique physical and biochemical properties that are essential for its function in maintaining health and managing disease. Over the past three decades, extensive research has shown that the core of the ECM can significantly impact cellular events at the molecular level. Structural modifications have also been strongly associated with tissue repair. Through interactions with cells, matrix proteins regulate critical processes such as cell proliferation and differentiation, migration, and apoptosis, essential for maintaining tissue homeostasis, formation, and regeneration. This review emphasizes the interlocking networks of ECM macromolecules and their primary roles in tissue regeneration and wound repair. Through studying ECM dynamics, researchers have discovered molecular signaling pathways that demonstrate how the ECM influences protein patterns and open up more possibilities for developing therapeutics that target the ECM to enhance wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yujie Peng
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Tang Y, Mu Z, Pan D, Liu R, Hong S, Xiong Z. The role and mechanism of β-catenin-mediated skeletal muscle satellite cells in osteoporotic fractures by Jian-Pi-Bu-Shen formula. J Mol Histol 2024; 55:875-893. [PMID: 39105942 DOI: 10.1007/s10735-024-10238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Osteoporosis is a metabolic bone disease. β-Catenin is associated with fractures. Jian-Pi-Bu-Shen (JPBS) can promote the healing of osteoporotic fractures (OPF). However, the mechanism of β-catenin-mediated skeletal muscle satellite cells (SMSCs) in OPF by the JPBS is unclear. SMSCs were isolated and divided into five groups. The results showed that the survival rate of SMSCs was significantly higher in the low, medium, and high dose JPBS-containing serum groups after 7 days of incubation. The ALP activity and the number of SMSCs mineralized in the JPBS-containing serum intervention group were elevated. Axin, GSK-3β, β-catenin siRNAs were constructed and transfected into cells. Transfection of siRNAs reduced Axin, GSK-3β, and β-catenin expressions, respectively. β-Catenin-siRNA reversed ALP activity, the number of SMSCs mineralized, and the expression of β-catenin, BMP2, Runx2, COL-I, SP7/Ostrix, Osteocalcin, and BMP-7. Transcriptomic results suggested that the TNF signaling pathway associated with OPF was enriched. SD rats were subjected to the construction of OPF model by removing the ovaries. JPBS decreased the levels of PINP, ALP, CTX, and NTX through β-catenin in OPF rats, while increasing Runx2, β-catenin expressions through β-catenin at the broken end of fractures. Moreover, JPBS decreased BMC, BMD, and BV/TV and improved pathological damage through β-catenin in OPF rats. JPBS decreased the expression of Axin, GSK-3β mRNA, and protein, but increased the expressions of β-catenin, Pax7, COL-II, COL-II, BMP2, and Runx2 through β-catenin in OPF rats. In conclusion, JPBS inhibits Axin/GSK-3β expression, activates the β-catenin signaling, and promotes the osteogenic differentiation of SMSCs.
Collapse
Affiliation(s)
- Yanghua Tang
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhuosong Mu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Dong Pan
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Renqi Liu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shenghu Hong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China
| | - Zhenfei Xiong
- Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, No. 156, Yucai Road, Xiaoshan District, Hangzhou, 311201, Zhejiang, China.
| |
Collapse
|
3
|
Kok HJ, Fletcher DB, Oster JC, Conover CF, Barton ER, Yarrow JF. Transcriptomics reveals transient and dynamic muscle fibrosis and atrophy differences following spinal cord injury in rats. J Cachexia Sarcopenia Muscle 2024; 15:1309-1323. [PMID: 38764311 PMCID: PMC11294049 DOI: 10.1002/jcsm.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The rate and magnitude of skeletal muscle wasting after severe spinal cord injury (SCI) exceeds most other disuse conditions. Assessing the time course of molecular changes can provide insight into the progression of muscle wasting post-SCI. The goals of this study were (1) to identify potential targets that may prevent the pathologic features of SCI in soleus muscles and (2) to establish therapeutic windows for treating these pathologic changes. METHODS Four-month-old Sprague-Dawley male rats received T9 laminectomy (SHAM surgery) or severe contusion SCI. Hindlimb locomotor function was assessed weekly, with soleus muscles obtained 1 week, 2 weeks, 1 month and 3 months post-surgery (n = 6-7 per group per timepoint). RNA was extracted from muscles for bulk RNA-sequencing analysis (n = 3-5 per group per timepoint). Differentially expressed genes (DEGs) were evaluated between age-matched SHAM and SCI animals. Myofiber size, muscle fibre type and fibrosis were assessed on contralateral muscles. RESULTS SCI produced immediate and persistent hindlimb paralysis, with Basso-Beattie-Bresnahan locomotor scores remaining below 7 throughout the study, contributing to a progressive 25-50% lower soleus mass and myofiber atrophy versus SHAM (P < 0.05 at all timepoints). Transcriptional comparisons of SCI versus SHAM resulted in 184 DEGs (1 week), 436 DEGs (2 weeks), 133 DEGs (1 month) and 1200 DEGs (3 months). Upregulated atrophy-related genes included those associated with cell senescence, nuclear factor kappa B, ubiquitin proteasome and unfolded protein response pathways, along with upregulated genes that negatively influence muscle growth through the transforming growth factor beta pathway and inhibition of insulin-like growth factor-I/Akt/mechanistic target of rapamycin and p38/mitogen-activated protein kinase signalling. Genes associated with extracellular matrix (ECM), including collagens, collagen crosslinkers, proteoglycans and those regulating ECM integrity, were enriched within upregulated DEGs at 1 week but subsequently downregulated at 2 weeks and 3 months and were accompanied by >50% higher ECM areas and hydroxyproline levels in SCI muscles (P < 0.05). Myofiber remodelling genes were enriched in upregulated DEGs at 2 weeks and 1 month and were downregulated at 3 months. Genes that regulate neuromuscular junction remodelling were evident in muscles post-SCI, along with slow-to-fast fibre-type shifts: 1 week and 2 weeks SCI muscles were composed of 90% myosin heavy chain (MHC) type I fibres, which decreased to only 16% at 3 months and were accompanied by 50% fibres containing MHC IIX (P < 0.05). Metabolism genes were enriched in upregulated DEGs at 1 month and were further enriched at 3 months. CONCLUSIONS Our results substantiate many known pathologic features of SCI-induced wasting in rat skeletal muscle and identify a progressive and dynamic transcriptional landscape within the post-SCI soleus. Future studies are warranted to consider these therapeutic treatment windows when countering SCI muscle pathology.
Collapse
Affiliation(s)
- Hui Jean Kok
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Drew B. Fletcher
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Jacob C. Oster
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Christine F. Conover
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Elisabeth R. Barton
- Department of Applied Physiology and KinesiologyCollege of Health and Human Performance, University of FloridaGainesvilleFLUSA
| | - Joshua F. Yarrow
- Research Service, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Division of Endocrinology, Diabetes and MetabolismCollege of Medicine, University of FloridaGainesvilleFLUSA
- Brain Rehabilitation Research Center, Malcolm Randall Department of Veterans Affairs Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Eastern Colorado Geriatrics Research, Education, and Clinical CenterRocky Mountain Regional Veterans Affairs Medical Center, VA Eastern Colorado Health Care SystemAuroraCOUSA
| |
Collapse
|
4
|
Mitchell DG, Edgar A, Mateu JR, Ryan JF, Martindale MQ. The ctenophore Mnemiopsis leidyi deploys a rapid injury response dating back to the last common animal ancestor. Commun Biol 2024; 7:203. [PMID: 38374160 PMCID: PMC10876535 DOI: 10.1038/s42003-024-05901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Regenerative potential is widespread but unevenly distributed across animals. However, our understanding of the molecular mechanisms underlying regenerative processes is limited to a handful of model organisms, restricting robust comparative analyses. Here, we conduct a time course of RNA-seq during whole body regeneration in Mnemiopsis leidyi (Ctenophora) to uncover gene expression changes that correspond with key events during the regenerative timeline of this species. We identified several genes highly enriched in this dataset beginning as early as 10 minutes after surgical bisection including transcription factors in the early timepoints, peptidases in the middle timepoints, and cytoskeletal genes in the later timepoints. We validated the expression of early response transcription factors by whole mount in situ hybridization, showing that these genes exhibited high expression in tissues surrounding the wound site. These genes exhibit a pattern of transient upregulation as seen in a variety of other organisms, suggesting that they may be initiators of an ancient gene regulatory network linking wound healing to the initiation of a regenerative response.
Collapse
Affiliation(s)
- Dorothy G Mitchell
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Júlia Ramon Mateu
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Tyagi SC, Pushpakumar S, Sen U, Akinterinwa OE, Zheng Y, Mokshagundam SPL, Kalra DK, Singh M. Role of circadian clock system in the mitochondrial trans-sulfuration pathway and tissue remodeling. Can J Physiol Pharmacol 2024; 102:105-115. [PMID: 37979203 DOI: 10.1139/cjpp-2023-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine β synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Oluwaseun E Akinterinwa
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yuting Zheng
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dinesh K Kalra
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Endo T. Postnatal skeletal muscle myogenesis governed by signal transduction networks: MAPKs and PI3K-Akt control multiple steps. Biochem Biophys Res Commun 2023; 682:223-243. [PMID: 37826946 DOI: 10.1016/j.bbrc.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
7
|
Timpani CA, Kourakis S, Debruin DA, Campelj DG, Pompeani N, Dargahi N, Bautista AP, Bagaric RM, Ritenis EJ, Sahakian L, Debrincat D, Stupka N, Hafner P, Arthur PG, Terrill JR, Apostolopoulos V, de Haan JB, Guven N, Fischer D, Rybalka E. Dimethyl fumarate modulates the dystrophic disease program following short-term treatment. JCI Insight 2023; 8:e165974. [PMID: 37751291 PMCID: PMC10721277 DOI: 10.1172/jci.insight.165974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
New medicines are urgently required to treat the fatal neuromuscular disease Duchenne muscular dystrophy (DMD). Dimethyl fumarate (DMF) is a potent immunomodulatory small molecule nuclear erythroid 2-related factor 2 activator with current clinical utility in the treatment of multiple sclerosis and psoriasis that could be effective for DMD and rapidly translatable. Here, we tested 2 weeks of daily 100 mg/kg DMF versus 5 mg/kg standard-care prednisone (PRED) treatment in juvenile mdx mice with early symptomatic DMD. Both drugs modulated seed genes driving the DMD disease program and improved force production in fast-twitch muscle. However, only DMF showed pro-mitochondrial effects, protected contracting muscles from fatigue, improved histopathology, and augmented clinically compatible muscle function tests. DMF may be a more selective modulator of the DMD disease program than PRED, warranting follow-up longitudinal studies to evaluate disease-modifying impact.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine – Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Nancy Pompeani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Narges Dargahi
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Angelo P. Bautista
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Elya J. Ritenis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Lauren Sahakian
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Department of Medicine – Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Didier Debrincat
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Nicole Stupka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine – Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Patricia Hafner
- Division of Neuropaediatrics and Developmental Medicine, University Children’s Hospital of Basel (UKBB), Basel, Switzerland
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
| | - Judy B. de Haan
- Basic Science Domain, Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
- Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Nuri Guven
- Department of Medicine – Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
| | - Dirk Fischer
- Division of Neuropaediatrics and Developmental Medicine, University Children’s Hospital of Basel (UKBB), Basel, Switzerland
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Victoria, Australia
- Department of Medicine – Western Health, Melbourne Medical School, The University of Melbourne, St Albans, Victoria, Australia
- Division of Neuropaediatrics and Developmental Medicine, University Children’s Hospital of Basel (UKBB), Basel, Switzerland
| |
Collapse
|
8
|
Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol 2023; 325:C1017-C1030. [PMID: 37661921 PMCID: PMC10635663 DOI: 10.1152/ajpcell.00287.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
9
|
Kanazawa Y, Miyachi R, Higuchi T, Sato H. Effects of Aging on Collagen in the Skeletal Muscle of Mice. Int J Mol Sci 2023; 24:13121. [PMID: 37685934 PMCID: PMC10487623 DOI: 10.3390/ijms241713121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Aging affects several tissues in the body, including skeletal muscle. Multiple types of collagens are localized in the skeletal muscle and contribute to the maintenance of normal muscle structure and function. Since the effects of aging on muscle fibers vary by muscle fiber type, it is expected that the effects of aging on intramuscular collagen might be influenced by muscle fiber type. In this study, we examined the effect of aging on collagen levels in the soleus (slow-twitch muscle) and gastrocnemius (fast-twitch muscle) muscles of 3-, 10-, 24-, and 28-month-old male C57BL/6J mice using molecular and morphological analysis. It was found that aging increased collagen I, III, and VI gene expression and immunoreactivity in both slow- and fast-twitch muscles and collagen IV expression in slow-twitch muscles. However, collagen IV gene expression and immunoreactivity in fast-twitch muscle were unaffected by aging. In contrast, the expression of the collagen synthesis marker heat shock protein 47 in both slow- and fast-twitch muscles decreased with aging, while the expression of collagen degradation markers increased with aging. Overall, these results suggest that collagen gene expression and immunoreactivity are influenced by muscle fiber type and collagen type and that the balance between collagen synthesis and degradation tends to tilt toward degradation with aging.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| | - Ryo Miyachi
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| | - Takashi Higuchi
- Department of Physical Therapy, Osaka University of Human Sciences, Settsu 566-8501, Osaka, Japan;
| | - Hiaki Sato
- Department of Medical Technology and Clinical Engineering, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| |
Collapse
|
10
|
Molière S, Jaulin A, Tomasetto CL, Dali-Youcef N. Roles of Matrix Metalloproteinases and Their Natural Inhibitors in Metabolism: Insights into Health and Disease. Int J Mol Sci 2023; 24:10649. [PMID: 37445827 DOI: 10.3390/ijms241310649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-activated peptidases that can be classified into six major classes, including gelatinases, collagenases, stromelysins, matrilysins, membrane type metalloproteinases, and other unclassified MMPs. The activity of MMPs is regulated by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). MMPs are involved in a wide range of biological processes, both in normal physiological conditions and pathological states. While some of these functions occur during development, others occur in postnatal life. Although the roles of several MMPs have been extensively studied in cancer and inflammation, their function in metabolism and metabolic diseases have only recently begun to be uncovered, particularly over the last two decades. This review aims to summarize the current knowledge regarding the metabolic roles of metalloproteinases in physiology, with a strong emphasis on adipose tissue homeostasis, and to highlight the consequences of impaired or exacerbated MMP actions in the development of metabolic disorders such as obesity, fatty liver disease, and type 2 diabetes.
Collapse
Affiliation(s)
- Sébastien Molière
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Department of Radiology, Strasbourg University Hospital, Hôpital de Hautepierre, Avenue Molière, 67200 Strasbourg, France
- Breast and Thyroid Imaging Unit, ICANS-Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Amélie Jaulin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, 67400 Illkirch-Graffenstaden, France
- Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67400 Illkirch-Graffenstaden, France
- Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67000 Strasbourg, France
| |
Collapse
|
11
|
Muscle Regeneration in Holothurians without the Upregulation of Muscle Genes. Int J Mol Sci 2022; 23:ijms232416037. [PMID: 36555677 PMCID: PMC9785333 DOI: 10.3390/ijms232416037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The holothurian Eupentacta fraudatrix is capable of fully restoring its muscles after transverse dissection. Although the regeneration of these structures is well studied at the cellular level, the molecular basis of the process remains poorly understood. To identify genes that may be involved in the regulation of muscle regeneration, the transcriptome of the longitudinal muscle band of E. fraudatrix has been sequenced at different time periods post-injury. An analysis of the map of biological processes and pathways has shown that most genes associated with myogenesis decrease their expression during the regeneration. The only exception is the genes united by the GO term "heart valve development". This may indicate the antiquity of mechanisms of mesodermal structure transformation, which was co-opted into various morphogeneses in deuterostomes. Two groups of genes that play a key role in the regeneration have been analyzed: transcription factors and matrix metalloproteinases. A total of six transcription factor genes (Ef-HOX5, Ef-ZEB2, Ef-RARB, Ef-RUNX1, Ef-SOX17, and Ef-ZNF318) and seven matrix metalloproteinase genes (Ef-MMP11, Ef-MMP13, Ef-MMP13-1, Ef-MMP16-2, Ef-MMP16-3, Ef-MMP24, and Ef-MMP24-1) showing differential expression during myogenesis have been revealed. The identified genes are assumed to be involved in the muscle regeneration in holothurians.
Collapse
|
12
|
Guilhot C, Fovet T, Delobel P, Dargegen M, Jasmin BJ, Brioche T, Chopard A, Py G. Severe Muscle Deconditioning Triggers Early Extracellular Matrix Remodeling and Resident Stem Cell Differentiation into Adipocytes in Healthy Men. Int J Mol Sci 2022; 23:ijms23105489. [PMID: 35628300 PMCID: PMC9143135 DOI: 10.3390/ijms23105489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Besides the loss of muscle mass and strength, increased intermuscular adipose tissue (IMAT) is now a well-recognized consequence of muscle deconditioning as experienced in prolonged microgravity. IMAT content may alter the muscle stem cell microenvironment. We hypothesized that extracellular matrix structure alterations and microenvironment remodeling induced by fast and severe muscle disuse could modulate fibro-adipogenic progenitor fate and behavior. We used the dry immersion (DI) model that rapidly leads to severe muscle deconditioning due to drastic hypoactivity. We randomly assigned healthy volunteers (n = 18 men) to the control group (only DI, n = 9; age = 33.8 ± 4) or to the DI + thigh cuff group (n = 9; age = 33.4 ± 7). Participants remained immersed in the supine position in a thermo-neutral water bath for 5 days. We collected vastus lateralis biopsies before (baseline) and after DI. 5 days of DI are sufficient to reduce muscle mass significantly, as indicated by the decreased myofiber cross-sectional area in vastus lateralis samples (−18% vs. baseline, p < 0.05). Early and late adipogenic differentiation transcription factors protein levels were upregulated. Platelet-derived growth Factors alpha (PDGFR⍺) protein level and PDGFR⍺-positive cells were increased after 5 days of DI. Extracellular matrix structure was prone to remodeling with an altered ECM composition with 4 major collagens, fibronectin, and Connective Tissue Growth Factor mRNA decreases (p < 0.001 vs. baseline). Wearing thigh cuffs did not have any preventive effect on the measured variable. Our results show that altered extracellular matrix structure and signaling pathways occur early during DI, a severe muscle wasting model, favoring fibro-adipogenic progenitor differentiation into adipocytes.
Collapse
Affiliation(s)
- Corentin Guilhot
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
- Correspondence: (C.G.); (G.P.); Tel.: +33-499-612-222 (G.P.); Fax: +33-467-545-694 (G.P.)
| | - Théo Fovet
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
| | - Pierre Delobel
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
| | - Manon Dargegen
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine, Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Thomas Brioche
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
| | - Angèle Chopard
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
| | - Guillaume Py
- DMEM, Montpellier University, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 2 Place Pierre Viala, Bat. 22, 34060 Montpellier, France; (T.F.); (P.D.); (M.D.); (T.B.); (A.C.)
- Correspondence: (C.G.); (G.P.); Tel.: +33-499-612-222 (G.P.); Fax: +33-467-545-694 (G.P.)
| |
Collapse
|
13
|
RhoA within myofibers controls satellite cell microenvironment to allow hypertrophic growth. iScience 2022; 25:103616. [PMID: 35106464 PMCID: PMC8786647 DOI: 10.1016/j.isci.2021.103616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Adult skeletal muscle is a plastic tissue that can adapt its size to workload. Here, we show that RhoA within myofibers is needed for overload-induced hypertrophy by controlling satellite cell (SC) fusion to the growing myofibers without affecting protein synthesis. At the molecular level, we demonstrate that RhoA controls in a cell autonomous manner Erk1/2 activation and the expressions of extracellular matrix (ECM) regulators such as Mmp9/Mmp13/Adam8 and macrophage chemo-attractants such as Ccl3/Cx3cl1. Their decreased expression in RhoA mutants is associated with ECM and fibrillar collagen disorganization and lower macrophage infiltration. Moreover, matrix metalloproteinases inhibition and macrophage depletion in controls phenocopied the altered growth of RhoA mutants while having no effect in mutants showing that their action is RhoA-dependent. These findings unravel the implication of RhoA within myofibers, in the building of a permissive microenvironment for muscle hypertrophic growth and for SC accretion through ECM remodeling and inflammatory cell recruitment. RhoA within myofibers controls SC fusion and muscle hypertrophic growth RhoA controls the expression of Mmps and of macrophage chemoattractants (Ccl3/Cx3cl1) RhoA controls ECM remodeling and macrophage recruitment upon hypertrophy Mmp inhibition and macrophage depletion phenocopy the blunted growth of RhoA mutant muscles
Collapse
|
14
|
Ng DCH, Ho UY, Grounds MD. Cilia, Centrosomes and Skeletal Muscle. Int J Mol Sci 2021; 22:9605. [PMID: 34502512 PMCID: PMC8431768 DOI: 10.3390/ijms22179605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.
Collapse
Affiliation(s)
- Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Uda Y. Ho
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Acute and Delayed Effects of Time-Matched Very Short "All Out" Efforts in Concentric vs. Eccentric Cycling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157968. [PMID: 34360257 PMCID: PMC8345736 DOI: 10.3390/ijerph18157968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND To the authors' knowledge, there have been no studies comparing the acute responses to "all out" efforts in concentric (isoinertial) vs. eccentric (isovelocity) cycling. METHODS After two familiarization sessions, 12 physically active men underwent the experimental protocols consisting of a 2-min warm-up and 8 maximal efforts of 5 s, separated by 55 s of active recovery at 80 rpm, in concentric vs. eccentric cycling. Comparisons between protocols were conducted during, immediately after, and 24-h post-sessions. RESULTS Mechanical (Work: 82,824 ± 6350 vs. 60,602 ± 8904 J) and cardiometabolic responses (mean HR: 68.8 ± 6.6 vs. 51.3 ± 5.7% HRmax, lactate: 4.9 ± 2.1 vs. 1.8 ± 0.6 mmol/L) were larger in concentric cycling (p < 0.001). The perceptual responses to both protocols were similarly low. Immediately after concentric cycling, vertical jump was potentiated (p = 0.028). Muscle soreness (VAS; p = 0.016) and thigh circumference (p = 0.045) were slightly increased only 24-h after eccentric cycling. Serum concentrations of CK, BAG3, and MMP-13 did not change significantly post-exercise. CONCLUSIONS These results suggest the appropriateness of the eccentric cycling protocol used as a time-efficient (i.e., ~60 kJ in 10 min) and safe (i.e., without exercise-induced muscle damage) alternative to be used with different populations in future longitudinal interventions.
Collapse
|
16
|
Hu LY, Mileti CJ, Loomis T, Brashear SE, Ahmad S, Chellakudam RR, Wohlgemuth RP, Gionet-Gonzales MA, Leach JK, Smith LR. Skeletal muscle progenitors are sensitive to collagen architectural features of fibril size and cross linking. Am J Physiol Cell Physiol 2021; 321:C330-C342. [PMID: 34191625 DOI: 10.1152/ajpcell.00065.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle stem cells (MuSCs) are essential for the robust regenerative capacity of skeletal muscle. However, in fibrotic environments marked by abundant collagen and altered collagen organization, the regenerative capability of MuSCs is diminished. MuSCs are sensitive to their extracellular matrix environment but their response to collagen architecture is largely unknown. The present study aimed to systematically test the effect of underlying collagen structures on MuSC functions. Collagen hydrogels were engineered with varied architectures: collagen concentration, cross linking, fibril size, and fibril alignment, and the changes were validated with second harmonic generation imaging and rheology. Proliferation and differentiation responses of primary mouse MuSCs and immortal myoblasts (C2C12s) were assessed using EdU assays and immunolabeling skeletal muscle myosin expression, respectively. Changing collagen concentration and the corresponding hydrogel stiffness did not have a significant influence on MuSC proliferation or differentiation. However, MuSC differentiation on atelocollagen gels, which do not form mature pyridinoline cross links, was increased compared with the cross-linked control. In addition, MuSCs and C2C12 myoblasts showed greater differentiation on gels with smaller collagen fibrils. Proliferation rates of C2C12 myoblasts were also higher on gels with smaller collagen fibrils, whereas MuSCs did not show a significant difference. Surprisingly, collagen alignment did not have significant effects on muscle progenitor function. This study demonstrates that MuSCs are capable of sensing their underlying extracellular matrix (ECM) structures and enhancing differentiation on substrates with less collagen cross linking or smaller collagen fibrils. Thus, in fibrotic muscle, targeting cross linking and fibril size rather than collagen expression may more effectively support MuSC-based regeneration.
Collapse
Affiliation(s)
- Lin-Ya Hu
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Cassidy J Mileti
- Biomedical Engineering Graduate Group, University of California, Davis, California
| | - Taryn Loomis
- Biomedical Engineering Graduate Group, University of California, Davis, California
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Sarah Ahmad
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Rosemary R Chellakudam
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | | | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, California.,Department of Orthopaedic Surgery, University of California, Davis, California
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California.,Department of Physical Medicine and Rehabilitation, University of California, Davis, California
| |
Collapse
|
17
|
Kok HJ, Barton ER. Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 2021; 119:11-22. [PMID: 33962867 DOI: 10.1016/j.semcdb.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Muscle regeneration requires the coordination of several factors to mobilize satellite cells and macrophages, remodel the extracellular matrix surrounding muscle fibers, and repair existing and/or form new muscle fibers. In this review, we focus on insulin-like growth factor I and the matrix metalloproteinases, which are secreted proteins that act on cells and the matrix to resolve damage. While their actions appear independent, their interactions occur at the transcriptional and post-translational levels to promote feed-forward activation of each other. Together, these proteins assist at virtually every step of the repair process, and contribute significantly to muscle regenerative capacity.
Collapse
Affiliation(s)
- Hui Jean Kok
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Elisabeth R Barton
- Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, 1864 Stadium Road, Gainesville, FL 32611, USA.
| |
Collapse
|
18
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
19
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
20
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
21
|
McClurg O, Tinson R, Troeberg L. Targeting Cartilage Degradation in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14020126. [PMID: 33562742 PMCID: PMC7916085 DOI: 10.3390/ph14020126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.
Collapse
|
22
|
PAI-1, the Plasminogen System, and Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21197066. [PMID: 32993026 PMCID: PMC7582753 DOI: 10.3390/ijms21197066] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
The plasminogen system is a critical proteolytic system responsible for the remodeling of the extracellular matrix (ECM). The master regulator of the plasminogen system, plasminogen activator inhibitor-1 (PAI-1), has been implicated for its role in exacerbating various disease states not only through the accumulation of ECM (i.e., fibrosis) but also its role in altering cell fate/behaviour. Examination of PAI-1 has extended through various tissues and cell-types with recent investigations showing its presence in skeletal muscle. In skeletal muscle, the role of this protein has been implicated throughout the regeneration process, and in skeletal muscle pathologies (muscular dystrophy, diabetes, and aging-driven pathology). Needless to say, the complete function of this protein in skeletal muscle has yet to be fully elucidated. Given the importance of skeletal muscle in maintaining overall health and quality of life, it is critical to understand the alterations—particularly in PAI-1—that occur to negatively impact this organ. Thus, we provide a comprehensive review of the importance of PAI-1 in skeletal muscle health and function. We aim to shed light on the relevance of this protein in skeletal muscle and propose potential therapeutic approaches to aid in the maintenance of skeletal muscle health.
Collapse
|