1
|
Liu X, Wang X, Shi X, Wang S, Shao K. The immune enhancing effect of antimicrobial peptide LLv on broilers chickens. Poult Sci 2024; 103:103235. [PMID: 38035471 PMCID: PMC10698674 DOI: 10.1016/j.psj.2023.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
To evaluate the effect and its mechanism of heat-resistant antimicrobial peptide LLv on broilers, three hundred 1-day-old healthy AA+ female broilers were allocated into 5 groups with 6 replicates in each group and 10 birds in each replicate. Birds were given a basal diet, an antibiotic diet (10.2 mg/kg chlortetracycline hydrochloride), and the basal diet supplemented with 10, 50, and 100 mg/kg LLv for 42 d, respectively. Compared with the group which birds were fed an antibiotic-free basal diet (control group), supplementing 100 mg/kg LLv increased 21-day IgA, IgM, IL-4, AIV-Ab, IFN-γ levels and 42-day IgA, IgM, IL-4, AIV-Ab levels and reduced 42-day IL-1 levels in serum (P < 0.05). Compared with antibiotic group, the 10 and 50 mg/kg LLv decreased 42-day IgM levels in serum (P < 0.05). The 100 mg/kg LLv increased 21-day AIV-Ab levels and 42-day IL-4, AIV-Ab levels and reduced 42-day IL-1 levels in serum (P < 0.05). Compared with control group, the 100 mg/kg LLv increased the expression rate of sIgA secretory cells and sIgA content in jejunal mucosa at 21 d and 42 d (P < 0.05), which did not differ from antibiotic group (P > 0.05). Compared with antibiotic group, the 10 mg/kg LLv reduced 21-day sIgA content and the 50 mg/kg LLv reduced 42-d the expression rate of sIgA secretory cells in jejunal mucosa (P < 0.05). Compared with control group, the 100 mg/kg LLv increased the expression of TCR, IL-15, CD28, BAFF, CD86, CD83, MHC-II, and CD40 genes in jejunal mucosa at 21 d and 42 d (P < 0.05). Compared with antibiotic group, the 100 mg/kg LLv increased the expression of 21-day BAFF, CD40, MHC-II, CD83 genes and the expression of 42-day BAFF, TCR, IL-15, CD40, CD83 genes in jejunal mucosa (P < 0.05). The results showed that the addition of LLv to the ration had a promotional effect on the immune function of broiler chickens.
Collapse
Affiliation(s)
- Xiaodong Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingjie Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueping Shi
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kun Shao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Liu L, Sui W, Yang Y, Liu L, Li Q, Guo A. Establishment of an Enteric Inflammation Model in Broiler Chickens by Oral Administration with Dextran Sulfate Sodium. Animals (Basel) 2022; 12:ani12243552. [PMID: 36552471 PMCID: PMC9774581 DOI: 10.3390/ani12243552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the effectiveness of oral gavage of dextran sodium sulfate (DSS) to establish an enteric inflammation model in broilers. Forty 1-day-old male, yellow-feathered broilers were randomly divided into 2 groups with 5 replicates of 4 birds each for a 42-day trial. The experiment design used 2 groups: (1) the control group (CT), normal broilers fed a basal diet, and (2) the DSS group, DSS-treated broilers fed a basal diet. The DSS group received 1 mL of 2.5% DSS solution once a day by oral gavage from 21 to 29 days of age. The results showed that compared with those in CT, DSS treatment significantly increased histological scores for enteritis and mucosal damage at 29 and 42 days of age (p < 0.01) and the disease activity index (DAI) from 23 to 29 days of age (p < 0.01). DSS-treated broilers showed poor growth performance at 42 days of age, including decreased body weight and average daily gain and an increased feed conversion ratio (p < 0.01). DSS also caused gross lesions and histopathological damage in the jejunum of broilers, such as obvious hemorrhagic spots, loss of villus architecture, epithelial cell disruption, inflammatory cell infiltration, and decreased villus height. These results suggest that oral gavage of DSS is an effective method for inducing mild and non-necrotic enteric inflammation in broilers.
Collapse
Affiliation(s)
- Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Wenjing Sui
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Yajin Yang
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Lily Liu
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
| | - Qingqing Li
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Kunming Xianghao Technology Co., Ltd., Kunming 650204, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, No. 300, Bailong Road, Panlong District, Kunming 650224, China
- Correspondence:
| |
Collapse
|
3
|
Liu X, Li S, Zhao N, Xing L, Gong R, Li T, Zhang S, Li J, Bao J. Effects of Acute Cold Stress after Intermittent Cold Stimulation on Immune-Related Molecules, Intestinal Barrier Genes, and Heat Shock Proteins in Broiler Ileum. Animals (Basel) 2022; 12:3260. [PMID: 36496781 PMCID: PMC9739716 DOI: 10.3390/ani12233260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Cold stress will have a negative impact on animal welfare and health. In order to explore the effect of intermittent cold stimulation training on the cold resistance of broilers. Immune-related and intestinal barrier genes were detected before and after acute cold stress (ACS), aiming to find an optimal cold stimulation training method. A total of 240 1-day-old Ross broilers (Gallus) were divided into three groups (G1, G2, and G3), each with 5 replicates (16 chickens each replicate). The broilers of G1 were raised at normal temperature, while the broilers of G2 and G3 were treated with cold stimulation at 3 °C lower than the G1 for 3 h and 6 h from 15 to 35 d, respectively, at one-day intervals. At 50 d, the ambient temperature for all groups was reduced to 10 °C for six hours. The results demonstrated that before ACS, IL6, IL17, TLR21, and HSP40 mRNA levels in G3 were apparently down-regulated (p < 0.05), while IL8 and Claudin-1 mRNA levels were significantly up-regulated compared with G1 (p < 0.05). After ACS, IL2, IL6, and IL8 expression levels in G3 were lower than those in G2 (p < 0.05). Compared to G2, Claudin-1, HSP90 mRNA levels, HSP40, and HSP70 protein levels were increased in G3 (p < 0.05). The mRNA levels of TLR5, Mucin2, and Claudin-1 in G2 and IL6, IL8, and TLR4 in G3 were down-regulated after ACS, while IL2, IL6, and IL17 mRNA levels in G2 and HSP40 protein levels in G3 were up-regulated after ACS (p < 0.05). Comprehensive investigation shows that cold stimulation at 3 °C lower than the normal feeding temperature for six hours at one day intervals can enhanced immune function and maintain the stability of intestinal barrier function to lessen the adverse effects on ACS in broilers.
Collapse
Affiliation(s)
- Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
5
|
Chen Y, Zha P, Xu H, Zhou Y. An evaluation of the protective effects of chlorogenic acid on broiler chickens in a dextran sodium sulfate model: a preliminary investigation. Poult Sci 2022; 102:102257. [PMID: 36399933 PMCID: PMC9673092 DOI: 10.1016/j.psj.2022.102257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on broilers subjected to dextran sodium sulfate (DSS)-induced intestinal damage. One hundred and forty-four 1-day-old male Arbor Acres broiler chicks were allocated into one of 3 groups with 6 replicates of eight birds each for a 21-d trial. The treatments included: 1) Control group: normal birds fed a basal diet; 2) DSS group: DSS-treated birds fed a basal diet; and 3) CGA group: DSS-treated birds fed a CGA-supplemented control diet. An oral DSS administration via drinking water was performed from 15 to 21 d of age. Compared with the control group, DSS administration reduced 21-d body weight and weight gain from 15 to 21 d, but increased absolute weight of jejunum and absolute and relative weight of ileum (P < 0.05). DSS administration elevated circulating D-lactate concentration and diamine oxidase activity (P < 0.05), which were partially reversed when supplementing CGA (P < 0.05). The oral administration with DSS decreased villus height and villus height/crypt depth ratio, but increased crypt depth in jejunum and ileum (P < 0.05). Compared with the control group, DSS administration increased serum glutathione level and jejunal catalase activity and malonaldehyde accumulation, but decreased jejunal glutathione level (P < 0.05). In contrast, feeding a CGA-supplemented diet normalized serum glutathione and jejunal malonaldehyde levels, and increased jejunal glutathione concentration in DSS-administrated birds (P < 0.05). Additionally, CGA supplementation reduced ileal malonaldehyde accumulation in DSS-treated birds (P < 0.05). DSS challenge increased levels of serum interferon-γ and interleukin-6, jejunal interleukin-1β, tumor necrosis factor-α, and interleukin-6, and ileal interleukin-1β and interleukin-6 when compared with the control group (P < 0.05). The elevated serum interferon-γ and ileal interleukin-6 levels were normalized to control values when supplementing CGA (P < 0.05). The results suggested that CGA administration could partially prevent DSS-induced increased intestinal permeability, oxidative damage, and inflammation in broilers, although it did not improve their growth performance and intestinal morphology.
Collapse
Affiliation(s)
- Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Pingping Zha
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Hongrui Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, 450046, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China,Corresponding author:
| |
Collapse
|
6
|
Nazar FN, Estevez I. The immune-neuroendocrine system, a key aspect of poultry welfare and resilience. Poult Sci 2022; 101:101919. [PMID: 35704954 PMCID: PMC9201016 DOI: 10.1016/j.psj.2022.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
There is increasing societal concern regarding the negative impact of intensive poultry production on animal welfare, human health, and on the environment. This is leading to the inclusion of animal welfare as an imperative aspect for sustainable production. Certain environmental factors may challenge domesticated birds, resulting in poor health and welfare status. Resilience is the capacity to rapidly return to prechallenge status after coping with environmental stressors, thus resilient individuals have better chances to maintain good health and welfare. Immune-neuroendocrine system, thoroughly characterized in the domestic bird species, is the physiological scaffold for stress coping and health maintenance, influencing resilience and linking animal welfare status to these vital responses. Modern domestic bird lines have undergone specific genetic selective pressures for fast-growing, or high egg-production, leading to a diversity of birds that differ in their coping capacities and resilience. Deepening the knowledge on pro/anti-inflammatory milieus, humoral/cell-mediated immune responses, hormonal regulations, intestinal microbial communities and mediators that define particular immune and neuroendocrine configurations will shed light on coping strategies at the individual and population level. The understanding of the profiles leading to differential coping and resilience potential will be highly relevant for improving bird health and welfare in a wider range of challenging scenarios and, therefore, crucial to scientifically tackle long term sustainability.
Collapse
Affiliation(s)
- F Nicolas Nazar
- NEIKER, Arkaute Agrifood Campus, Departamento de Producción Animal, Vitoria-Gasteiz E-01080, Spain; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) and Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Inma Estevez
- NEIKER, Arkaute Agrifood Campus, Departamento de Producción Animal, Vitoria-Gasteiz E-01080, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
7
|
Relationship between Mucosal Barrier Function of the Oviduct and Intestine in the Productivity of Laying Hens. J Poult Sci 2022; 59:105-113. [PMID: 35528386 PMCID: PMC9039148 DOI: 10.2141/jpsa.0210090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
The mucosa of the intestine and oviduct of hens are susceptible to pathogens. Pathogenic infections in the mucosal tissues of laying hens lead to worsened health of the host animal, decreased egg production, and bacterial contamination of eggs. Therefore, better understanding of the mechanisms underlying mucosal barrier function is needed to prevent infection by pathogens. In addition, pathogen infection in the mucosal tissue generally causes mucosal inflammation. Recently, it has been shown that inflammation in the oviduct and intestinal tissue caused by disruption of the mucosal barrier function, can affect egg production. Therefore, it is vitla to understand the relationship between mucosal barrier function and egg production to improve poultry egg production. This paper reviews the studies on (1) oviductal mucosal immune function and egg production, (2) intestinal inflammation and egg production, and (3) improvement of mucosal immune function by probiotics. The findings introduced in this review will contribute to the understanding of the mucosal barrier function of the intestine and oviduct and improve poultry egg production in laying hens.
Collapse
|
8
|
Nii T, Bungo T, Isobe N, Yoshimura Y. Slight Disruption in Intestinal Environment by Dextran Sodium Sulfate Reduces Egg Yolk Size Through Disfunction of Ovarian Follicle Growth. Front Physiol 2021; 11:607369. [PMID: 33519513 PMCID: PMC7844332 DOI: 10.3389/fphys.2020.607369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Intestinal environments such as microbiota, mucosal barrier function, and cytokine production affect egg production in laying hens. Dextran sodium sulfate (DSS) is an agent that disrupts the intestinal environment. Previously, we reported that the oral administration of dextran sodium sulfate (DSS: 0.9 g/kg BW) for 5 days caused severe intestinal inflammation in laying hens. However, the DSS concentration in the previous study was much higher to induce a milder disruption of the intestinal environment without heavy symptoms. Thus, the goal of this study was to determine the effects of a lower dose of DSS on the intestinal environment and egg production in laying hens. White Leghorn laying hens (330-day old) were oral administered with or without 0.225 g DSS/kg BW for 28 days (DSS and control group: n = 7 and 8, respectively). Weekly we collected all laid eggs and blood plasma samples. Intestinal tissues, liver, ovarian follicles, and the anterior pituitary gland were collected 1 day after the final treatment. Lower concentrations of orally administered DSS caused (1) a decrease in the ratio of villus height/crypt depth, occludin gene expressions in large intestine and cecal microbiota diversity, (2) a decrease in egg yolk weight, (3) an increase in VLDLy in blood plasma, (4), and enhanced the egg yolk precursor accumulation in the gene expression pattern in the follicular granulosa layer, (5) an increase in FSH and IL-1β gene expression in the pituitary gland, and (6) an increase in concentration of plasma lipopolysaccharide binding protein. These results suggested that the administration of the lower concentration of DSS caused a slight disruption in the intestinal environment. This disruption included poor intestinal morphology and decreased cecal microbiome diversity. The change in the intestinal environment decreases egg yolk size without decreasing the VLDLy supply from the liver. The decrease in egg yolk size is likely to be caused by the dysfunction of egg-yolk precursor uptake in ovarian follicles. In conclusion, the oral administration of a lower dose of DSS is an useful method to cause slight disruptions of intestinal environment, and the intestinal condition decreases egg yolk size through disfunction of ovarian follicle.
Collapse
Affiliation(s)
- Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Bungo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
9
|
Wijnen HJ, van den Brand H, Lammers A, van Roovert-Reijrink IAM, van der Pol CW, Kemp B, Molenaar R. Effects of eggshell temperature pattern during incubation on primary immune organ development and broiler immune response in later life. Poult Sci 2020; 99:6619-6629. [PMID: 33248577 PMCID: PMC7705051 DOI: 10.1016/j.psj.2020.09.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Eggshell temperature (EST) during incubation greatly affects embryo development, chick quality at hatch, and subsequently various broiler physiological systems. Until now, a constant EST of 37.8°C seems optimal. Data on effects of EST patterns on immune organ development and subsequent broiler immune response are, however, scarce. A higher EST of 38.9°C in week 2 and/or a lower EST of 36.7°C in week 3 of incubation potentially positively affect embryo immune organ development and broiler immune response post hatch. Broiler eggs (n = 468) were incubated at 4 different EST patterns (n = 117 eggs/treatment) from week 2 of incubation onward. Week 1 (embryonic age (E)0 < E7) EST was 37.8°C for all eggs. Week 2 (E7 < E14) EST was either 37.8°C (Control) or 38.9°C (Higher), and week 3 (E14 - /hatch) EST was either Control or 36.7°C (Lower). At hatch, histology of bursal follicles and jejunum villi and crypts were determined as well as heterophil to lymphocyte ratio (H:L) (n = 49). Posthatch, both sexes were grown in 8 pens/treatment for 6 wk (n = 320). Natural antibodies (NAb) were determined at day 14, 22, and slaughter (day 41 or 42) as an indicator of immunocompetence and response to a Newcastle disease (NCD) vaccination was determined by antibody levels at day 22 and slaughter (n = 128). Results showed no interaction EST week 2 × EST week 3, except for jejunum histology. Higher EST in week 2 resulted in lower cell density within bursal follicles (P = 0.02) and a tendency for lower H:L (P = 0.07) at hatch, and higher NCD titers at slaughter (P = 0.02) than Control EST. Lower EST in week 3 resulted at hatch in higher cell density within bursal follicles, higher H:L (both P < 0.05), and a tendency for a higher posthatch mortality rate than control EST (P = 0.10). In conclusion, higher EST in week 2 during incubation may benefit embryonic immune organ development and posthatch broiler immunocompetence, while lower EST in week 3 showed opposite indications.
Collapse
Affiliation(s)
- H J Wijnen
- Research Department, Hatchtech BV, 3900 AG Veenendaal, The Netherlands; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands.
| | - H van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - A Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| | | | - C W van der Pol
- Research Department, Hatchtech BV, 3900 AG Veenendaal, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - R Molenaar
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
10
|
Tai HM, Huang HN, Tsai TY, You MF, Wu HY, Rajanbabu V, Chang HY, Pan CY, Chen JY. Dietary supplementation of recombinant antimicrobial peptide Epinephelus lanceolatus piscidin improves growth performance and immune response in Gallus gallus domesticus. PLoS One 2020; 15:e0230021. [PMID: 32160226 PMCID: PMC7065771 DOI: 10.1371/journal.pone.0230021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Supplementing chicken feed with antibiotics can improve survival and prevent disease outbreaks. However, overuse of antibiotics may promote the development of antibiotic-resistant bacteria. Recently, antimicrobial peptides have been proposed as alternatives to antibiotics in animal husbandry. Here, we evaluate the effects of antimicrobial peptide, Epinephelus lanceolatus piscidin (EP), in Gallus gallus domesticus. The gene encoding EP was isolated, sequenced, codon-optimized and cloned into a Pichia pastoris recombinant protein expression system. The expressed recombinant EP (rEP) was then used as a dietary supplement for G. g. domesticus; overall health, growth performance and immunity were assessed. Supernatant from rEP-expressing yeast showed in vitro antimicrobial activity against Gram-positive and Gram-negative bacteria, according to an inhibition-zone diameter (mm) assay. Moreover, the antimicrobial peptide function of rEP was temperature independent. The fermentation broth yielded a spray-dried powder formulation containing 262.9 μg EP/g powder, and LC-MS/MS (tandem MS) analysis confirmed that rEP had a molecular weight of 4279 Da, as expected for the 34-amino acid peptide; the DNA sequence of the expression vector was also validated. We then evaluated rEP as a feed additive for G. g. domesticus. Treatment groups included control, basal diet and rEP at different doses (0.75, 1.5, 3.0, 6.0 and 12%). Compared to control, rEP supplementation increased G. g. domesticus weight gain, feed efficiency, IL-10 and IFN-γ production. Our results suggest that crude rEP could provide an alternative to traditional antibiotic feed additives for G. g. domesticus, serving to enhance growth and health of the animals.
Collapse
Affiliation(s)
- Hsueh-Ming Tai
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Han-Ning Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Tsung-Yu Tsai
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Ming-Feng You
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
| | - Hung-Yi Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Venugopal Rajanbabu
- Anbil Dharmalingam Agricultural College and Research Institute, Tamil Nadu Agricultural university, Tiruchchirapalli, Tamil Nadu, India
| | - Hsiao-Yun Chang
- Biotechnology Department, Asia University, Wufeng, Taichung, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Ilan, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Nii T, Bungo T, Isobe N, Yoshimura Y. Intestinal inflammation induced by dextran sodium sulphate causes liver inflammation and lipid metabolism disfunction in laying hens. Poult Sci 2020; 99:1663-1677. [PMID: 32111331 PMCID: PMC7587789 DOI: 10.1016/j.psj.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023] Open
Abstract
Gut inflammation caused by various factors including microbial infection leads to disorder of absorption of dietary nutrients and decrease in egg production in laying hens. We hypothesized that intestinal inflammation may affect egg production in laying hens through its impact on liver function. Dextran sodium sulphate (DSS) is known to induce intestinal inflammation in mammals, but whether it also induces inflammation in laying hens is not known. The goal of this study was to assess whether oral administration of DSS is a useful model of intestinal inflammation in laying hens and to characterize the effects of intestinal inflammation on egg production using this model. White Leghorn hens (350-day old) were administrated with or without 0.9 g of DSS/kg BW in drinking water for 5 D (n = 8, each). All laid eggs were collected, and their whole and eggshell weights were recorded. Blood was collected every day and used for biochemical analysis. Liver and intestinal tissues (duodenum, jejunum, ileum, cecum, cecal-tonsil, and colon) were collected 1 D after the final treatment. These tissue samples were used for histological analysis and PCR analysis. Oral administration of DSS in laying hens caused 1) histological disintegration of the cecal mucosal epithelium and increased monocyte/macrophage infiltration and IL-1β, IL-6, CXCLi2, IL-10, and TGFβ-4 gene expression; 2) decreased egg production; 3) increased leukocyte infiltration and IL-1β, CXCLi2, and IL-10 expression in association with a high frequency of lipopolysaccharide-positive cells in the liver; and 4) decreased expression of genes related to lipid synthesis, lipoprotein uptake, and yolk precursor production. These results suggested that oral administration of DSS is a useful method for inducing intestinal inflammation in laying hens, and intestinal inflammation may reduce egg production by disrupting egg yolk precursor production in association with liver inflammation.
Collapse
Affiliation(s)
- T Nii
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | - T Bungo
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - N Isobe
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Y Yoshimura
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
12
|
Su Y, Li S, Xin H, Li J, Li X, Zhang R, Li J, Bao J. Proper cold stimulation starting at an earlier age can enhance immunity and improve adaptability to cold stress in broilers. Poult Sci 2020; 99:129-141. [PMID: 32416794 PMCID: PMC7587771 DOI: 10.3382/ps/pez570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/28/2019] [Indexed: 12/28/2022] Open
Abstract
The effects of long-term cold stimulation on the immune function of ileum and adaptability to cold stress in broilers were examined. A total of 360 Arbor Acres broilers was divided into 3 groups and four replicates per group. C (control) was reared in normal thermal environment. C-3 and C-12 (treatments) were kept in cold condition of 3 or 12°C lower than the temperature of C from days 8 to 42. At day 42, all the groups were exposed to an acute cold stress challenge, designated as S, S-3, and S-12. The mRNA levels of immune molecules and heat shock proteins as well as oxidative stress-related indicators in ileum tissues, and immunoglobulins contents in serum were examined at 14, 42, and 43 d of age. The C-3 regimen had no adverse effect on production performance, whereas the C-12 regimen reduced the production performance relative to C (P < 0.05). At day 42, C-3 had higher levels of immune indexes (P < 0.05), whereas C-12 had lower levels than C (P < 0.05). No differences in levels of oxidative stress-related indicators were found between C and C-3 at day 42 (P > 0.05). S-3 had higher levels of immune indexes and lower levels of oxidative stress-related indicators (P < 0.05), as compared to S and S-12. The results suggest that 34 d of cold stimulation at 3°C lower than the normal temperature had no adverse impacts on production performance but enhanced the immunity of ileum and adaptability to acute cold challenge in broilers.
Collapse
Affiliation(s)
- Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Xin
- College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jiafang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
13
|
1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|