1
|
Yang YY, Dai D, Zhang HJ, Wu SG, Qi GH, Wang J. The characterization of uterine calcium transport and metabolism during eggshell calcification of hens laying high or low breaking strength eggshell. Poult Sci 2025; 104:105111. [PMID: 40222347 DOI: 10.1016/j.psj.2025.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025] Open
Abstract
This study investigated the differences of calcium transport-related proteins and metabolites in the uterus of hens with different breaking strength eggshell during the eggshell calcification. A total of 200 Hy-Line Brown laying hens, aged 75 weeks, were selected and categorized into two groups based on the eggshell breaking strength: a high-strength group (HS, > 42 N) and a low-strength group (LS, < 32 N). Laying hens were sampled at 1 h, 7 h (the initiation stage of eggshell calcification), and 17 h (the growth stage of eggshell calcification) post-oviposition (PO). The LS group showed a decreased thickness, weight and weight ratio of eggshells, accompanied with ultrastructural deterioration and total Ca reduction. The expression levels of ATP2A3, ATP2B2, SLC8A1, and SLC8A3 were significantly increased in the HS at 17 h PO when compared to 1 h and 7 h PO, while no significant changes were observed in the LS. At 7 h PO, the LS group had lower uterine mucosa calcium levels, higher TRPV6 protein expression, and lower CALB1 protein expression. In the HS group, uterine metabolites showed a significant increase in glutathione, citrulline, and proline at 7 h PO, whereas, at 17 h PO, the tricarboxylic acid cycle pathway was significantly enriched. These findings suggest that uterine calcium transport activity is relatively subdued during the initiation stage of eggshell calcification, focusing on redox repair activities to maintain homeostasis for mammillary knobs formation. Subsequently, uterine calcium transport activity becomes highly active during the growth stage of eggshell calcification, primarily supporting rapid calcium transport through enhanced energy metabolism. In aged laying hens, the lower eggshell breaking strength may be attributed to decreased calcium levels during the initiation stage and imbalanced redox during the growth stage, which could affect calcium transport and lead to a weak ultrastructure during the calcification period.
Collapse
Affiliation(s)
- Ying-Ying Yang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | - Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, PR China.
| |
Collapse
|
2
|
Li L, Duan Y, Chen M, Zhou X, Zhang X, Dong Y, Lai Y, Guo S, Zhang Z, Ding B. Organic zinc and manganese enhance eggshell ultrastructure by influencing its calcium deposition to improve eggshell quality in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2890-2899. [PMID: 39614603 DOI: 10.1002/jsfa.14055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND This study aimed to explore the mechanism of organic zinc and manganese (OZM) influencing eggshell quality of laying hens. A total of 384 21-week-old Jingfen-1 laying hens were randomly divided into four groups (8 replicates per group, 12 hens per replicate): control group (60 mg kg-1 Zn as zinc sulfate and 80 mg kg-1 Mn as manganese sulfate) and OZM groups (5, 10 and 15 mg kg-1 Zn as yeast zinc and 80 mg kg-1 Mn as manganese methionine). RESULTS Compared with the control group, OZM_5 and OZM_10 groups significantly increased feed intake and egg weight in laying hens in 28-31 weeks (P < 0.05) while egg weight and shell weight were increased in all the OZM groups (P < 0.05). In addition, the OZM_15 group significantly decreased the mammillary knob width and mammillary layer thickness and increased the palisade layer thickness and total effective thickness (P < 0.05), and had a stronger and more stable Ca signal strength in the mammillary layer and a more uniform and dense distribution of calcium and zinc in the transversal surfaces of eggshell. Furthermore, mRNA levels of Claudin2, Zona Occludens 1, Alkaline phosphatase and Ca2+ATPase were significantly upregulated in the OZM_15 group of laying hens at week 31 (P < 0.05). CONCLUSION Dietary supplementation of 10-15 mg kg-1 yeast zinc and 80 mg kg-1 manganese methionine can enhance eggshell ultrastructure by influencing its endometrial barrier function and calcium deposition, thereby improving eggshell quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lanlan Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yuanliang Duan
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Mengyuan Chen
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xingyu Zhou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xin Zhang
- Hubei Provincial Key Laboratory of Yeast Function, Yichang, China
| | - Yi Dong
- Hubei Provincial Key Laboratory of Yeast Function, Yichang, China
| | - Yujiao Lai
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shuangshuang Guo
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Zhengfan Zhang
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Wang C, Wang Q, Li Y, Wang Z, Hou B, Zhou N, Cui W, Hu S, Xiao Y, Zhang W, Zhou H, Li Z, Zhou Z. Plasma metabolomics of Mycoplasma synoviae infection in SPF White Leghorn hens by liquid chromatography-tandem mass spectrometry. Vet Res 2025; 56:65. [PMID: 40121482 PMCID: PMC11929215 DOI: 10.1186/s13567-025-01494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 03/25/2025] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a major bacterial pathogen that causes serious economic losses in the global poultry industry. Systemic changes in specific pathogen free White Leghorn egg-laying hens after M. synoviae infection were investigated using intra-tracheally inoculated animals. Samples were collected 10 days post-infection (dpi) (204-day-old) and 52 dpi (246-day-old). Infection caused air sac lesion, footpad swelling and oviduct atrophy. The qPCR and in situ hybridization showed that bacteria colonized the trachea and oviduct, and that bacterial loads in the magnum and uterus were significantly higher than in the infundibulum and isthmus. Histopathological examination revealed increased tracheal mucosal thickening accompanied by inflammatory cell infiltration, and that tubular glands of the uterus were edematous or dissolved. Infection also induced decreased egg production and eggshell strength, and eggshell apex abnormalities appeared at 14 dpi. Plasma metabolomics of hens analyzed by liquid chromatography-tandem mass spectrometry showed 168 and 128 differentially-expressed metabolites (DEM) at 10 and 52 dpi, respectively. Pathway analysis revealed that DEM at 10 dpi were enriched in five distinctive pathways: regulation of the actin cytoskeleton, neuroactive ligand-receptor interaction, sphingolipid metabolism, gap junctions, and necroptosis. In contrast, DEM at 52 dpi were enriched in fifteen pathways involved in steroid hormone biosynthesis, ferroptosis, the calcium signaling pathway, apelin signaling pathway, progesterone-mediated oocyte maturation, and oocyte meiosis. Combined metabolic analysis demonstrated that changes in ethylsalicylate, nicotinamide, (3-Methoxy-4-hydroxyphenyl) ethylene glycol sulfate, sphingosine-1-phosphate (d18:1), carnitine C24:6, and 15(R)-prostaglandin E1 correlated the best with M. synoviae infection. This study provides new insights into understanding pathogen mechanisms and signposts novel treatments for M. synoviae infection in poultry.
Collapse
Affiliation(s)
- Chun Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qing Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bo Hou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Naiji Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weitao Cui
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongbo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Lu Y, Xu H, Hu Z, Li D, Rustempasic A, Zhou Y, Deng Q, Pu J, Zhao X, Zhang Y, Liu Y, Wang Y. Probiotics improve eggshell quality via regulating microbial composition in the uterine and cecum. Poult Sci 2025; 104:104849. [PMID: 39874785 PMCID: PMC11810832 DOI: 10.1016/j.psj.2025.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Probiotics benefit the health and production performance of chickens, but their impact on egg and eggshell quality, particularly in the later stage, remains unclear. Here, 1-day-old Tianfu green shell-laying hens were fed either non-probiotics feed (n = 180) or feed supplemented with 100 mg / kg probiotics (n = 180). 16S rDNA sequencing indicated that dietary probiotics decreased the distribution of uterine p_Firmicutes, g_Fusobacterium, and s_Fusobacterium_unclassified, while increased p_Proteobacteria, g_Ralstonia, and s_Ralstonia_unclassified. PICRUSt2 and Bug Base analysis revealed enrichment in fatty acid metabolism, thiamine metabolism, vitamin B6 metabolism pathways and increased relative abundance of Proteobacteria, Firmicutes, Bacteroidetes. With LDA > 4.5, 35 and 25 marker bacterial taxa were identified in the uterus and cecum, respectively. Probiotics significantly increased uterine villi length and width, and the expressions of ATP2B2,SLC26A9,TF,OC-17,OCX-32, and OVAL in the uterus at the early and peak laying stage. Meantime, probiotics improved egg quality, pore density of eggshell barrier layer, and levels of Ca2+, Na+, and Mg2+, whereas dropped levels of P3-, S2- and K+ in eggshell. In serum, Ca2+, K+, Na+ had a response to dietary probiotics at different laying stages, except Cl-. Furthermore, the changes of these phenotypes are closely related to the microbial structure of the uterus and cecum. Overall, the data suggest that dietary probiotics improved uterine and cecal microbiota, optimized egg quality, eggshell quality, uterus development, and regulated mineralization gene expression and ion content in serum and eggshell, thereby improving productivity of laying hens. These results provide reference for the application of probiotics in the laying industry.
Collapse
Affiliation(s)
- Yuxiang Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Hengyong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Zhi Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Dan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Alma Rustempasic
- Faculty of Agriculture and Food Science, University in Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Yuxin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Qingqing Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Jiaxue Pu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Xiaoling Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China.
| |
Collapse
|
5
|
Fu Y, Zhao DR, Gao LB, Zhang HJ, Feng J, Min YN, Qi GH, Wang J. TMT-Based quantitative proteomic analysis reveals age-related changes in eggshell matrix proteins and their correlation with eggshell quality in Xinyang blue-shelled laying hens. Poult Sci 2025; 104:104661. [PMID: 39721278 PMCID: PMC11732457 DOI: 10.1016/j.psj.2024.104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The decline in eggshell quality with increasing hen age may be related to changes in ultrastructure and chemical composition, with matrix proteins playing key roles in these changes. However, research on blue-shelled eggs remains limited. This study investigated the effects of hen age (35, 55, 75, and 85 weeks) on the physical, mechanical, and chemical properties of eggshells in the Xinyang blue-shelled laying hens, as well as their ultrastructural and nanostructural characteristics. Subsequently, a comparative proteomic analysis was performed to elucidate the differential protein profiles in eggshells from hens at 35 and 85 weeks of age. Results showed that egg weight, eggshell weight, and eggshell surface area increased with hen age, whereas eggshell stiffness decreased (p < 0.05). As the age advanced, the eggshell organic matter content declined (p < 0.05). The effective layer ratio, mammillae density, as well as the porosity and total pore area in the mammillary layer also decreased with age, whereas the ratio of the mammillary layer increased (p < 0.05). Compared to eggshells collected from 35-week-old hens, those from 85-week-old hens showed increases in egg weight, eggshell weight, surface area, and both the ratio and thickness of the mammillary layer (p < 0.05). However, significant decreases were observed in eggshell stiffness, organic matter content, phosphorus content, effective layer ratio, mammillae density, as well as the porosity and total pore area in the mammillary layer (p < 0.05). Additionally, eggshell stiffness, phosphorus content, and organic matter content were significantly correlated with each other (p < 0.05). Proteomic analysis identified 37 downregulated and 68 upregulated differentially expressed proteins (DEPs, FC > 1.2 or < 0.83, with a p-value < 0.05) in eggshells from 85-week-old hens compared to those from 35-week-old hens. These DEPs are associated with functions such as biomineralization, calcium transport, immunity, and proteases and protease inhibitors. Mantel and Pearson correlations suggest that these functions may be involved in regulating eggshell stiffness, phosphorus content, and organic matter content. Overall, the eggshell stiffness decreased from 35 to 85 weeks of age, which may be attributed to the reductions in eggshell organic matter and phosphorus contents, as well as the deteriorations in eggshell ultrastructure. The proteins associated with biomineralization, calcium transport, immunity, and proteases and protease inhibitors may contribute to these changes.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Dan-Rong Zhao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li-Bing Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yu-Na Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
6
|
Cattaneo A, Sezzi E, Meneguz M, Rosà R, Santori D, Cucci S, Roccatello R, Grosso F, Mercandino S, Zambotto V, Aprea E, Solovyev P, Bontempo L, Trocino A, Xiccato G, Dabbou S. Exploring the potential of black soldier fly live larvae as a sustainable protein source for laying hens: A comprehensive study on egg quality. Poult Sci 2025; 104:104590. [PMID: 39626604 PMCID: PMC11652887 DOI: 10.1016/j.psj.2024.104590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Live insect larvae were recently proposed for use in laying hens in intensive chicken farming as an innovative form of environmental enrichment. This study aimed to evaluate the effect of laying hen age and feeding with live Black Soldier Fly larvae (BSFL) on egg quality attributes, i.e., chemical composition, fatty acid (FA) profile, and metabolic profile using nuclear magnetic resonance (NMR) spectroscopy. To this aim, 108 Lohman Brown hens were housed in 27 cages (9 replicates per treatment, 4 birds per pen) and monitored between 16 and 34 weeks of age. The hens were split into three experimental groups: a control group fed a commercial diet, and two experimental groups fed the same commercial diet plus 15% or 30% of live BSFL, as fed basis on the expected daily feed intake (DFI). The experimental treatments did not affect the egg and eggshell quality attributes. The supplementation with live BSFL did not influence the chemical composition in terms of macronutrients or the main NMR profiles of egg yolk and albumen. The FA profile of the egg yolk significantly changed as the eggs from hens fed BSFL presented higher rates of SFA and PUFA (P<0.05), lower rate of MUFA (P<0.001), and higher rates of C18:2n 6 (P<0.05) and C18:3 n3 compared to the control eggs (P<0.001). There were no significant differences in the ratio of n-6 to n-3 PUFA. The age of the hens strongly affected egg quality traits (P<0.001), mainly the egg weight, shell weight, shell thickness, eggshell-breaking strength, and eggshell redness (a*) and yellowness (b*), besides the metabolic profile of both egg yolk and albumen. Considering the interaction diet * age of hens, only a few significant effects occurred on egg quality attributes and FA profile. In conclusion, a supplementation with live BSFL up to 30% of DFI may be safely used in laying hen feeding without impairing egg quality.
Collapse
Affiliation(s)
- Arianna Cattaneo
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Erminia Sezzi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Roma (RM), Italy
| | - Marco Meneguz
- BEF Biosystems s.r.l., Strada di Settimo 224/15, 10156 Torino (TO), Italy
| | - Roberto Rosà
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Davide Santori
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Roma (RM), Italy.; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo De Lellis snc - 01100 Viterbo (VT), Italy
| | - Sofia Cucci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Roma (RM), Italy
| | - Rosalba Roccatello
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Francesca Grosso
- BEF Biosystems s.r.l., Strada di Settimo 224/15, 10156 Torino (TO), Italy
| | - Stefano Mercandino
- BEF Biosystems s.r.l., Strada di Settimo 224/15, 10156 Torino (TO), Italy
| | - Valeria Zambotto
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco (TO), Italy
| | - Eugenio Aprea
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Pavel Solovyev
- Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Luana Bontempo
- Traceability Unit, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy
| | - Angela Trocino
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova (PD), Italy.; Department of Comparative Medicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova (PD), Italy
| | - Gerolamo Xiccato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, Padova (PD), Italy
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele All'Adige (TN), Italy..
| |
Collapse
|
7
|
Oketch EO, Yu M, Hong JS, Chaturanga NC, Seo E, Lee H, Hermes RG, Smeets N, Taechavasonyoo A, Kirwan S, Rodriguez-Sanchez R, Heo JM. Laying hen responses to multi-strain Bacillus-based probiotic supplementation from 25 to 37 weeks of age. Anim Biosci 2024; 37:1418-1427. [PMID: 38575130 PMCID: PMC11222866 DOI: 10.5713/ab.23.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the efficacy of Bacillus-based probiotics supplemented at two different levels to modulate the productive performance, egg quality, tibia traits, and specific cecal bacteria counts of Hy-Line Brown layers from 25 to 37 weeks of age. METHODS A total of 216 twenty-five-week-old hens were randomly distributed into 3 experimental diets with 12 replicates of 6 birds per cage. Diets included basal diet supplemented with 0 (CON), 3×108 (PRO1), or 3×109 (PRO2) colony-forming unit (CFU) of the test probiotic containing Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 per kilogram of feed. RESULTS Improved egg weights and mass at 29 weeks; and feed intake at 31 weeks (p<0.10) were noticed with the probiotic-supplemented PRO1 and PRO2 diets. Considering egg quality, the shell thickness, Haugh units, and yolk color were improved; but yolk cholesterol was lowered (p<0.05) with PRO1 and PRO2 diets at 29 weeks. At both 33 and 37 weeks, the egg-breaking strength, shell color and thickness, albumen height, Haugh units, and yolk color were improved; but yolk cholesterol was similarly lowered (p<0.05) with the PRO1 and PRO2 diets. Improved tibia Ca, ash, weights, and density; and raised cecal counts of Bifidobacteria and Lactobacilli (p<0.05) were noticed with PRO1 and PRO2 diets. Improved tibia P but reduced Clostridia counts (p<0.10) were also observed with the PRO1 and PRO2 diets. CONCLUSION Probiotic supplementation of Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 at 3×108 CFU/kg of feed is adequate to significantly improve egg quality, lower yolk cholesterol, enhance several tibia traits, and raise the populations of beneficial cecal bacteria. Modest improvements in several productive parameters and tibia P but reduced Clostridia were also observed; and could warrant further investigation of probiotic effects beyond the current test period.
Collapse
Affiliation(s)
- Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Nuwan Chamara Chaturanga
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Eunsoo Seo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hans Lee
- Kemin Animal Nutrition and Health, Asia Pacific, 12 Senoko Drive,
Singapore 758200
| | | | - Natasja Smeets
- Kemin Animal Nutrition and Health, Europa NV, Herentals 2200,
Belgium
| | | | - Susanne Kirwan
- Kemin Animal Nutrition and Health, Europa NV, Herentals 2200,
Belgium
| | | | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
8
|
Yang W, Zhao Y, Dou Y, Ji Q, Zhang C, Guo L, Geng Z, Chen X. High albumen height by expression of GALNT9 and thin eggshell by decreased Ca 2+ transportation caused high hatchability in Huainan partridge chicken. Poult Sci 2024; 103:103784. [PMID: 38713992 PMCID: PMC11091513 DOI: 10.1016/j.psj.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
Hatchability could be quite different among individuals of indigenous chicken breed which might be affected by the egg quality. In this study, hatchability was individually recorded among 800 forty-wk-old Huainan partridge chickens. The chickens were then divided into high and low hatchability groups (HH and LH group) with 50 birds in each group. Egg quality was further determined in the 2 groups. Eight birds from each group were selected for slaughtering and tissue, responsible for egg formation, collection for structure observation by staining and candidate gene expression by transcriptome analysis. The hatchability in HH was 100% and 61.18% in LH. The eggshell thickness and shell strength were significantly lower, while the albumen height and Haugh unit were significantly higher in HH group than those in LH group (P < 0.05). The magnum weight and index, and the expression of polypeptide N-acetylgalactosaminyltransferase 9 (GALNT9), which responsible for thick albumen synthesis, in HH group were also significantly higher than that of LH group (P < 0.05). Compared with the LH group, there were 702 differentially expressed genes (DEGs) in HH group, of which 402 were up-regulated and 300 were down-regulated. Candidate genes of calbindin 1 (CALB1) and solute carrier family 26 member 9 (SLC26A9), which regulate calcium signaling pathway so as to affect Ca2+ transportation, exhibited significant high and low expression, respectively, in HH group compared to those in LH group (P < 0.05). Therefore, indigenous chicken with high expression of GALNT9 in magnum to form thick albumen to provide more protein for embryo, while high CALB1 and low expression of SLC26A9 to decrease Ca2+ transportation so as to form a thinner eggshell and provide better gas exchange during embryo development.
Collapse
Affiliation(s)
- Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yutong Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yuhao Dou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Qianyun Ji
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China.
| |
Collapse
|
9
|
Alaraji F. An innovative protocol to increase egg production of chicken layers. PLoS One 2024; 19:e0305099. [PMID: 38843257 PMCID: PMC11156288 DOI: 10.1371/journal.pone.0305099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
This study investigated the effects of different doses of limestone, light durations, light intensities, and vitamins on both the productive performance and egg quality. The study utilized two rearing houses (control and treatment), each accommodating 75000 Lohmann Brown Classic chicks reared in open-sided rearing cages from one day old until they reached 89 weeks of age. Throughout the laying period, the hens were subjected to a specific light regimen (light = 14 h; dark = 10 h a day). At the end of experiment, the treatment group displayed significant (p<0.05) differences compared to the control group across various parameters. Notably, the treatment group exhibited lower daily feed intake (treatment: 112 g/bird vs control: 115 g/bird), 9.6% higher egg production (treatment: 78.5% vs control: 68.9%), lower body weight (treatment: 2057 g vs control: 2073 g), lower feed conversion ratio (FCR)/egg (treatment: 1.44 vs control: 1.69), higher egg weight (treatment: 69.4 g vs control: 68.5 g), greater egg mass (treatment: 56.14 vs control: 48.76), greater shell thickness (treatment: 3.52 mm vs control: 3.44 mm), and greater shell weight (treatment: 9.3 g vs control: 8.79 g). However, the albumin weight, yolk weight, yolk diameter, shape index, and Haugh units (HU) were not significantly (p˃0.05) affected after 75 weeks of treatment when compared with those of the control group. Therefore, this study is the first of its kind to demonstrate that different ratios of limestone, different durations and intensities of light, and different vitamin supplementation doses in the treatment group (subjected to the novel rearing recommendations described in this study) may yield a profit of 180,541 USD, exceeding the baseline profit of the control group (subjected to conventional rearing methods).
Collapse
Affiliation(s)
- Furkan Alaraji
- Department of Pathology and Poultry Diseases, University of Kufa, Kufa, Al-Najaf Province, Iraq
| |
Collapse
|
10
|
Yang S, Deng H, Zhu J, Shi Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals (Basel) 2024; 14:1637. [PMID: 38891684 PMCID: PMC11170995 DOI: 10.3390/ani14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.
Collapse
Affiliation(s)
- Songfeng Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing 526000, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
11
|
Stęczny K, Kokoszyński D, Włodarczyk K, Arpášová H, Gondek M, Saleh M, Wegner M, Kądziołka K. Carcass, Egg Characteristics and Leg Bone Dimensions of Pigeons of Different Origin. Animals (Basel) 2024; 14:1494. [PMID: 38791711 PMCID: PMC11117358 DOI: 10.3390/ani14101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In the past, studies have been conducted on the evaluation of meat traits of pigeons, but the knowledge obtained is incomplete and needs to be expanded. The purpose of this study was to obtain information on the weight and proportion of carcass elements, femur and tibia bone dimensions, and egg characteristics of meat of King breed and carrier pigeons. For this study, 16 carcasses of carrier pigeons and 16 carcasses of King pigeons were used, with 8 carcasses of males and 8 carcasses of females of each breed. Additionally, 20 eggs evaluated were from carrier pigeons and 20 eggs from King breed pigeons. The carcasses and eggs were obtained from birds that were 12 months old. The compared pigeon breeds differed (p < 0.05) significantly in terms of the weight of the eviscerated carcass with the neck; the content of neck, wings, pectoral and leg muscles in the carcass; as well as in terms of all specified dimensions of tibia and femur length and width. The origin of the pigeons had an effect (p < 0.05) on egg weight and dimensions, egg index, and the other studied egg traits, with the exception of eggshell weight and eggshell yellowness, yolk weight, yolk height, yolk diameter, and yolk index. So far, there have been no studies comparing carrier pigeons and King breed pigeons in terms of femur and tibia bone dimensions, morphological composition and egg dimensions, and egg content traits, which adds to the knowledge in this area and indicates the need for continuation in the future.
Collapse
Affiliation(s)
- Kamil Stęczny
- Department of Animal Sciences, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85084 Bydgoszcz, Poland; (K.S.); (M.G.); (M.W.); (K.K.)
| | - Dariusz Kokoszyński
- Department of Animal Sciences, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85084 Bydgoszcz, Poland; (K.S.); (M.G.); (M.W.); (K.K.)
| | - Karol Włodarczyk
- Institute of Agricultural and Food Biotechnology—State Research Institute, 02532 Warsaw, Poland;
| | - Henrieta Arpášová
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Michalina Gondek
- Department of Animal Sciences, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85084 Bydgoszcz, Poland; (K.S.); (M.G.); (M.W.); (K.K.)
| | - Mohamed Saleh
- Department of Poultry Production, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt;
| | - Marcin Wegner
- Department of Animal Sciences, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85084 Bydgoszcz, Poland; (K.S.); (M.G.); (M.W.); (K.K.)
| | - Kamil Kądziołka
- Department of Animal Sciences, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85084 Bydgoszcz, Poland; (K.S.); (M.G.); (M.W.); (K.K.)
| |
Collapse
|
12
|
Arulnathan V, Turner I, Bamber N, Ferdous J, Grassauer F, Doyon M, Pelletier N. A systematic review of potential productivity, egg quality, and animal welfare implications of extended lay cycles in commercial laying hens in Canada. Poult Sci 2024; 103:103475. [PMID: 38364604 PMCID: PMC10877952 DOI: 10.1016/j.psj.2024.103475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Lay cycle lengths in the Canadian egg industry are currently 50 to 52 wk (68-70 wk of age). In light of increased productivity in commercial laying hens over the last few decades, the much longer lay cycle lengths already implemented in other countries, extending lay cycle lengths in Canada, should be considered with careful attention to potential environmental, economic, and animal welfare implications. However, there is a lack of information in the public domain that provides robust evidence of performance levels and potential trade-offs to support comprehensive consideration of the desirability of extending lay cycles beyond current Canadian norms. Hence, a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was undertaken. Data collection focused primarily on information related to feed-, flock management-, and hen genetics/physiology-related interventions that were studied in literature to support extension of lay cycles (review objective 1), and compiling and analyzing productivity, egg quality, and animal welfare outcomes reported at 70 wk of age or beyond (review objective 2). Several feed-related interventions such as high-protein diets, and probiotics supplements, and flock management interventions such split-feeding were found to potentially improve productivity, and especially egg quality, outcomes in the late laying phase. More studies with bigger flock sizes and in commercial lay facilities need to be undertaken before any of these interventions can be definitively recommended for commercial egg production. Under objective 2, productivity was found to be at acceptable levels well beyond 70 wk of age. Performance on most egg quality traits and animal welfare indicators were also at acceptable levels past 70 wk of age but increased variability was observed beyond ∼80 wk of age. There were also inconclusive indications on how hens in caged housing and white laying hens fare relative to hens in noncaged housing and brown-type layers during the late laying phase. Economic data were limited but suggested that lay cycle lengths beyond 90 wk might not generated net economic benefits.
Collapse
Affiliation(s)
- Vivek Arulnathan
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada.
| | - Ian Turner
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Nicole Bamber
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Jannatul Ferdous
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Florian Grassauer
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Maurice Doyon
- Paul-Comtois, Laval University, Quebec City, QC, G1V 0A6, Canada
| | - Nathan Pelletier
- FIP 226, Food Systems PRISM Lab, Fipke Centre for Innovative Research, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
13
|
Fu Y, Zhou J, Schroyen M, Zhang H, Wu S, Qi G, Wang J. Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens. J Anim Sci Biotechnol 2024; 15:37. [PMID: 38439110 PMCID: PMC10910863 DOI: 10.1186/s40104-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Zhao DR, Gao LB, Gong F, Feng J, Zhang HJ, Wu SG, Wang J, Min YN. TMT-based quantitative proteomic analysis reveals eggshell matrix protein changes correlated with eggshell quality in Jing Tint 6 laying hens of different ages. Poult Sci 2024; 103:103463. [PMID: 38281332 PMCID: PMC10840124 DOI: 10.1016/j.psj.2024.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
The decline in eggshell quality resulting from aging hens poses a threat to the financial benefits of the egg industry. The deterioration of eggshell quality with age can be attributed to changes in its ultrastructure and chemical composition. Specific matrix proteins in eggshells have a role in controlling crystal growth and regulating structural organization. However, the variations in ultrastructure and organic matrix of eggshells in aging hens remain poorly understood. This study assessed the physical traits, mechanical quality, chemical content, as well as the microstructural and nanostructural properties of eggs from Jing Tint 6 hens at 38, 58, 78, and 108 wk of age. Subsequently, a quantitative proteomic analysis was conducted to identify differences in protein abundance in eggshells between the ages of 38 and 108 wk. The results indicated a notable decline in shell thickness, breaking strength, index, fracture toughness, and stiffness in the 108-wk-age group compared to the other groups (P < 0.05). The ultrastructure variations primarily involved an increased ratio of the mammillary layer and a reduced thickness of the effective layer of eggshell in the 108-wk-age group (P < 0.05). However, no significant differences in eggshell compositions were observed among the various age groups (P > 0.05). Proteomic analysis revealed the identification of 76 differentially expressed proteins (DEPs) in the eggshells of the 38-wk-age group and 108-wk-age group, which comprised proteins associated with biomineralization, calcium ion binding, immunity, as well as protein synthesis and folding. The downregulation of ovocleidin-116, osteopontin, and calcium-ion-related proteins, together with the upregulation of ovalbumin, lysozyme C, and antimicrobial proteins, has the potential to influence the structural organization of the eggshell. Therefore, the deterioration of eggshell quality with age may be attributed to the alterations in ultrastructure and the abundance of matrix proteins.
Collapse
Affiliation(s)
- Dan-Rong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li-Bing Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu-Na Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Azizollahi M, Ghasemi HA, Foroudi F, Hajkhodadadi I. Effect of guanidinoacetic acid on performance, egg quality, yolk fatty acid composition, and nutrient digestibility of aged laying hens fed diets with varying substitution levels of corn with low-tannin sorghum. Poult Sci 2024; 103:103297. [PMID: 38104413 PMCID: PMC10765105 DOI: 10.1016/j.psj.2023.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
A study was conducted to evaluate the efficiency of guanidinoacetic acid (GAA) in diets containing varying levels of corn replacement with low-tannin sorghum (LTS) for laying hens in the later stage of production. In a 12-wk study, a total of 288 laying hens at 52 wk of age were divided into 6 treatment groups. Each treatment group had 8 replicates, each of which consisted of 6 hens. A 2 × 3 factorial design was used to investigate the impact of substituting corn with LTS at 3 levels (100% corn, 50% LTS, and 100% LTS) with 2 doses of GAA supplementation (0 and 0.6 g/kg). The results indicate that there were interaction effects (P < 0.05) between diet type and GAA supplementation on protein digestibility and AMEn, with the GAA supplement being more effective in the 100% LTS group. Replacing corn with LTS at both levels had no negative effects on performance and metabolic profile. In contrast, the 100% LTS diet increased monounsaturated fatty acids in the yolk (P < 0.05), but decreased the yolk color index, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA) in the yolk, ileal digestibility of energy, and AMEn when compared to the 100% corn diet (P < 0.05). Regardless of the diet, dietary supplementation with GAA resulted in increases (P < 0.05) in shell-breaking strength, the PUFA to SFA ratio in egg yolk, and concentrations of creatine and nitric oxide in serum. There was also a decrease (P < 0.05) in serum malondialdehyde concentration with GAA supplementation. In conclusion, the positive effects of GAA on protein digestibility and AMEn were found to be more pronounced when corn was completely replaced with LTS. However, the positive effects of GAA on egg-laying performance, eggshell quality, antioxidant status, and yolk fatty acid composition remained consistent regardless of the extent to which corn was substituted with LTS.
Collapse
Affiliation(s)
- Mohammad Azizollahi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran.
| | - Farhad Foroudi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, 38156-8-8349 Arak, Iran
| |
Collapse
|
16
|
Zhang J, Gao X, Zheng W, Wang P, Duan Z, Xu G. Dynamic Changes in Egg Quality, Heritability and Correlation of These Traits and Yolk Nutrient throughout the Entire Laying Cycle. Foods 2023; 12:4472. [PMID: 38137276 PMCID: PMC10742422 DOI: 10.3390/foods12244472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Egg quality and nutritional value are becoming increasingly important to consumers, offering a new direction for the development of high-quality eggs. In this study, we conducted a comprehensive analysis of egg quality and nutrient profiles in native breeds at different ages, integrating pedigree data. Our results reveal dynamic changes in egg qualities, stronger associations among eggshell-related traits, and the effect of onset production and body weight on egg qualities. The heritability of different traits was estimated, ranging from 0.05 to 0.62. Subsequently, we elucidated that the moisture and nutritional content in the egg yolk were not influenced by the percentage of yolk but were indeed subject to age regulation. There was a notable decrease in moisture, an elevation in crude fat, and an increase in the diversity of fatty acids of yolk with advancing age. In summary, investigating the trends and interrelationships in egg quality, nutrient content, and heritability across the whole laying cycle offers valuable insights for breeders to optimize feeding management strategies and aids consumers in meeting their expectations of egg quality.
Collapse
Affiliation(s)
- Junnan Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.Z.)
| | - Xiang Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Weijie Zheng
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.Z.)
| | - Pengpeng Wang
- Police-Dog Technology Department, Criminal Investigation Police University of China, Shenyang 110034, China;
| | - Zhongyi Duan
- National Animal Husbandry Service, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Guiyun Xu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.Z.); (W.Z.)
| |
Collapse
|
17
|
E X, Shao D, Li M, Shi S, Xiao Y. Supplemental dietary genistein improves the laying performance and antioxidant capacity of Hy-Line brown hens during the late laying period. Poult Sci 2023; 102:102573. [PMID: 36989857 PMCID: PMC10070936 DOI: 10.1016/j.psj.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The present study evaluated the effects of 3 supplemental levels of dietary genistein ingested during the late laying period (66-73 wk) of laying hens. A total of 384 Hy-Line brown hens (66 wk old) were randomly divided into 4 groups (6 replicates of 16 hens in each group), the basal diet group (CON), and groups for the basal diet supplemented with 80, 120, and 400 mg/kg of genistein, G1, G2, and G3, respectively. The results of the present study showed an increased laying rate in groups G2 and G3 (linear, P < 0.01), and decreased feed-egg ratios (linear, P < 0.05) and broken egg rate (P < 0.01) in all genistein-treated groups compared with the CON group. Moreover, the G2 group showed an increase in eggshell strength and ratio (linear, P < 0.05), whereas all genistein-treated groups saw a decrease in the L* value (linear, P < 0.01) and an increase in the a* value (linear, P < 0.05) compared with the CON group. Additionally, all genistein-treated groups had an increase in the total antioxidant capacity of plasma (linear, P < 0.05), along with reduced plasma, ovarian, and yolk malondialdehyde levels (linear, P < 0.05), compared with the CON group. The G2 group had an increase in both the superoxide dismutase activity of plasma (P < 0.01) and the total antioxidant capacity of the ovaries (linear, P < 0.05), compared with the CON group. The G3 group had an increase in both the glutathione peroxidase concentration of plasma (linear, P < 0.05) and the total antioxidant capacity of the ovaries (linear, P < 0.01), compared with the CON group. The transcript levels of nuclear factor erythroid 2-related factor 2, superoxide dismutase 1, and catalase were increased in all of the genistein-treated groups (P < 0.05) compared with the CON group, whereas heme oxygenase 1 and glutamate-cysteine ligase modifier subunit were increased only in the G2 group (P < 0.05). In conclusion, supplementation with 120 mg/kg dietary genistein had the best effect on improving the laying rate, eggshell quality, and antioxidant capacity in Hy-Line brown hens during the late laying period.
Collapse
|
18
|
Pillan G, Xiccato G, Ciarelli C, Bordignon F, Concollato A, Pascual A, Birolo M, Pirrone F, Sirri F, Averόs X, Estevez I, Trocino A. Factors affecting space use by laying hens in a cage-free aviary system: effect of nest lighting at pullet housing and of curtain nest color during laying. Poult Sci 2023; 102:102524. [PMID: 36805400 PMCID: PMC9969319 DOI: 10.1016/j.psj.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/23/2023] Open
Abstract
At 17 wk of age, 1,800 Lohman brown hens were housed in 8 pens of an experimental aviary system, specifically set up for the purposes of the present study, and kept until 26 wk without or with nest lighting (lights inside the nest 1.5 h before the lighting of the installation) for training in the nest use. Then, at 27 wk, 4 combinations of nest curtains were adopted to evaluate the effects on hens' distribution, that is, nests with red (RR) or yellow (YY) curtains at all tiers; nests with red and yellow curtains at the first and second tier, respectively (RY); or nests with yellow and red curtains at the first and second tier, respectively (YR). The use of enlightened compared to dark nests at housing increased the oviposition rate (P < 0.001) and decreased the rate of broken (P < 0.001) and dirty eggs (P < 0.05) from 27 to 45 wk, while increasing the rate of eggs laid inside the nests (P < 0.001). The presence of yellow nest curtains increased the rate of hens on the floor in pens YY and YR compared to pens RR and RY (35.3 and 35.5% vs. 34.1 and 33.3%, respectively; P = 0.05) and the rate of floor eggs in pens YR (2.23% vs. 1.63 and 1.65% in pens RR and RY; P < 0.05). In pens RY, a higher rate of eggs was always found on the second tier compared to the first one with the most inhomogeneous distribution compared to pens RR, YY, and YR (+10.8 vs. +3.4, +1.9, and +4.6 percentage points of eggs laid on the second tier compared to the first one, respectively). In conclusion, nest lighting at housing trained hens to the use of nests while improving egg production in terms of quantity and quality. The use of yellow curtains on nests moved hens between the different levels of the aviary but this was not associated with an increased nest use for laying.
Collapse
Affiliation(s)
- G. Pillan
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy
| | - G. Xiccato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - C. Ciarelli
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F. Bordignon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | | | - A. Pascual
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - M. Birolo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - F. Pirrone
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy
| | - F. Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - X. Averόs
- Animal Production Department, NEIKER, 01192 Arkaute, Spain
| | - I. Estevez
- Animal Production Department, NEIKER, 01192 Arkaute, Spain,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - A. Trocino
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Padova, Italy,Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy,Corresponding author:
| |
Collapse
|
19
|
Cheng X, Ning Z. Research progress on bird eggshell quality defects: a review. Poult Sci 2023; 102:102283. [PMID: 36399932 PMCID: PMC9673113 DOI: 10.1016/j.psj.2022.102283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The eggshell quality declined with extending of chicken laying cycles. Eggshell quality is a crucial feature that not only affects consumer preference, but also influences producers' economic profitability. The eggshell ultrastructure consists of mammillary, palisade, and vertical crystal layers. Any defect in shell structure results in a reduction in eggshell quality. Speckled, translucent, pimpled, and soft eggshells are common defects that cause significant financial losses for farmers and food security concerns for consumers. Therefore, reducing the faulty eggshells is critical for poultry production. Defective eggshell quality has been attributed to hereditary factors and external environmental stimuli. As such, improvements can be carried out through selective breeding and environmental control of components such as temperature, moisture, and diet formula balance. In this review, the molecular mechanisms of the main eggshell quality defects (speckled, translucent, pimpled, broken, and soft-shell eggs) and the relevant improvement methods are detailed. We hope this review will serve as a useful resource for poultry production management and effectively increasing eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Cheng X, Ma Y, Li X, Liu Y, Zhang R, Zhang Y, Fan C, Qu L, Ning Z. Structural characteristics of speckled chicken eggshells and their effect on reproductive performance. Poult Sci 2022; 102:102376. [PMID: 36565627 PMCID: PMC9801207 DOI: 10.1016/j.psj.2022.102376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022] Open
Abstract
Speckles are common on the brown eggshells of chicken eggs, especially for aged hens. They are important as they affect the consumer preference and economic value of eggs. The cause of speckles in eggshells is still unclear. In this study, we verified the difference of eggshell quality between speckled eggs and normal eggs. Structural characteristics of speckled eggshells were investigated using a scanning electron microscope. Results showed no significant difference in the eggshell quality between normal eggs and speckled eggs, except for a lower eggshell color-L value in the latter. More materials deposited between vertical crystal layer and cuticle layer in the speckled shell region, leading to the thicker eggshell than adjacent normal area. The relative content of protoporphyrin IX was significantly higher in the speckled area than in the adjacent normal area of the eggshells. In addition, there was no significant differences in productive and reproductive performance between hens that laid normal eggs or speckled eggs, except for a lower hatchability of the speckled eggs. In conclusion, we infer that the uneven distribution of eggshell pigment protoporphyrin IX leads to the formation of speckled eggs. This is the first study to establish the characteristics and causes of speckled eggshells. Moreover, this study provides novel insights into external egg quality and a foundation for the in-depth study of speckled eggshells.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Ma
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinghua Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Liu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruiqi Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cuidie Fan
- Hebei Rongde Poultry Breeding Company Limited, Hebei 053000, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Corresponding authors:
| |
Collapse
|
21
|
Wu Y, Sun Y, Zhang H, Xiao H, Pan A, Shen J, Pu Y, Liang Z, Du J, Pi J. Multiomic analysis revealed the regulatory role of the KRT14 gene in eggshell quality. Front Genet 2022; 13:927670. [PMID: 36212119 PMCID: PMC9536113 DOI: 10.3389/fgene.2022.927670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Eggshell strength and thickness are critical factors in reducing the egg breaking rate and preventing economic losses. The calcite biomineralization process is very important for eggshell quality. Therefore, we employed transcriptional sequencing and proteomics to investigate the differences between the uteruses of laying hens with high- and low-breaking-strength shells. Results: A total of 1,028 differentially expressed genes (DEGs) and 270 differentially expressed proteins (DEPs) were identified. The analysis results of GO terms and KEGG pathways showed that most of the DEGs and DEPs were enriched in vital pathways related to processes such as calcium metabolism, hormone and amino acid biosynthesis, and cell proliferation and apoptosis. Several DEGs and DEPs that were coexpressed at mRNA and protein levels were verified. KRT14 (keratin-14) is a candidate gene (protein) obtained by multiple omics analysis due to the fold difference of KRT14 being the largest. After the overexpression of KRT14 in uterine epithelial cells, the expressions of OC116 (ovocleididin-116), CALB1 (calbindin 1), and BST1 (ADP-ribosyl cyclase 2) were found to be increased significantly, while the expression of OC17 (ovocleididin-17) was found to be decreased significantly. Conclusion: In summary, this study confirms that during normal calcification, there are differences in ion transport between the uterus of hens producing high-breaking-strength eggshells and those producing low-breaking-strength eggshells, which may help elucidate the eggshell calcification process. The KRT14 gene may promote calcium metabolism and deposition of calcium carbonate in eggshells.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Yanyan Sun
- Institute of Animal Sciences of CAAS, Beijing, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- *Correspondence: Jinsong Pi,
| |
Collapse
|
22
|
Fu Y, Wang J, Schroyen M, Chen G, Zhang HJ, Wu SG, Li BM, Qi GH. Effects of rearing systems on the eggshell quality, bone parameters and expression of genes related to bone remodeling in aged laying hens. Front Physiol 2022; 13:962330. [PMID: 36117717 PMCID: PMC9470921 DOI: 10.3389/fphys.2022.962330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Public concerns regarding animal welfare are changing the selection of rearing systems in laying hens. This study investigated the effects of rearing systems on eggshell quality, bone parameters and relative expression levels of genes related to bone remodeling in aged laying hens. A total of 2,952 55-day-old Jing Tint Six pullets were randomly assigned to place in the conventional caging system (CCS) or aviary system (AVS) and kept until 95 weeks of age. The AVS group delayed the decrease of eggshell quality and alleviated the symptoms of osteoporosis in the humerus rather than in the femur. Eggshell breaking strength, thickness, weight, weight ratio, stiffness and fracture toughness were decreased linearly with age (from 55 to 95 weeks of age, p < 0.05). The AVS group had higher eggshell breaking strength, stiffness and fracture toughness than the CCS group (p < 0.05). Higher total calcium and phosphorus per egg were presented in the AVS group at 95 weeks of age (p < 0.05). At 95 weeks of age, the AVS group had a humerus with higher weight, volume, length, midpoint perimeter, cortical index, fat-free dry weight, ash content, total calcium per bone, total phosphorus per bone, average bone mineral density, strength, stiffness and work to fracture compared to the CCS group (p < 0.05). Such differences did not appear in the femur. The relative expression levels of alkaline phosphatase (ALP) and osteocalcin (OCN) genes in the femur and hormone receptors (vitamin D receptor (VDR), estrogen receptor alpha (ERα) and fibroblast growth factor 23 (FGF23)) genes in the humerus were significantly upregulated (p < 0.05) in the AVS group. The level of tartrate-resistant acid phosphatase (TRAP) transcripts was also increased (p < 0.05) in the femur of the AVS group. Overall, compared with the CCS, the AVS alleviated the deterioration of eggshell and bone qualities of aged laying hens, which may be related to the changes in the expression of genes associated with bone remodeling.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Gang Chen
- Key Laboratory of Bio-environmental Engineering, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao-ming Li
- Key Laboratory of Bio-environmental Engineering, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
- *Correspondence: Guang-hai Qi, ; Bao-ming Li,
| | - Guang-hai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guang-hai Qi, ; Bao-ming Li,
| |
Collapse
|
23
|
Dong Y, Zhang K, Han M, Miao Z, Liu C, Li J. Low Level of Dietary Organic Trace Minerals Improved Egg Quality and Modulated the Status of Eggshell Gland and Intestinal Microflora of Laying Hens During the Late Production Stage. Front Vet Sci 2022; 9:920418. [PMID: 35847638 PMCID: PMC9278061 DOI: 10.3389/fvets.2022.920418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to investigate the effects of dietary organic trace minerals on egg quality and intestinal microflora of laying hens during the late production stage. In total, 1,080 Jinghong-1 laying hens aged 57 weeks were randomly assigned to five treatment groups: CON, basal diet containing about 6, 29, 49, and 308 mg·kg−1 of Cu, Mn, Zn, and Fe; IT100, basal diet supplemented with 10, 80, 80, and 60 mg·kg−1 of Cu, Mn, Zn, and Fe (each as inorganic sulfates), respectively; OT20, basal diet supplemented with 2, 16, 16, and 12 mg·kg−1 of Cu, Mn, Zn, and Fe (each as organic trace minerals chelated with lysine and methionine in the ratio of 2:1 amino acid: organic trace minerals), respectively; OT30, basal diet supplemented with 3, 24, 24, and 18 mg·kg−1 of organic Cu, Mn, Zn, and Fe, respectively; and OT50, basal diet supplemented with 5, 40, 40, and 30 mg·kg−1 of organic Cu, Mn, Zn, and Fe, respectively. Overall, OT20, OT30, and OT50 had equal or higher potential to promote Cu, Mn, Zn, and Fe deposition in egg yolks compared with IT100. In addition, OT50 enhanced the eggshell breaking strength and the antioxidant status of the eggshell gland. Cecal microbiota, including Barnesiellaceae and Clostridia, were significantly decreased in IT100- and OT50-treated hens compared with the CON group. Clostridia UCG-014 was negatively correlated with eggshell weight and OCX-32. In conclusion, reduced supplementation of organic trace minerals can improve the eggshell quality and trace mineral deposition, possibly by modulating genes involved in the eggshell formation in the eggshell gland and by controling of the potentially harmful bacteria Barnesiellaceae and Clostridiales in the cecum. Inorganic trace minerals may be effectively replaced by low level of complex organic trace minerals in laying hens during the late production stage.
Collapse
Affiliation(s)
- Yuanyang Dong
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Keke Zhang
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Han
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Miao
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Ci Liu
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Jianhui Li
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
24
|
Yang B, Gong J, Jing J, Hao Y, Li S, Liu G, Feng Z, Zhao G. Effects of Zinc Methionine Hydroxy Analog Chelate on Laying Performance, Serum Hormone Levels, and Expression of Reproductive Axis Related Genes in Aged Broiler Breeders. Front Vet Sci 2022; 9:918283. [PMID: 35859808 PMCID: PMC9289673 DOI: 10.3389/fvets.2022.918283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inorganic zinc (Zn) supplements are commonly used in poultry feeds, but their low utilization results in the increase of Zn excretion. Thus, to provide a new perspective for the substitution of inorganic Zn, a novel Zn methionine hydroxy analog chelate (Zn-MHA) was studied in the present study to evaluate its effects on laying performance, serum hormone indexes and reproductive axis-related genes in broilers breeders. A total of 480 Hubbard breeders (56-week-old) were fed a basal diet (containing 27.81 mg Zn/kg) without Zn addition for 2 weeks, and then allocated to 4 groups with 6 replicates (each replicate consisting of 10 cages and 2 breeders per cage) for 10 weeks. Four treatment diets given to broiler breeders included the basal diet added with 25, 50, and 75 mg/kg of Zn-MHA and 100 mg/kg of Zn sulfate (ZnSO4). The laying rate, egg weight and feed conversation ratio increased in the 75 mg/kg Zn-MHA group compared to the ZnSO4 group. The eggshell thickness was not decreased with the addition of 50 mg/kg and 75 mg/kg Zn-MHA in the diet compared to the 100 mg/kg ZnSO4 group. There was a significant improvement in the reproductive performance of breeders in the 75 mg/kg Zn-MHA group, including the fertility and 1-day-old offspring weight. Besides, serum sex hormone levels including FSH and P4 increased significantly in 75 mg/kg Zn-MHA group. No significant effect on the ovarian weight or the number of follicles in broiler breeders was observed by supplementing Zn-MHA. Compared to the 100 mg/kg ZnSO4 group, dietary supplementation with 75 mg/kg of Zn-MHA showed an up-regulation of the FSHR mRNA in the granular layer of follicles. However, dietary supplementation of Zn-MHA had no effects on mRNA expressions of the ovarian LHR and PRLR genes. These findings reinforce the suggestion that Zn-MHA (75 mg/kg) could replace ZnSO4 (100 mg/kg) as a Zn supplement in diet of broiler breeders, which resulted in better laying and reproduction performances by regulating the expression levels of reproductive axis related genes and serum hormone levels.
Collapse
Affiliation(s)
- Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jialin Jing
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shupeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guanzhong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhihua Feng
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Guoxian Zhao
| |
Collapse
|
25
|
Chen X, Ma XM, Yang CW, Jiang SZ, Huang LB, Li Y, Zhang F, Jiao N, Yang WR. Low Level of Dietary Organic Trace Elements Improve the Eggshell Strength, Trace Element Utilization, and Intestinal Function in Late-Phase Laying Hens. Front Vet Sci 2022; 9:903615. [PMID: 35711798 PMCID: PMC9197127 DOI: 10.3389/fvets.2022.903615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to evaluate the effects of organic trace elements (Cu, Fe, Zn, and Mn) on performance, egg quality, trace elements utilization, and intestinal function in late-phase laying hens. A total of 1,080 laying hens (Hy-line brown, 65 weeks old) were randomly assigned to four treatments with six replications of 45 layers each. The basal diet was prepared without adding exogenous trace elements. The control group was fed with a basal diet supplemented with 600 mg/kg of inorganic trace elements. The three treatment groups were fed basal diets supplemented with 300, 450, and 600 mg/kg organic trace elements (OTE300, 450, and 600), respectively. The results showed that there was no significant difference in growth performance among all treatments. However, OTE450 significantly improved the eggshell strength of laying hens (p < 0.05), but had no significant effects on haugh unit, egg yolk weight, eggshell weight, and eggshell thickness, compared with other groups. Moreover, compared with the control group, OTE450 significantly increased the contents of copper, iron, and zinc in serum (p < 0.05). Meanwhile, all of the trace elements had a lower deposition in the feces in organic trace elements groups (p < 0.05). Histological analysis showed that the addition of organic trace elements could significantly improve the villus height and villus concealment ratio (p < 0.05). In addition, the messenger RNA (mRNA) and protein expressions of divalent metal transporter 1 (DMT1), zinc transporter 1 (ZnT-1), and ferroportin 1 (FPN1) were the highest in the OTE450 group. In conclusion, OTE450 could improve egg quality, intestinal function, and trace element utilization efficiency. Thus, this study provides a theoretical basis for the application of low levels of organic trace elements in laying hens.
Collapse
Affiliation(s)
- Xing Chen
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Xiang-ming Ma
- Dongying Science and Technology Innovation Service Center, Dongying, China
| | - Chong-Wu Yang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Shu-zhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Li-bo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Yang Li
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Fan Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
| | - Ning Jiao
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
- *Correspondence: Ning Jiao
| | - Wei-ren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, China
- Wei-ren Yang
| |
Collapse
|
26
|
Sirri F, Zampiga M, Berardinelli A. Effects of genotype and age on eggshell cuticle coverage and color profile in modern laying hen strains. Poult Sci 2022; 101:101691. [PMID: 35114433 PMCID: PMC8814822 DOI: 10.1016/j.psj.2021.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this research was to investigate the effects of laying hen genotype and age on eggshell cuticle deposition. A total of 4,320 brown eggs were obtained from 3 modern hen strains (A, B, and C), currently used worldwide for commercial egg production, at different intervals of age (20-30, 40-50, and 60-70 wk). Four samplings of 120 randomly collected eggs were carried out for each genotype/interval of age. Eggs were individually weighed and cuticle blue staining was used to assess quality and degree of cuticle coverage. On each egg, the eggshell color profile was assessed before and after staining using the CIE L*a*b* system and these values were used to calculate ΔE*ab. A 4-point scale visual score (VS) system was also applied to estimate the degree of cuticle coverage after staining (0 = no coverage, 1 = partial coverage, 2 = total coverage - low degree, 3 = total coverage - high degree). The effects of genotype and age and their interaction on eggshell color attributes were assessed by means of factorial ANOVA, while omnibus Chi-Square and Chi-squared Automatic Interaction Detector algorithm were applied for the analysis of VS data. Overall, both genotype and age affected the eggshell color profile as well as the degree of cuticle coverage. Hen strain A showed better cuticle deposition in comparison with B and particularly C one, being ΔE*ab values significantly higher. The VS evaluation revealed that eggs with impaired cuticle coverage degree increased with the hen age (23, 34, and 37%, respectively for 20-30, 40-50, and 60-70 wk; P < 0.05). However, a significant interaction between genotype and age was observed: transition from early to late hen age resulted in a significantly different pattern of ΔE*ab changes in each genotype. The classification tree analysis confirmed that the hen genotype has a greater effect than the age on cuticle deposition. In conclusion, considering the importance of the cuticle in table egg production, these results highlight the crucial role exerted by the genotype on eggshell cuticle coverage.
Collapse
Affiliation(s)
- F Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - M Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - A Berardinelli
- Department of Industrial Engineering, University of Trento, 38123 Povo, TN, Italy; Centre Agriculture Food Environment, University of Trento, 38010 S. Michele all'Adige, TN, Italy
| |
Collapse
|
27
|
Hanlon C, Takeshima K, Kiarie EG, Bédécarrats GY. Bone and eggshell quality throughout an extended laying cycle in three strains of layers spanning 50 years of selection. Poult Sci 2022; 101:101672. [PMID: 35074590 PMCID: PMC8789532 DOI: 10.1016/j.psj.2021.101672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Decades of intensive genetic selection in commercial layers has resulted in earlier maturation, while sustaining high production rates to 100 wks of age (woa). To support eggshell formation while maintaining a healthy skeletal frame, substantial adaptations of calcium metabolism in the hen are necessary. Thus, skeletal growth, bone density, and egg quality were compared in 3 strains of layers, with the Lohmann LSL-lite as the current commercial strain, the heritage Shaver white leghorn as the mid-2000s strain, and the white-leghorn derived Smoky Joes as the non-selected 1960s strain. Tibia and Femur (n = 4/strain) were collected at 12, 17, 20, 25, 45, 60, 75, and 100 woa. Bones were measured and weighed, with bone mineral density assessed within medullary (mBMD) and cortical (cBMD) regions of the tibia using micro-Computed Tomography. Egg analyses including weight, eggshell thickness (EST) and eggshell breaking strength (EBS), were conducted throughout lay. Blood samples were collected to measure plasma calcium immediately prior to lay (18 woa) and periodically throughout the laying cycle. Femur and tibia weight, or size, did not increase beyond 12 woa, indicating that all hens reached maximum skeletal size by this time. An interaction (P = 0.005) was observed between strain and tibia mBMD, as all three strains demonstrated an accumulation of medullary bone from 12 to 100 woa. Regarding egg weight, while Lohmann hen eggs displayed the highest quality at 26 woa, an elevation in egg weight in Lohmann and Shaver hens (P < 0.001) resulted in a decline in EST and EBS over time (P < 0.01). Yet, at 100 woa, no strain differed in EST or EBS, despite larger variations in cumulative egg numbers (P < 0.001). Plasma calcium levels were significantly elevated between the immature state and peak of lay but remained unchanged throughout lay in all strains. In conclusion, our results show that although genetic selection of layer hens resulted in tremendous improvement in productivity, no detrimental effects on cBMD or mBMD were observed throughout an extended laying period up to 100 woa.
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada.
| | - Kayo Takeshima
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Grégoy Y Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
28
|
Liao CM, Tan GH, You MF, Li JZ, Wu L, Qin YY, Zhang YY. Genetic variants in SCNN1B and AHCYL1 are associated with eggshell quality in Chinese domestic laying ducks ( Anas platyrhynchos). Br Poult Sci 2021; 63:454-465. [PMID: 34923880 DOI: 10.1080/00071668.2021.2019678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to investigate the evolution of SCNN1B and AHCYL1 proteins among 10 domestic and mammalian animals, to uncover the expression patterns of SCNN1B and AHCYL1 genes in ducks, identify the genetic variants of the SCNN1B and AHCYL1 genes and analyse their effects on eggshell quality.2. Expression profiles of the SCNN1B and AHCYL1 genes in Sansui female ducks were determined using real-time fluorescence quantitative PCR to identify SNPs. The duck SCNN1B and AHCYL1 genes were amplified to identify SNPs. A total of 502 Sansui female ducks were genotyped by sequencing, and the associations between the mRNA expression/SNP genotypes and six eggshell quality indices were analysed using PASW Statistics 18.0.3. The results showed that the SCNN1B and AHCYL1 proteins are highly conserved in different mammalian or domestic animals, especially the AHCYL1 protein. The SCNN1B and AHCYL1 genes were widely expressed in different tissues of male and female ducks, and expression level in the uterus was greater than in other tissues. The expression of SCNN1B and AHCYL1 during oviposition cycle indicated that expression levels were related to the eggshell mineralisation stage.4. The mRNA expression levels of uterine SCNN1B and AHCYL1 genes were positively correlated with eggshell strength (ESS), percentage (ESP) and weight (ESW) (P<0.05), respectively. Ten novel SNPs in SCNN1B and AHCYL1 genes from Chinese domestic laying ducks were identified through PCR amplicon sequencing.5. Genetic association analysis indicated g.797509 C > T, g.797573 C > T and g.797834 C > T in SCNN1B gene and g.169244 T > A, g.169265 T > C and g.175311T > C in AHCYL1 gene had a significant effect on eggshell quality. Correlation analysis between the SNP genotype and SCNN1B and AHCYL1 genes expression in the uterus showed that the genotypes of g.797509 C>T, g.797573 C>T, g.797834 C>T, g.169244 T>A and g.175311T>C sites affected the expression of SCNN1B and AHCYL1 genes in utero (P<0.05).6. The study indicated SCNN1B and AHCYL1 as candidate genes to improve eggshell traits in ducks.
Collapse
Affiliation(s)
- Chao-Mei Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Guang-Hui Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Ming-Fang You
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Jie-Zhang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| | - Lei Wu
- China Guizhou Anshun Lihua Animal Husbandry Co., Ltd
| | - Yuan-Yu Qin
- Agriculture and Rural Bureau of zhijin county, Guizhou Province, China
| | - Yi-Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, People's Republic of China
| |
Collapse
|
29
|
Zhang KK, Han MM, Dong YY, Miao ZQ, Zhang JZ, Song XY, Feng Y, Li HF, Zhang LH, Wei QY, Xu JP, Gu DC, Li JH. Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal 2021; 15:100401. [PMID: 34794097 DOI: 10.1016/j.animal.2021.100401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022] Open
Abstract
In the egg production industry, trace elements are required as additional dietary supplements to play vital roles in performance and egg quality. Compared to inorganic microelements (ITs), appropriate dose of organic trace microelements (OTs) are environmentally friendly and sufficient to satisfy the needs of hens. In order to evaluate the extent to which low-dose OTs replace whole ITs, the effects of organic copper, zinc, manganese, and iron compound on the performance, eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens were investigated. A total of 1 080 57-week-old Jing Hong laying hens were assigned to five groups with six replicates of 36 layers each for an 8-week experimental period. The birds were fed either a basal diet (control treatment (CT)) or the basal diet supplemented with commercial levels of inorganic trace elements (IT 100%) or the equivalent organic trace elements at 20%, 30%, and 50% of the inorganic elements (OT 20%, OT 30%, and OT 50%, respectively). Results showed that compared with those in the CT treatment, feeding hens with inorganic or organic microelement diet had significant effects on the eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens (P < 0.05). The eggshell strength and ratio between OT 30%, OT 50%, and IT 100% were similar at weeks 4 and 8, and the eggshell thickness of these groups was also similar at weeks 6 and 8. At week 8, the eggshell colour in OT 50% was darker than that in IT 100%. The mineral content in the eggshells of OT 50% and IT 100% significantly increased (P < 0.001), with no significant difference in effective thickness, mammillary thickness, and mammillary knob width between groups. There were no differences in the malondialdehyde content, total antioxidant capacity, and total superoxide dismutase activity in serum between OT 30%, OT 50%, and IT100%. While the catalase activities, the interleukin-1β, interleukin-10, immunoglobulin G, and immunoglobulin M concentrations in serum were not significantly different between OT 50% and IT 100%. The mineral contents in the faeces of the organic groups were considerably reduced compared with those in IT 100% (P < 0.001). In conclusion, dietary supplementation with 30-50% organic compound microelements has the potential to replace 100% inorganic microelements in the hen industry for improving eggshell quality, mineral deposition in the eggshell, antioxidant capacity, and immune function, and reducing emissions to the environment without negative effects on laying performance.
Collapse
Affiliation(s)
- K K Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - M M Han
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Y Dong
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Z Q Miao
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J Z Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - X Y Song
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - H F Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - L H Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Q Y Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J P Xu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - D C Gu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - J H Li
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
30
|
Dai H, Lv Z, Huang Z, Ye N, Li S, Jiang J, Cheng Y, Shi F. Dietary hawthorn-leaves flavonoids improves ovarian function and liver lipid metabolism in aged breeder hens. Poult Sci 2021; 100:101499. [PMID: 34731736 PMCID: PMC8572884 DOI: 10.1016/j.psj.2021.101499] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
Hawthorn-leaves flavonoids (HF), extracted from hawthorn leaves, were reported to exert antioxidant, anti-inflammatory and hypolipidemic properties. The aim of our study was to investigate the effects of dietary HF on the reproduction performance and liver lipid metabolism of aged breeder hens. A total of 270 aged Qiling breeder hens (60-wk-old) were randomly divided into 3 treatments: 1) basic corn-soybean diet (CON); 2) basic corn-soybean diet supplemented with 30 mg/kg HF (LHF); 3) basic corn-soybean diet supplemented with 60 mg/kg HF (HHF). The results showed that supplemented HF significantly improved the egg-laying rate and hatching rate of aged breeder hens (P < 0.05). HF treatment reduced the serum TG, T-CHO and L-LDL levels (P < 0.05), and upregulated the mRNA expressions of ESR1, ESR2, VTGⅡ, ApoB, and ApoVI in the liver (P < 0.05). Serum estrogen levels in HF treated groups were elevated compared with the CON group (P < 0.05). In the HHF group, the number of the primordial follicles was higher in comparison with the CON group (P < 0.05). Furthermore, dietary supplementation with HF improved the activity of antioxidant enzymes (T-AOC, GSH-Pχ) (P < 0.05), following with the reversed ovarian apoptosis and morphological damage. In addition, 60 mg/kg dietary HF upregulated the protein expression of PCNA and Nrf2 in the ovary (P < 0.05). In summary, dietary supplementation with HF could improve the reproduction performance through regulating liver lipid metabolism and improving ovarian function in aged breeder hens.
Collapse
Affiliation(s)
- Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simeng Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Zhang Y, Deng Y, Jin Y, Wang S, Huang X, Li K, Xia W, Ruan D, Wang S, Chen W, Zheng C. Age-related changes in eggshell physical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation in commercial laying ducks. Poult Sci 2021; 101:101573. [PMID: 34847529 PMCID: PMC8637142 DOI: 10.1016/j.psj.2021.101573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/05/2022] Open
Abstract
This study evaluated the changes in eggshell mechanical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation between laying ducks in the peak (young duck) and late phase (aged duck) of production. A total of 84 healthy young (31 wk of age) and 84 healthy aged (65 wk of age) Longyan laying ducks were each divided into 6 replicates of 14 birds, and caged individually. All the ducks were fed in one house with the same corn-soybean meal-based diet for 5 wk. The eggshell mechanical properties (shell proportion, thickness, breaking strength, and fracture toughness) and chemical components (matrix proteins, calcium, phosphorus, and magnesium) decreased in aged laying ducks (P < 0.05). Shell structural indices: total thickness, effective thickness and its proportion decreased, whereas mammillary knob width and its proportion increased (P < 0.05). The regulation values of early fusion, cuffing, caps, and total score of mammillary knobs were higher in aged laying ducks relative to the young ducks (P < 0.05). During the initial, growth and terminal stages of eggshell formation, shell thickness and breaking strength (terminal), shell weight, and its proportion (terminal) decreased in aged laying ducks (P < 0.05). Ultrastructural changes during shell formation indicated that the mammillary-knob density and effective thickness decreased (P < 0.05). Decreases occurred in serum content of phosphorus (growth), and estradiol and calcium contents (terminal) (P < 0.05). Relative expression of Ca2+ transporter and HCO3− exchanger, and matrix proteins genes decreased in aged laying ducks (P < 0.05) at all stages of eggshell formation. Collectively, the decreased incidence of early fusion and caps, increased thickness and width of mammillary knobs, and decreased effective thickness are the crucial differences leading to the compromised mechanical properties of eggshell in the late laying period. A disturbed regulation of calcium metabolism and uterine expression of ion transporters, especially for HCO3− exchange of aged laying ducks likely contribute to age-induced ultrastructural deterioration of the eggshell.
Collapse
Affiliation(s)
- Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yuanzhong Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yongyan Jin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shuang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuebing Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaichao Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Weiguang Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Shenglin Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| |
Collapse
|
32
|
Zhang HD, Zhao XF, Ren ZZ, Tong MQ, Chen JN, Li SY, Chen H, Wang DH. Comparison between different breeds of laying hens in terms of eggshell translucency and its distribution in various ends of the eggshell. Poult Sci 2021; 100:101510. [PMID: 34740065 PMCID: PMC8573183 DOI: 10.1016/j.psj.2021.101510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Eggshell translucency is a ubiquitous external eggshell quality problem caused by variations of eggshell ultrastructure or shell membrane. In previous studies, researchers have widely investigated this phenomenon with nutritional, environmental, and genetic perspectives in many breeds. However, most studies referring to phenotypic measurement of shell translucency have been performed using a relatively subjective two-, three-, or four-grading methods, which made it impossible to compare distribution of shell translucency among different breeds. In this study, we aimed to explore variations of translucent eggshell spots in different breeds and their distribution in blunt, middle, and sharp ends of eggshell using a relatively objective grayscale recognition method. We selected 45 eggs from each flock of pure lines, commercial strains, and Chinese local breeds (10 flocks, aged 60 to 70 wk), and stored them in a constant environment for 5 d. Then measured eggshell translucency using grayscale recognition method. Indicators of shell translucency included sum of spot areas on the whole eggshell (SUSA), sum area of the whole eggshell (SUSHA), RSS (ratio of SUSA to SUSHA), quantity of spots (QS), average spot area in eggshell (AAES), and diameter of spots in eggshell (DS). As results, in Hy-Line Brown, Brown-Egg Dwarf Layer, and Taihang (pink-shelled) breeds, phenotypic intensity of eggshell translucency was slight; in Rhode Island Red, Jingfen-1, and Dongxiang breeds, phenotypic intensity of eggshell translucency was relatively extensive; and in Jinghong-1, Hy-Line Sonia, White Leghorn, and Taihang (blue-shelled), phenotypic intensity of eggshell translucency was at an intermediate level. In general, the larger the RSS, the larger the QS, AAES, and DS. Of 3 ends for most breeds, eggshell translucency of blunt and sharp ends was usually greater than that of middle ends, and blunt ends seemed to have the most extensive eggshell translucency. Findings from this study could provide a reference for population selection to locate genes regulating shell translucency and to explore the physical structure mechanism for eggshell translucency formation.
Collapse
Affiliation(s)
- Han-Da Zhang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xin-Fa Zhao
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zi-Zhen Ren
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ming-Qi Tong
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jun-Nan Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuai-Ying Li
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Hui Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - De-He Wang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
33
|
Lu MY, Xu L, Qi GH, Zhang HJ, Qiu K, Wang J, Wu SG. Mechanisms associated with the depigmentation of brown eggshells: a review. Poult Sci 2021; 100:101273. [PMID: 34214744 PMCID: PMC8258675 DOI: 10.1016/j.psj.2021.101273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Eggshell color is an important shell quality trait that influences consumer preference. It is also of particular importance with respect to sexual signaling and the physiological and mechanical properties of shell pigment. Pigments include protoporphyrin IX, biliverdin, and traces of biliverdin zinc chelates, with brown eggs being notably rich in protoporphyrin IX, the synthesis of which has a marked effect on the intensity of brown eggshell color. This pigment is initially synthesized in the eggshell gland within the oviduct of laying hens and is subsequently deposited throughout the cuticular and calcareous layers of brown eggshell. In this review, we describe the factors affecting brown eggshell color and potential targets for the regulation of pigment synthesis. Protoporphyrin IX synthesis might be compromised by synthetase-mediated pigment synthesis, the redox status of the female birds, and regulation of the nuclear transcription factors associated with δ-aminolevulinic acid synthetase1. We believe that this review will provide a valuable reference for those engaged in studying eggshell depigmentation.
Collapse
Affiliation(s)
- Ming-Yuan Lu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
34
|
Cardoso MJ, Nicolau AI, Borda D, Nielsen L, Maia RL, Møretrø T, Ferreira V, Knøchel S, Langsrud S, Teixeira P. Salmonella in eggs: From shopping to consumption-A review providing an evidence-based analysis of risk factors. Compr Rev Food Sci Food Saf 2021; 20:2716-2741. [PMID: 33960652 DOI: 10.1111/1541-4337.12753] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Nontyphoidal salmonellae are among the most prevalent foodborne pathogens causing gastrointestinal infections worldwide. A high number of cases and outbreaks of salmonellosis are associated with the consumption of eggs and egg products, and several of these occur at the household level. The aim of the current study is to critically evaluate the current status of knowledge on Salmonella in eggs from a consumer's perspective, analyzing the hazard occurrence and the good practices that should be applied to reduce salmonellosis risk. Following a HACCP (Hazard Analysis and Critical Control Point) based approach, some steps along the food journey were identified as Critical Consumer Handling (CCH)-steps in which consumers, through their behavior or choice, can significantly reduce the level of Salmonella in eggs and egg products. From shopping/collecting to consumption, each of these steps is discussed in this review to provide an evidence-based overview of risk factors of human salmonellosis related to egg consumption. The main message to consumers is to choose Salmonella-free eggs (those that some official entity or producer guarantees that does not contain Salmonella), when available, especially for dishes that are not fully heat treated. Second, as guaranteed Salmonella-free eggs are only available in a few countries, refrigerated storage from the point of collection and proper cooking will significantly reduce the risk of salmonellosis. This will require a revision of the actual recommendations/regulations, as not all ensure that eggs are maintained at temperatures that prevent growth of Salmonella from collection until the time of purchasing.
Collapse
Affiliation(s)
- Maria João Cardoso
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Line Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Rui Leandro Maia
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal
| | - Trond Møretrø
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Solveig Langsrud
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
35
|
González Ariza A, Arando Arbulu A, Navas González FJ, Delgado Bermejo JV, Camacho Vallejo ME. Discriminant Canonical Analysis as a Validation Tool for Multivariety Native Breed Egg Commercial Quality Classification. Foods 2021; 10:foods10030632. [PMID: 33802707 PMCID: PMC8002516 DOI: 10.3390/foods10030632] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to develop a tool to validate multivariety breed egg quality classification depending on quality-related internal and external traits using a discriminant canonical analysis approach. A flock of 60 Utrerana hens (Franciscan, White, Black, and Partridge) and a control group of 10 Leghorn hens were placed in individual cages to follow the traceability of the eggs and perform an individual internal and external quality assessment. Egg groups were determined depending on their commercial size (S, M, L, and XL), laying hen breed, and variety. Egg weight, major diameter, minor diameter, shell b*, albumen height, and the presence or absence of visual defects in yolk and/or albumen showed multicollinearity problems (variance inflation factor (VIF) > 5) and were discarded. Albumen weight, eggshell weight, and yolk weight were the most responsible traits for the differences among egg quality categories (Wilks’ lambda: 0.335, 0.539, and 0.566 for albumen weight, eggshell weight, and yolk weight, respectively). The combination of traits in the first two dimensions explained 55.02% and 20.62% variability among groups, respectively. Shared properties between Partridge and Franciscan varieties may stem from their eggs presenting heavier yolks and slightly lower weights, while White Utrerana and Leghorn hens’ similarities may be ascribed to hybridization reminiscences.
Collapse
Affiliation(s)
- Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
| | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
| | - Francisco Javier Navas González
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Alameda del Obispo, 14004 Córdoba, Spain;
- Correspondence: ; Tel.: +34-638-535-046 (ext. 621262)
| | - Juan Vicente Delgado Bermejo
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain; (A.G.A.); (A.A.A.); (J.V.D.B.)
| | | |
Collapse
|
36
|
Xin Q, Wang M, Jiao H, Zhao J, Li H, Wang X, Lin H. Prolonged scotophase within a 24 hour light regime improves eggshell quality by enhancing calcium deposition in laying hens. Poult Sci 2021; 100:101098. [PMID: 34051406 PMCID: PMC8165574 DOI: 10.1016/j.psj.2021.101098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/27/2021] [Indexed: 11/26/2022] Open
Abstract
Calcium (Ca) and phosphorus (P) transporters are responsible for their absorption and transport in small intestine and kidney, contributing to eggshell formation. The light-dark cycle is a primary cue in the reproduction of laying hen. In this study, we investigated the effect of different light-dark programs on eggshell quality and the expression of genes related to Ca and P transportation in laying hens. Seventy-two 56-week-old laying hens were randomly divided into two groups and reared at 16-h light and 8-h dark (control) or 9-h light and 15-h dark regime (long dark phase, LDP). The expressions of calcium transporter calbindin-D28k (CaBP-D28k), plasma membrane Ca ATPase 1b (PMCA1b), and phosphorus transporter NaPi-IIb (NPt2b) and NaPi-IIa (NPt2a) were measured in the small intestine, kidney, and eggshell gland. The results showed that feed intake (P < 0.001) and egg weight (P = 0.05) were decreased by LDP treatment. Compared with control, the eggshell hardness was increased (P = 0.011) by LDP treatment, but the eggshell thickness and the percentage of eggshell were not changed. The Ca and P contents in eggshell were increased by LDP treatment. During the scotophase, LDP-hens showed higher serum Ca (P = 0.0056) and P levels (P = 0.079) but lower alkaline phosphatase (ALP) activity than that of control hens. In the duodenum, the relative higher expression of CaBP-D28k and PMCA1b in scotophase compared to photophase was masked by LDP treatment. The expression of CaBP-D28k and osteopontin (OPN) in the eggshell gland were increased by LDP treatment, compared to control hens. In the jejunum, the protein expression levels of CaBP-D28k and PMCA1b decreased during photophase in LDP-hens. The result indicates that the increased blood Ca and P concentration during scotophase by LPD treatment is beneficial to the deposition of Ca and P in the eggshell. The result offers an alternative strategy for managing laying hens with poor eggshell quality.
Collapse
Affiliation(s)
- Qian Xin
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Minghui Wang
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Hongchao Jiao
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Hai Lin
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China.
| |
Collapse
|
37
|
Wang LC, Ruan ZT, Wu ZW, Yu QL, Chen F, Zhang XF, Zhang FM, Linhardt RJ, Liu ZG. Geometrical characteristics of eggs from 3 poultry species. Poult Sci 2021; 100:100965. [PMID: 33652534 PMCID: PMC7936192 DOI: 10.1016/j.psj.2020.12.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022] Open
Abstract
We studied the correlations between egg geometrical parameters (i.e., egg shape index, sphericity, geometric mean diameter, surface area, and volume) and eggshell qualities, or the organic matrix in eggshell. Eggs were collected from 5 poultry breeds belonging to 3 species (commercial Hy-line Brown Chicken, Shaoxing Duck, Jinding Duck, Taihu Goose, and Zhedong White Goose). The geometrical parameters showed high variation among 3 species of poultry, and even between breeds in the same species. The five geometrical parameters were grouped into 2 sets, one contained shape index and sphericity, the other comprised geometric mean diameter, surface area, and volume. The parameters in the same set can be perfectly fitted to one another. Egg weight, shell membrane weight, and calcified shell weight were significantly correlated with geometric mean diameter, surface area, and volume. In accordance with false discovery rate-adjusted P value, both shell membrane relative weight and calcified shell thickness showed no significant correlations with any of the geometrical parameters. However, the correlations between geometrical parameters and other shell variables (calcified shell weight, shell relative weight, calcified shell thickness uniformity, and eggshell breaking strength) depend on breed. Both constitutive proportions and percentage contents of 3 eggshell matrix components (acid-insoluble, water-insoluble, and both acid and water facultative-soluble matrix) had no effects on egg shape and size. The correlations between the amounts of various shell matrix, egg shape and size depend on breed or species. This study provides a methodology and the correlation between geometrical parameters and eggshell qualities, and between geometrical parameters and organic matrix components in calcified shells.
Collapse
Affiliation(s)
- L C Wang
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, China
| | - Z T Ruan
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, China
| | - Z W Wu
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, China
| | - Q L Yu
- Hangzhou Xiaoshan Chicken Breeding Co., Ltd., Hangzhou 311300, Zhejiang, China
| | - F Chen
- Hangzhou Xiaoshan Chicken Breeding Co., Ltd., Hangzhou 311300, Zhejiang, China
| | - X F Zhang
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, China
| | - F M Zhang
- Departments of Chemical and Biological Engineering, Chemistry and Chemical Biology, Biology, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, New York, USA
| | - R J Linhardt
- Departments of Chemical and Biological Engineering, Chemistry and Chemical Biology, Biology, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy 12180, New York, USA
| | - Z G Liu
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Lin'an 311300, Zhejiang, China.
| |
Collapse
|
38
|
Hamilton RMG, Bryden WL. Relationship between egg shell breakage and laying hen housing systems – an overview. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1878480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- R. M. G. Hamilton
- Bedford, Nova Scotia, Canada (Formerly, Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia)
| | - W. L. Bryden
- Poultry Science Unit, School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
39
|
Kraus A, Zita L, Krunt O, Härtlová H, Chmelíková E. Determination of selected biochemical parameters in blood serum and egg quality of Czech and Slovak native hens depending on the housing system and hen age. Poult Sci 2021; 100:1142-1153. [PMID: 33518073 PMCID: PMC7858131 DOI: 10.1016/j.psj.2020.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to determine and evaluate the impact of the age and housing system on blood indicators (triacylglycerides, total cholesterol, aspartate aminotransferase, total proteins, albumin, glucose) and physical egg quality parameters (egg weight, shape index and surface area, eggshell proportion, thickness, strength, and color, albumen proportion and index, Haugh units, yolk proportion, index and yolk-to-albumen ratio) in selected native breeds of the Czech Republic (the Czech Golden Spotted hens) and Slovakia (the Oravka hens). Furthermore, the concentration of cholesterol in the yolk was determined. A total of 132 animals were used. There were 60 eggs collected from each breed at each monitored period for the evaluation of egg quality. Blood samples were taken by puncture of a wing vein. The assessments were made when the hens were of 34, 42, and 50 weeks old. Enriched cages and floor pens with litter were used as housing systems. The effects of breed, housing system, and age were observed. Furthermore, interactions among these factors were calculated. The significant effect of housing system was found in total cholesterol (P = 0.098) and aspartate aminotransferase (P = 0.0343) and the significant effect of age in total protein (P = 0.0392). The significant effect of breed (P = 0.0199), housing system (P = 0.0001), and age (P = 0.0001) was found in concentration of cholesterol in the yolk. Regarding the egg quality, the significant effect of breed (P = 0.0001) was found in eggshell color, albumen index and Haugh units, whereas the significant effect of housing system was found in egg weight (P = 0.0002), egg surface area (P = 0.0003), eggshell proportion (P = 0.0460), thickness (P = 0.0216), strength (P = 0.0049), and color (P = 0.0009). The significant effect of age was determined in all parameters except for the eggshell proportion and strength. The results represent an interesting comparison of changes in biochemical blood and egg quality parameters. It is necessary to further evaluate these indicators, especially in other genetic resources of hens, where the data are often nonexisting.
Collapse
Affiliation(s)
- Adam Kraus
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, 165 00 Prague, Suchdol, Czech Republic.
| | - Lukáš Zita
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, 165 00 Prague, Suchdol, Czech Republic
| | - Ondřej Krunt
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, 165 00 Prague, Suchdol, Czech Republic
| | - Helena Härtlová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, 165 00 Prague, Suchdol, Czech Republic
| | - Eva Chmelíková
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, 165 00 Prague, Suchdol, Czech Republic
| |
Collapse
|
40
|
Liu Y, Ren X, Yu H, Cheng Y, Guo Y, Yao W, Xie Y. Non-destructive and online egg freshness assessment from the egg shell based on Raman spectroscopy. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Mitochondrial transcription factor A induces the declined mitochondrial biogenesis correlative with depigmentation of brown eggshell in aged laying hens. Poult Sci 2020; 100:100811. [PMID: 33518349 PMCID: PMC7936150 DOI: 10.1016/j.psj.2020.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 11/21/2022] Open
Abstract
Eggshell color is an important characteristic for poultry eggs. Eggs from aged hens usually have poor shell color that is unacceptable for the table egg market. The objective of this study was to examine effects of pigment synthesis and mitochondrial biogenesis on brown eggshell color of aged laying hens. In this trial, 8 hens laying eggs with darker shell color and 8 hens laying eggs with lighter shell color were selected from 300 62-week-old Hy-Line brown-egg laying hens. Results showed that egg weight (P < 0.05), eggshell weight (P < 0.01), protoporphyrin IX (Pp IX) content of the eggshell and the shell gland (P < 0.001), and biliverdin content of the shell gland (P < 0.001) were significantly declined in the light-shell group compared with the dark-shell group. Relative mRNA expression of δ-aminolevulinic acid synthase1 (ALAS1) (P < 0.05), coproporphyrinogen oxidase (P < 0.01), ATP-binding cassette transporter ABCG2 (P < 0.01), and mitochondrial transcription factor A (P < 0.05) was reduced in hens laying lighter brown eggshell. Moreover relative mRNA expression of mitochondrial DNA copy number (P < 0.01), mitochondrial NADH dehydrogenase subunit 4 (P < 0.05), mitochondrial ATP synthase F0 subunit 8 (P < 0.05), and mitochondrial cytochrome c oxidase 1 (P < 0.01) was significantly decreased in the shell gland of the light-shell group. In addition, NAD+ contents of the shell gland were increased in the dark-shell group (P < 0.01). Brown eggshell depigmentation is a result of decreased Pp IX content in the eggshell and the shell gland. Decreased mitochondrial biogenesis may contribute to the depigmentation of brown eggshell by targeting ALAS1 and ALAS1-mediated Pp IX biosynthesis.
Collapse
|
42
|
Feng J, Zhang HJ, Wu SG, Qi GH, Wang J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens. BMC Genomics 2020; 21:770. [PMID: 33167850 PMCID: PMC7654033 DOI: 10.1186/s12864-020-07177-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lower eggshell quality in the late laying period leads to economic loss. It is a major threat to the quality and safety of egg products. Age-related variations in ultrastructure were thought to induce this deterioration. Eggshell formation is a highly complex process under precise regulation of genes and biological pathways in uterus of laying hens. Herein, we evaluated the physical, mechanical and ultrastructure properties of eggshell and conducted RNA sequencing to learn the transcriptomic differences in uterus between laying hens in the peak (young hens) and late phase (aged hens) of production. Results The declined breaking strength and fracture toughness of eggshell were observed in aged hen group compared to those in young hen group, accompanied with ultrastructure variations including the increased thickness of mammillary layer and the decreased incidence of early fusion. During the initial stage of eggshell formation, a total of 183 differentially expressed genes (DEGs; 125 upregulated and 58 downregulated) were identified in uterus of laying hens in the late phase in relative to those at peak production. The DEGs annotated to Gene Ontology terms related to antigen processing and presentation were downregulated in aged hens compared to young hens. The contents of proinflammatory cytokine IL-1β in uterus were higher in aged hens relative to those in young hens. Besides, the genes of some matrix proteins potentially involved in eggshell mineralization, such as ovalbumin, versican and glypican 3, were also differentially expressed between two groups. Conclusions Altered gene expression of matrix proteins along with the compromised immune function in uterus of laying hens in the late phase of production may conduce to age-related impairments of eggshell ultrastructure and mechanical properties. The current study enhances our understanding of the age-related deteriorations in eggshell ultrastructure and provides potential targets for improvement of eggshell quality in the late laying period. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07177-7.
Collapse
Affiliation(s)
- Jia Feng
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
43
|
Chen F, Zhang H, Du E, Jin F, Zheng C, Fan Q, Zhao N, Guo W, Zhang W, Huang S, Wei J. Effects of magnolol on egg production, egg quality, antioxidant capacity, and intestinal health of laying hens in the late phase of the laying cycle. Poult Sci 2020; 100:835-843. [PMID: 33518137 PMCID: PMC7858092 DOI: 10.1016/j.psj.2020.10.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Magnolol is a multifunctional plant polyphenol. To evaluate the effects of magnolol on laying hens in the late laying period, 360 (50-week-old) laying hens were randomly assigned to 4 dietary treatments: a non-supplemented control diet (C), and control diets supplemented with 100, 200, and 300 mg/kg of magnolol (M100, M200, and M300), respectively. Each treatment had 6 replicates with 15 hens per replicate. Results showed that dietary supplementation of 200 and 300 mg/kg of magnolol increased the laying rate and the M200 group had a lower feed conversion ratio (P < 0.05). Magnolol supplementation (200 and 300 mg/kg) could linearly increase albumen height and Haugh unit of fresh eggs in the late phase of the laying cycle (P < 0.01). And magnolol linearly alleviated the decline of the albumen height and Haugh unit of eggs stored for 14 d (P < 0.01). The total superoxide dismutase activity in the ovaries of M100 group was greater than that in the other treatments (P < 0.05). As dietary magnolol levels increased, villus height of jejunum and ileum linearly increased (P < 0.01). M200 and M300 groups had higher expression level of occludin in the ileum compared with group C (P < 0.01). The level of nitric oxide production and inducible nitric oxide synthase expression in the ileum of M200 group were lower than that in the C group (P < 0.05). In conclusion, dietary supplementation of 200 and 300 mg/kg magnolol can improve hen performance, albumen quality of fresh and storage eggs, and hepatic lipid metabolism in the late laying cycle. Also, magnolol has a good effect on increasing villi and improving the intestinal mucosal mechanical barrier function.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis of Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Chao Zheng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
44
|
Jiang J, Qi L, Dai H, Hu C, Lv Z, Wei Q, Shi F. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Lolli S, Grilli G, Ferrari L, Battelli G, Pozzo S, Galasso I, Russo R, Brasca M, Reggiani R, Ferrante V. Effect of Different Percentage of Camelina sativa Cake in Laying Hens Diet: Performance, Welfare, and Eggshell Quality. Animals (Basel) 2020; 10:E1396. [PMID: 32796606 PMCID: PMC7459675 DOI: 10.3390/ani10081396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022] Open
Abstract
Although camelina [Camelina sativa (L.) Crantz] is a good source of protein, antioxidants, and polyunsaturated fatty acids, its antinutritional compounds limit its use in animal feeding. The aim of this study was to verify the effect of feeding laying hens with up to 20% of camelina cake from a breeding line containing a low level of glucosinolates on performance, welfare, and eggshell quality. Two hundred and forty Hy-Line® hens from 18 to 51 weeks of age were divided into three treatments: control (C), camelina cake 10% (CAM10), and camelina cake 20% (CAM20). Egg number was recorded daily, while egg weight, feed consumption, and mortality were recorded weekly. At 24 and 43 weeks of hen age, shell resistance to fracture was measured. Our results demonstrate no detrimental effects for CAM10 and CAM20 diets on feed intake, growth performance, and welfare. No difference in egg production was detected among the diets. The significant (p < 0.05) interaction of diet and age factors suggest that the addition of camelina cake, up to 20%, likely protects the eggshell of older hens. Our findings confirm that camelina cake might be an alternative and sustainable protein source for hens.
Collapse
Affiliation(s)
- Susanna Lolli
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy; (S.L.); (L.F.)
| | - Guido Grilli
- Department of Veterinary Medicine, Università degli Studi di Milano, via dell’Università 6, 26900 Lodi, Italy;
| | - Lorenzo Ferrari
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy; (S.L.); (L.F.)
| | - Giovanna Battelli
- National Research Council, Institute of Sciences of Food Production, via G. Celoria 2, 20133 Milano, Italy; (G.B.); (S.P.); (M.B.)
| | - Sara Pozzo
- National Research Council, Institute of Sciences of Food Production, via G. Celoria 2, 20133 Milano, Italy; (G.B.); (S.P.); (M.B.)
| | - Incoronata Galasso
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Bassini 15, 20133 Milano, Italy; (I.G.); (R.R.); (R.R.)
| | - Roberto Russo
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Bassini 15, 20133 Milano, Italy; (I.G.); (R.R.); (R.R.)
| | - Milena Brasca
- National Research Council, Institute of Sciences of Food Production, via G. Celoria 2, 20133 Milano, Italy; (G.B.); (S.P.); (M.B.)
| | - Remo Reggiani
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Bassini 15, 20133 Milano, Italy; (I.G.); (R.R.); (R.R.)
| | - Valentina Ferrante
- Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy; (S.L.); (L.F.)
| |
Collapse
|
46
|
Metabolomics Approach Reveals the Effects of Breed and Feed on the Composition of Chicken Eggs. Metabolites 2019; 9:metabo9100224. [PMID: 31614916 PMCID: PMC6835386 DOI: 10.3390/metabo9100224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/07/2023] Open
Abstract
Chicken eggs provide essential nutrients to consumers around the world. Although both genetic and environmental factors influence the quality of eggs, it is unclear how these factors affect the egg traits including egg metabolites. In this study, we investigated breed and feed effects on 10 egg traits, using two breeds (Rhode Island Red and Australorp) and two feed conditions (mixed feed and fermented feed). We also used gas chromatography-mass spectrometry (GC-MS/MS) to analyze 138 yolk and 132 albumen metabolites. Significant breed effects were found on yolk weight, eggshell weight, eggshell colors, and one albumen metabolite (ribitol). Three yolk metabolites (erythritol, threitol, and urea) and 12 albumen metabolites (erythritol, threitol, ribitol, linoleic acid, isoleucine, dihydrouracil, 4-hydroxyphenyllactic acid, alanine, glycine, N-butyrylglycine, pyruvic acid, and valine) were significantly altered by feed, and a significant interaction between breed and feed was discovered in one albumen metabolite (N-butyrylglycine). Yolk and albumin had higher levels of sugar alcohols when hens were fed a fermented diet, which indicates that sugar alcohol content can be transferred from diet into eggs. Linoleic acid was also enriched in albumen under fermented feed conditions. This study shows that yolk and albumen metabolites will be affected by breed and feed, which is the first step towards manipulating genetic and environmental factors to create "designer eggs."
Collapse
|
47
|
Fathi MM, Galal A, Ali UM, Abou-Emera OK. Physical and mechanical properties of eggshell as affected by chicken breed and flock age. Br Poult Sci 2019; 60:506-512. [PMID: 31116022 DOI: 10.1080/00071668.2019.1621992] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. A study was conducted to evaluate the relationship among physical and mechanical properties of the eggshell, as affected by breed and hen's age. 2. Data on eggshell quality (external characteristics and derived measurements) were obtained from 322 laying hens, from three breeds (Fayoumi, Dandarawi and Hy-Line Brown) during the laying cycle, starting from 38 wks of age for four experimental periods (38, 46, 54 and 62 wks). 3. Eggs obtained from the Fayoumi breed exhibited the highest shell thickness and breaking force. There was a linear improvement in eggshell quality attributes associated with hen's age up to 54 wks, thereafter a deterioration was found for all breeds. 4. Generally, eggs laid by native breeds (Fayoumi and Dandarawi) had better mechanical properties compared to those produced by the commercial strain (Hy-Line Brown). In addition, the interaction between breed and hen's age was not significant for any physical property or mechanical attribute. There was a highly significant (P ≤ 0.01) positive correlation between the breaking force and either eggshell toughness or shell thickness, and regression analyses suggested that eggshell toughness was the best predictor for breaking force, followed by shell thickness.
Collapse
Affiliation(s)
- M M Fathi
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University , Al-Qassim , Saudi Arabia.,Department of Poultry Production, Faculty of Agriculture, Ain Shams University , Cairo , Egypt
| | - A Galal
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University , Cairo , Egypt
| | - U M Ali
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University , Cairo , Egypt
| | - O K Abou-Emera
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University , Al-Qassim , Saudi Arabia.,Department of Poultry Breeding, Animal Production Research Institute, Agriculture Research Centre, Dokki , Giza , Egypt
| |
Collapse
|
48
|
Dunn IC, Woolliams JA, Wilson PW, Icken W, Cavero D, Jones AC, Quinlan-Pluck F, Williams GOS, Olori V, Bain MM. Genetic variation and potential for genetic improvement of cuticle deposition on chicken eggs. Genet Sel Evol 2019; 51:25. [PMID: 31164080 PMCID: PMC6549311 DOI: 10.1186/s12711-019-0467-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/17/2019] [Indexed: 11/17/2022] Open
Abstract
Background The cuticle is an invisible glycosylated protein layer that covers the outside of the eggshell and forms a barrier to the transmission of microorganisms. Cuticle-specific staining and in situ absorbance measurements have been used to quantify cuticle deposition in several pure breeds of chicken. For brown eggs, a pre-stain and a post-stain absorbance measurement is required to correct for intrinsic absorption by the natural pigment. For white eggs, a post-stain absorbance measurement alone is sufficient to estimate cuticle deposition. The objective of the research was to estimate genetic parameters and provide data to promote adoption of the technique to increase cuticle deposition and reduce vertical transmission of microorganisms. Results For all pure breeds examined here, i.e. Rhode Island Red, two White Leghorns, White Rock and a broiler breed, the estimate of heritability for cuticle deposition from a meta-analysis was moderately high (0.38 ± 0.04). In the Rhode Island Red breed, the estimate of the genetic correlation between measurements recorded at early and late times during the egg-laying period was ~ 1. There was no negative genetic correlation between cuticle deposition and production traits. Estimates of the genetic correlation of cuticle deposition with shell color ranged from negative values or 0 in brown-egg layers to positive values in white- or tinted-egg layers. Using the intrinsic fluorescence of tryptophan in the cuticle proteins to quantify the amount of cuticle deposition failed because of complex quenching processes. Tryptophan fluorescence intensity at 330 nm was moderately heritable, but there was no evidence of a non-zero genetic correlation with cuticle deposition. This was complicated furthermore by a negative genetic correlation of fluorescence with color in brown eggs, due to the quenching of tryptophan fluorescence by energy transfer to protoporphyrin pigment. We also confirmed that removal of the cuticle increased reflection of ultraviolet wavelengths from the egg. Conclusions These results provide additional evidence for the need to incorporate cuticle deposition into breeding programs of egg- and meat-type birds in order to reduce vertical and horizontal transmission of potentially pathogenic organisms and to help improve biosecurity in poultry. Electronic supplementary material The online version of this article (10.1186/s12711-019-0467-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian C Dunn
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK.
| | - John A Woolliams
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK
| | | | | | - Anita C Jones
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | - Fiona Quinlan-Pluck
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | - Gareth O S Williams
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | | | - Maureen M Bain
- College of Medical, Veterinary and Life Sciences (MVLS), IBAHCM, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
49
|
González Ariza A, Navas González FJ, Arando Arbulu A, León Jurado JM, Barba Capote CJ, Camacho Vallejo ME. Non-Parametrical Canonical Analysis of Quality-Related Characteristics of Eggs of Different Varieties of Native Hens Compared to Laying Lineage. Animals (Basel) 2019; 9:ani9040153. [PMID: 30970531 PMCID: PMC6523069 DOI: 10.3390/ani9040153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The development of new more productive lines of laying hens has displaced native breeds to second place; therefore, new lines of research that ensure the conservation of local breeds and biodiversity are increasingly necessary. The aim of the present study is to characterize the productive capability of Utrerana and to compare the relationships among parameters determining the internal and external quality of the egg, through canonical correlation analysis. We used a flock of 68 Utrerana hens with animals of each of its four varieties (white, black, Franciscan and partridge), and a group of 17 Leghorn hens as a control group. The breed and variety significantly affected egg characteristics. The external and internal quality parameters of the egg were evaluated and reported results providing consistent data for the characterization of the products from this breed. This productive characterization could benefit the conservation of the Utrerana breed, the establishment of livestock models that adapt to it and the search for a market in which this product could be used. Abstract The aim of the present study is to characterize the productive capability of Utrerana and to compare the relationships among parameters determining the internal and external quality of the egg, through canonical correlation analysis. A flock of 68 Utrerana hens and a control group of Leghorn hens (n = 17) were housed individually to allow individual identification of eggs and for the assessment of egg quality characteristics. Almost all variables showed differences when both breeds were compared, except for white height, yolk diameter, yolkL* and yolk pH (p > 0.05). Only minor diameter, white height, yolkL*, yolka*, and shell weight reported significant differences between laying age groups. White height, yolk color, and almost all yolk color coordinates were significantly different (p < 0.05) for period and month. Egg and white weight reached highest significantly different levels for the fourth and fifth time that the hens laid an egg. External quality-related traits are better predictors of internal quality-related traits than vice versa, enabling the implementation of an effective noninvasive method for internal quality determination and egg classification aimed at suiting the needs of consumers.
Collapse
Affiliation(s)
- Antonio González Ariza
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain.
| | | | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain.
| | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain.
| | - Cecilio José Barba Capote
- Department of Animal Production, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain.
| | | |
Collapse
|
50
|
Bain MM, Zheng J, Zigler M, Whenham N, Quinlan-Pluck F, Jones AC, Roberts M, Icken W, Olori VE, Dunn IC. Cuticle deposition improves the biosecurity of eggs through the laying cycle and can be measured on hatching eggs without compromising embryonic development. Poult Sci 2019; 98:1775-1784. [DOI: 10.3382/ps/pey528] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022] Open
|