1
|
Shanmugasundaram R, Kappari L, Pilewar M, Jones MK, Olukosi OA, Pokoo-Aikins A, Applegate TJ, Glenn AE. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins (Basel) 2025; 17:16. [PMID: 39852969 PMCID: PMC11769399 DOI: 10.3390/toxins17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.0 FUM + 3.0 DON + 0.8 ZEA; T3: 14.0 FUM + 3.5 DON + 0.7 ZEA; T4: 26.0 FUM + 1.0 DON + 0.2 ZEA; T5: 7.7 FUM + 0.4 DON + 0.1 ZEA; T6: 3.6 FUM + 2.5 DON + 0.9 ZEA; T7: 0.8 FUM + 1.0 DON + 0.3 ZEA; T8: 1.0 FUM + 0.5 DON + 0.1 ZEA, all in mg/kg diet. The results showed that exposure to higher mycotoxin concentrations, T2 and T3, had significantly reduced body weight gain (BWG) by 17% on d35 (p < 0.05). The T2, T3, and T4 groups had a significant decrease in villi length in the jejunum and ileum (p < 0.05) and disruption of tight junction proteins, occludin, and claudin-4 (p < 0.05). Higher mycotoxin groups T2 to T6 had a reduction in the digestibility of amino acids methionine (p < 0.05), aspartate (p < 0.05), and serine (p < 0.05); a reduction in CD4+, CD8+ T-cell populations (p < 0.05) and an increase in T regulatory cell percentages in the spleen (p < 0.05); a decrease in splenic macrophage nitric oxide production and total IgA production (p < 0.05); and upregulated cytochrome P450-1A1 and 1A4 gene expression (p < 0.05). Birds fed the lower mycotoxin concentration groups, T7 and T8, did not have a significant effect on performance, intestinal health, and immune responses, suggesting that these concentrations pose the least negative effects in broiler chickens. These findings are essential for developing acceptable thresholds for combined mycotoxin exposure and efficient feed management strategies to improve broiler performance.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Laharika Kappari
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mohammad Pilewar
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Matthew K. Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677, USA
| | | | - Anthony Pokoo-Aikins
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony E. Glenn
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
2
|
Al Amaz S, Mishra B. Embryonic thermal manipulation: a potential strategy to mitigate heat stress in broiler chickens for sustainable poultry production. J Anim Sci Biotechnol 2024; 15:75. [PMID: 38831417 PMCID: PMC11149204 DOI: 10.1186/s40104-024-01028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Due to high environmental temperatures and climate change, heat stress is a severe concern for poultry health and production, increasing the propensity for food insecurity. With climate change causing higher temperatures and erratic weather patterns in recent years, poultry are increasingly vulnerable to this environmental stressor. To mitigate heat stress, nutritional, genetic, and managerial strategies have been implemented with some success. However, these strategies did not adequately and sustainably reduce the heat stress. Therefore, it is crucial to take proactive measures to mitigate the effects of heat stress on poultry, ensuring optimal production and promoting poultry well-being. Embryonic thermal manipulation (TM) involves manipulating the embryonic environment's temperature to enhance broilers' thermotolerance and growth performance. One of the most significant benefits of this approach is its cost-effectiveness and saving time associated with traditional management practices. Given its numerous advantages, embryonic TM is a promising strategy for enhancing broiler production and profitability in the poultry industry. TM increases the standard incubation temperature in the mid or late embryonic stage to induce epigenetic thermal adaption and embryonic metabolism. Therefore, this review aims to summarize the available literature and scientific evidence of the beneficial effect of pre-hatch thermal manipulation on broiler health and performance.
Collapse
Affiliation(s)
- Sadid Al Amaz
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Xu C, Sun D, Liu Y, Pan Z, Dai Z, Chen F, Guo R, Chen R, Shi Z, Ying S. Effects of ambient temperature on growth performance, slaughter traits, meat quality and serum antioxidant function in Pekin duck. Front Vet Sci 2024; 11:1363355. [PMID: 38601909 PMCID: PMC11005821 DOI: 10.3389/fvets.2024.1363355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
The present study investigated the effects of temperature on growth performance, slaughtering traits, meat quality and antioxidant function of Pekin ducks from 21-42 d of age. Single factor analysis of variance was used in this experiment, 144 21 d-old Pekin ducks were randomly allotted to 4 environmentally controlled chambers: T20 (20°C), T23 (23°C), T26 (26°C) and T29 (29°C), with 3 replicates in each group (12 ducks in each replicate), the relative humidity of all groups is 74%. During the 21-day trial period, feed and water were freely available. At 42 d, the BW (body weight) and ADG (average daily gain) of T26 were significantly lower than T20 (p < 0.05), and the T29 was significantly lower than T20 and T23 (p < 0.05). The ADFI (average daily feed intake) of T26 and T29 were significantly lower than T20 and T23 (p < 0.05). Compared to the T29, the T20 showed a significant increase oblique body length and chest width, and both the keel length and thigh muscle weight significantly increased in both the T20 and T23, while the pectoral muscle weight increased significantly in other groups (p < 0.05). The cooking loss of the T29 was the lowest (p < 0.05). The T-AOC (total antioxidant capacity) of T29 was significantly higher than the other groups (p < 0.05), the SOD (superoxide dismutase) in the T29 was significantly higher than the T23 and T26 (p < 0.05). In conditions of 74% relative humidity, the BW and ADFI of Pekin ducks significantly decrease when the environmental temperature exceeds 26°C, and the development of body size and muscle weight follows this pattern. The growth development and serum redox state of Pekin ducks are more ideal and stable at temperatures of 20°C and 23°C.
Collapse
Affiliation(s)
- Congcong Xu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Animal Science and Technology, Beijing University of Agricultural, Beijing, China
| | - Dongyue Sun
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Liu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ziyi Pan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zichun Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fang Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rihong Guo
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
4
|
Khalil KM, El-Shater S, Rizk H, Khalifa E. Embryonic thermal manipulation of poultry birds: Lucrative and deleterious effects. J Anim Physiol Anim Nutr (Berl) 2024; 108:346-356. [PMID: 37885333 DOI: 10.1111/jpn.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
The major efforts to improve feed conversion, increase the body weight and breast muscle yield of broilers have been focused on feeding and management at the post hatch period. However, incubation temperature is the most significant factor for the egg hatching rate, chick quality, and post hatch performance. Therefore, incubation factors affecting the performance should be taken with necessary precautions. Incubation temperature not only affects the early development of the hatchlings but also has a lasting impact on the characteristics of the chicks, such as final body weight and meat quality traits. This article provides an overview about embryonic thermal manipulation (TM) of domestic fowls and review the lucrative and deleterious effects of embryonic TM on embryo development, muscle growth, thermotolerance acquisition, and immunity.
Collapse
Affiliation(s)
- Karim M Khalil
- Department of Veterinary Medicine, College of Applied and Health Sciences, A'Sharqiyah University, Ibra, Sultanate of Oman
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Saad El-Shater
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy Rizk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elsayed Khalifa
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Goel A, Ncho CM, Gupta V, Choi YH. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. ANIMAL NUTRITION 2023; 13:150-159. [PMID: 37123616 PMCID: PMC10130083 DOI: 10.1016/j.aninu.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Healthy chickens are necessary to meet the ever-increasing demand for poultry meat. Birds are subjected to numerous stressful conditions under commercial rearing systems, including variations in the environmental temperature. However, it is difficult to counter the effects of global warming on the livestock industry. High environmental temperature is a stressful condition that has detrimental effects on growth and production performance, resulting in decreased feed intake, retarded growth, compromised gut health, enhanced oxidative stress, and altered immune responses. Traditional approaches include nutritional modification and housing management to mitigate the harmful effects of hot environments. Currently, broiler chickens are more susceptible to heat stress (HS) than layer chickens because of their high muscle mass and metabolic rate. In this review, we explored the possibility of in ovo manipulation to combat HS in broiler chickens. Given their short lifespan from hatching to market age, embryonic life is thought to be one of the critical periods for achieving these objectives. Chicken embryos can be modulated through either temperature treatment or nourishment to improve thermal tolerance during the rearing phase. We first provided a brief overview of the harmful effects of HS on poultry. An in-depth evaluation was then presented for in ovo feeding and thermal manipulation as emerging strategies to combat the negative effects of HS. Finally, we evaluated a combination of the two methods using the available data. Taken together, these investigations suggest that embryonic manipulation has the potential to confer heat resistance in chickens.
Collapse
|
6
|
Galletta L, Craven MJ, Meillère A, Crowley TM, Buchanan KL, Mariette MM. Acute exposure to high temperature affects expression of heat shock proteins in altricial avian embryos. J Therm Biol 2022; 110:103347. [PMID: 36462856 DOI: 10.1016/j.jtherbio.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
As the world warms, understanding the fundamental mechanisms available to organisms to protect themselves from thermal stress is becoming ever more important. Heat shock proteins are highly conserved molecular chaperones which serve to maintain cellular processes during stress, including thermal extremes. Developing animals may be particularly vulnerable to elevated temperatures, but the relevance of heat shock proteins for developing altricial birds exposed to a thermal stressor has never been investigated. Here, we sought to test whether three stress-induced genes - HSPD1, HSPA2, HSP90AA1 - and two constitutively expressed genes - HSPA8, HSP90B1 - are upregulated in response to acute thermal shock in zebra finch (Taeniopygia guttata) embryos half-way through incubation. Tested on a gradient from 37.5 °C (control) to 45 °C, we found that all genes, except HSPD1, were upregulated. However, not all genes initiated upregulation at the same temperature. For all genes, the best fitting model included a correlate of developmental stage that, although it was never significant after multiple-test correction, hints that heat shock protein upregulation might increase through embryonic development. Together, these results show that altricial avian embryos are capable of upregulating a known protective mechanism against thermal stress, and suggest that these highly conserved cellular mechanisms may be a vital component of early developmental protection under climate change.
Collapse
Affiliation(s)
- Lorenzo Galletta
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Meagan J Craven
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia.
| | - Alizée Meillère
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia; Poultry Hub Australia, University of New England, Armidale, NSW, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.
| |
Collapse
|
7
|
Ramiah SK, Balakrishnan KN, Subramaniam Y, Iyasere OS, Idrus Z. Effects of Thermal Manipulation on mRNA Regulation of Response Genes Regarding Improvement of Thermotolerance Adaptation in Chickens during Embryogenesis. Animals (Basel) 2022; 12:ani12233354. [PMID: 36496875 PMCID: PMC9737942 DOI: 10.3390/ani12233354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
The phenomenon of increasing heat stress (HS) among animals is of particular significance when it is seen in economically significant industries, such as poultry. Due to the identification of the physiological, molecular, and genetic roots of HS responses in chickens, a substantial number of studies have focused on reducing the effects of HS in poultry through environmental management, dietary manipulation, and genetic alterations. Temperature manipulation (TM) during embryogenesis has been claimed to increase the thermal tolerance and well-being of chickens without affecting their capacity for future growth. There has been little investigation into the vulnerability of the epigenome involving TM during embryogenesis, although the cellular pathways activated by HS have been explored in chickens. Epigenetic changes caused by prenatal TM enhance postnatal temperature adaption and produce physiological memory. This work offers a thorough analysis that explains the cumulative impact of HS response genes, such as genes related to heat shock proteins, antioxidants, and immunological genes, which may aid in the enhanced adaptability of chickens that have undergone thermal manipulation during their embryonic stages.
Collapse
Affiliation(s)
- Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (S.K.R.); (K.N.B.); Tel.: +60-3-9769-4286 (S.K.R.)
| | - Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: (S.K.R.); (K.N.B.); Tel.: +60-3-9769-4286 (S.K.R.)
| | - Yashini Subramaniam
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Oluwaseun Serah Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta P.M.B 2240, Nigeria
| | - Zulkifli Idrus
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
8
|
Shanmugasundaram R, Adams D, Ramirez S, Murugesan GR, Applegate TJ, Cunningham S, Pokoo-Aikins A, Glenn AE. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front Physiol 2022; 13:934660. [PMID: 35936897 PMCID: PMC9353554 DOI: 10.3389/fphys.2022.934660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3) FB + DON group (basal diet + 3 mg/kg FB + 4 mg/kg DON + C. perfringens); and 4) FB + DON + NE group (basal diet + 3 mg/kg FB + 4 mg/kg DON + E. maxima + C. perfringens). Birds in NE and FB + DON + NE groups received 2.5 × 103E. maxima on day 14. All birds were inoculated with C. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB + DON, and FB + DON + NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and 22-point increase in FCR respectively, than in the control group. Subclinical doses of FB + DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21. On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased (p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control group and the presence of FB + DON in NE-induced birds further decreased the villi height to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It can be concluded that subclinical doses of combined FB and DON predispose C. perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced birds exacerbated the severity of NE.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: R. Shanmugasundaram,
| | - D. Adams
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Ramirez
- DSM Animal Nutrition and Health, Kaiseraugst, Switzerland
| | | | - T. J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Cunningham
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
9
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
10
|
Shanmugasundaram R, Wick M, Lilburn MS. Effect of a post-hatch lipopolysaccharide challenge in Turkey poults and ducklings after a primary embryonic heat stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103436. [PMID: 31283944 DOI: 10.1016/j.dci.2019.103436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
The effect of embryonic thermal manipulation on the post-hatch immune response to a lipopolysaccharide (LPS) challenge was studied in Pekin ducklings and turkey poults. Commercial duck and turkey eggs were distributed among four treatments: SS-Control (37.5 °C from embryonic day [ED] 1 to 25); SS-LPS (37.5 °C from ED1 to 25 + LPS at D0 [hatch]); HH-LPS (38 °C from ED1 to 25 + LPS at D0; SH-LPS (37.5 °C from ED1 to 10 and 38 °C from ED 11 to 25 + LPS at D0). At ED16 and ED24, the egg shell temperature of the duck and turkey eggs in the HH and SH treatments were higher (P ≤ 0.01) than the SS treatment. Ducklings and poults in the HH treatment had the lowest yolk free body weight at hatch (P ≤ 0.05). At 24, 48, and 72 h post-LPS injection, ducklings and poults in the HH-LPS treatment had significantly reduced BW compared with the SS-Con treatments (P ≤ 0.05). Ducklings and poults in the SH-LPS and HH-LPS treatments had increased plasma heat shock protein 70 (HSP70) and lower splenic HSP70 mRNA amounts than the SS-LPS treatments at 24, and 48 h post-challenge (P ≤ 0.05). At 48 and 72 h, macrophage nitric oxide (NO) production in ducklings and poults in the SH-LPS and HH-LPS treatments was lower than in the SS-LPS treatments (P ≤ 0.05). Ducklings and poults in the SH-LPS treatment had increased thymocyte proliferation compared to the SS-LPS treatment at 24, 48 and 72 h (P ≤ 0.05). At 24 h, ducklings in the SH-LPS treatment had increased splenic IL-10 and reduced IFNγ and IL-6 mRNA abundance. However, both ducklings and poults in the HH-LPS treatment had increased IFNγ, and IL-10 mRNA abundance compared to the SS-LPS treatment (P ≤ 0.05). At 48 h, SH-LPS ducklings and poults had lower splenic IL-10 mRNA abundance (P ≤ 0.05) while the HH-LPS treatment resulted in comparable splenic IL-10 mRNA compared to the SS-LPS treatment (P ≥ 0.05). Ducklings and poults in the SH-LPS treatment had increased thymic and splenic CD8+/CD4+ ratios at 24 h versus the SS-LPS treatment (P ≤ 0.05). In conclusion, embryonic thermal manipulation from ED11-25 increased extracellular HSP70 release, thymocyte proliferation and IL-10 but decreased splenic HSP70 and IFNγ mRNA amounts at 24 h post-LPS injection. This suggests that mild heat stress during the later stages of incubation could potentially prime the embryonic immune system thereby enhances the immune response as earlier than 24 h to eliminate the inflammatory response without affecting the growth performance by increase the extracellular release of HSP70 in both ducklings and poults. Continuous exposure to the small increase in temperature from ED 1-25 (HH) caused an imbalance between pro (IFNγ)- and anti-inflammatory cytokines(IL-10) which affects hatchling responses to an inflammatory challenge and increased mortality. The amount of extracellular HSP70 could potentially play an important role in modulating the immune response against inflammatory challenges.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, The Ohio State University, Wooster, OH, 44691, USA; Department of Poultry Sciences, University of Georgia, Athens, GA, 30602, USA
| | - M Wick
- Department of Animal Sciences, The Ohio State University, Wooster, OH, 44691, USA
| | - M S Lilburn
- Department of Animal Sciences, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
11
|
Saleh KMM, Al-Zghoul MB. Effect of Acute Heat Stress on the mRNA Levels of Cytokines in Broiler Chickens Subjected to Embryonic Thermal Manipulation. Animals (Basel) 2019; 9:E499. [PMID: 31362400 PMCID: PMC6719976 DOI: 10.3390/ani9080499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023] Open
Abstract
Heat stress significantly impacts the immunity and cytokine expression of chickens. However, the effects of embryonic thermal manipulation (TM) on cytokine expression in broiler chickens (broilers) is unclear. The objective of the current study was to evaluate the effects of TM on the splenic mRNA expression dynamics of certain cytokines-namely, IFN-α, IFN-β, IFN-γ, IL-4, IL-8, IL-15, IL-16, IL-17, and IL-18-in broilers during subsequent exposure to acute heat stress (AHS). TM was performed by elevating the incubation temperature to 39 °C at 65% relative humidity (RH) for 18 h daily during embryonic days (ED) 10-18. On post-hatch day 28, AHS was carried out for 7 h at 40 °C. At 0 h and after 1, 3, 5, and 7 h of AHS, splenic tissues were collected from all study groups to evaluate mRNA expression by relative-quantitative real-time (RT)-PCR. Plasma was collected to measure IL-4, IL-8, and IFN-γ levels. At 0 h, TM significantly reduced the basal mRNA level of IFN-β and the plasma level of IFN-γ and IL-8. Moreover, AHS significantly decreased IFN-β in control chicks, decreased IL-4 in both TM and control chicks, and increased IFN-γ and IL-16 in TM chicks. IFN-α, IL-8, IL-15, IL-17, and IL-18 expression all significantly increased during AHS in both TM and control chicks, but expression dynamics were improved in TM chicks for all cytokines (except IL-17). AHS resulted in increased plasma IFN-γ levels in TM chicks only, and increased IL-8 levels at 3 and 5 h of AHS in TM chicks, but at 7 h in control chicks. Lastly, 3 h of AHS increased IL-4 plasma levels in control chicks. The results of this study may indicate that TM has a long-term effect on cytokine expression dynamics of broilers, especially during AHS. Therefore, TM may improve heat tolerance acquisition by increasing the expression of signaling proteins important to tissue stability and to repair mechanisms that are employed during and/or after heat stress recovery.
Collapse
Affiliation(s)
- Khaled M M Saleh
- Department of Applied Biological Sciences, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Mohammad B Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
12
|
Shanmugasundaram R, Wick M, Lilburn MS. Effect of embryonic thermal manipulation on heat shock protein 70 (HSP70) expression and subsequent immune response to post-hatch lipopolysaccharide challenge in Pekin ducklings. Poult Sci 2019; 98:722-733. [PMID: 30285148 DOI: 10.3382/ps/pey460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/06/2018] [Indexed: 11/20/2022] Open
Abstract
During the course of multi-stage incubation, small locational differences in incubation temperature within a machine are not uncommon and so the goal of this study was to study the immune response of ducklings exposed to thermal manipulation during incubation. Commercial Pekin duck eggs (n = 200) were distributed among four treatment: SS-Control (37.5°C from embryonic day [ED] 1 to 25); SS-LPS (37.5°C from ED1 to 25 + LPS at D0 [hatch]); HH-LPS (38°C from ED1 to 25+ LPS at D0); SH-LPS (37.5°C from ED1 to 10 and 38°C from ED 11 to 25 + LPS at D0). At D0, ducklings received a lipopolysaccharide (LPS) injection. At D1 and D5, the HH-LPS treatment significantly reduced body weight (P ≤ 0.05). At D1 and D3 post-LPS injection, the SH-LPS and HH-LPS treatments significantly reduced splenic and bursal heat shock protein 70 (HSP70), mRNA abundance, and macrophage nitric oxide production compared with the SS-LPS treatment (P ≤ 0.05). At D1, the HH-LPS and SH-LPS treatments had increased splenic IL-10 mRNA and lower MHC I mRNA compared with the SS-LPS treatment (P ≤ 0.05). At D1, the HH-LPS treatment increased splenic IL-6 mRNA and bursal IFNγ mRNA transcription while the SH-LPS treatment reduced splenic IL-6 mRNA compared with the SS-LPS treatment (P ≤ 0.05). The HH-LPS treatment reduced thymocyte proliferation efficiency, while at D1, D3, and D5, the SH-LPS treatment increased thymocyte proliferation efficiency compared with the SS-LPS treatment (P ≤ 0.05). Ducklings in the HH-LPS treatment had a higher splenic CD8+/CD4+ ratio compared to the SS-LPS treatment at D3 post-LPS injection (P ≤ 0.05). In summary, the HH-LPS treatment compromised immunocompetence via decreased NO production and thymocyte proliferation efficiency, while the SH-LPS treatment increased body weight and thymocyte proliferation and reduced IL-6 mRNA abundance. This suggests that an embryonic temperature stress during the latter half of incubation may prime the immune system which may be beneficial during secondary post-hatch inflammatory challenges.
Collapse
Affiliation(s)
- R Shanmugasundaram
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, United States of America
| | - M Wick
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, United States of America
| | - M S Lilburn
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, United States of America
| |
Collapse
|