1
|
Mehri M, Ghazaghi M, Rokouei M. A Critical Perspective on Statistical Issues in Estimating Nutrient Bioavailability in Animal Bioassays. J Nutr 2024; 154:3544-3553. [PMID: 39426462 DOI: 10.1016/j.tjnut.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Assessing nutrients' relative bioavailability value (RBV) in poultry nutrition has been a prominent subject in the scientific literature for several decades. This method of nutritional evaluation is commonly used to appraise emerging sources of trace minerals and amino acid chelates. References outlining the method for estimating RBV have been available since the 1970s. However, a simplified approach to RBV estimation using the slope-ratio method without preceding statistical considerations to ensure validity and meet fundamental requirements may yield misleading conclusions. Using the slope-ratio method, which involves dividing the regression slope of the test ingredient by that of the reference, can cause uncertainties regarding statistical significance if the model's probability is reported without confidence intervals (CIs) for the RBV estimates. Despite longstanding criticism regarding the misinterpretation and improper use of statistical tests and CIs, these issues persist in estimating RBV using the slope-ratio method. An additional concern is that the misuse of the slope-ratio method and the application of inappropriate statistical analyses can lead to the underestimation of the RBV of nutrients in poultry species. This means that improper application of these methods can cause inaccurately low RBV values, affecting the assessment of nutrient effectiveness. This review addresses the potential pitfalls in peer-reviewed articles within this field, with a particular focus on zinc bioavailability through a reevaluation of RBV data in broilers, laying hens, and honeybees.
Collapse
Affiliation(s)
- Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran.
| | - Mahmoud Ghazaghi
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran
| | - Mohammad Rokouei
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran
| |
Collapse
|
2
|
Li X, Wang C, Li S, Zhang L, Liao X, Lu L. Low protein diet influences mineral absorption and utilization in medium-growing yellow-feathered broilers from 1 to 30 days of age. Poult Sci 2024; 103:104512. [PMID: 39522350 PMCID: PMC11585675 DOI: 10.1016/j.psj.2024.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Reduced-protein diet can save protein ingredients and reduce nitrogen (N) losses. However, the effect of low protein diet on the mineral uptake and utilization in broilers needs to be explored. The aim of this study was to investigate the effect of low-protein diet on the growth performance, N deposition, mineral contents in serum, tissues and excreta, and the activities and gene expression of related enzymes in tissues of medium-growing yellow-feathered broilers, so as to elucidate the relationship between dietary protein level and the absorption and utilization of minerals in broilers. A total of 72 1-d-old Spotted-Brown male broilers were randomly allotted to 1 of 2 treatments with 6 replicate cages of 6 birds per cage for each treatment. The dietary crude protein (CP) levels for the two treatments were 21 % (the control treatment) and 19 % (low protein treatment), respectively. The experimental period was 30 d. The results showed that no differences (P > 0.05) were detected in average daily gain, average daily feed intake and feed: gain ratio of broilers during 1 to 30 d between the two treatments. However, low protein intake increased (P < 0.05) N retention rate, serum P, Cu and Mn, and excreta Cu, Mn and Zn, and decreased (P < 0.05) liver P and excreta P. In addition, birds fed low protein diet had higher (P < 0.05) manganese superoxide dismutase, and total superoxide dismutase activities in liver, and total antioxidant capacity and malondialdehyde content in heart, and lower (P < 0.05) copper-zinc superoxide dismutase (CuZnSOD) and succinate dehydrogenase activities in liver and CuZnSOD mRNA level in heart. In conclusion, the reduction of dietary CP content from 21 % to 19 % improved N retention, the absorption of P, Cu and Mn, as well as the antioxidant ability of liver and heart, and influenced metabolic utilization of P, Cu, Zn, Fe and Mn in medium-growing yellow-feathered broilers from 1 to 30 d of age.
Collapse
Affiliation(s)
- Xiaoran Li
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chong Wang
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shunying Li
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Gong C, Shi H, Liu S, Gao X, Zhang S, Liu H, Liu X, Li R, Wan D. Determination of optimal dietary calcium levels under different sources of zinc in Jing tint 6 layer chicks from 15 to 42 d of age. Poult Sci 2024; 103:104192. [PMID: 39208483 PMCID: PMC11399631 DOI: 10.1016/j.psj.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
An experiment was conducted to investigate the optimal dietary calcium (Ca) levels in Jing Tint 6 layer chicks fed different sources of zinc (Zn). The diets were formulated using 2 different Zn sources: organic Zn (80 mg/kg Zn as HMZn) and inorganic Zn (80 mg/kg Zn as sulfate). For each Zn source, 5 diets were formulated to contain Ca levels of 0.80, 0.90, 1.03, 1.10, and 1.20%. Results showed that dietary Ca levels had a significant effect on body weight gain (BWG) and feed conversion ratio (FCR) (P < 0.05). In addition, BWG was significantly enhanced by the organic Zn diets (P < 0.05). Dietary Ca levels significantly affected tibia length (P < 0.05) and serum Ca and P contents (P < 0.05) but did not affect serum total protein (TP), albumin (ALB), or alkaline phosphatase (ALP) levels (P > 0.05). The apparent total tract retention coefficients (ATTRC) of Ca showed a quadratic trend (P < 0.05) with increasing Ca levels. Furthermore, organic Zn diets reduced excreta Ca output and enhanced the ATTRC of Ca in birds on d 42 compared with inorganic Zn diets. The optimal dietary Ca levels were estimated as 0.93, 0.94, and 0.96% for birds fed organic diets and 1.07, 0.99 and 0.94% for birds fed inorganic diets using nonlinear models based on the criteria of BWG, tibial length, and serum P, respectively. In general, organic Zn supplementation improved growth performance and reduced the calcium requirements of birds on d 42.
Collapse
Affiliation(s)
- Chengyan Gong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongpeng Shi
- University of Chinese Academy of Sciences, Beijing 101408, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinyi Gao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha 410128, China
| | - Shoujun Zhang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha 410128, China
| | - Hao Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha 410128, China
| | - Xin Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Key Laboratory for Quality Regulation of Livestock and Poultry Products of Hunan Province, Changsha 410128, China
| | - Rui Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
4
|
Alirezaei Shahraki P, Kheiri F, Amanlou H, Faghani M, Jalali SMA. Determining the optimal level and the effect of different zinc sources on performance, egg quality and the immune system of laying hens at the end of the production period. Vet Med Sci 2024; 10:e70035. [PMID: 39258517 PMCID: PMC11388059 DOI: 10.1002/vms3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Trace elements, such as zinc, magnesium and copper, are essential for improving the performance and health of broiler breeders and the development of chicken embryos. These elements are integral to various proteins involved in metabolism, hormone secretion and the immune system, necessitating their inclusion in small amounts in poultry diets. OBJECTIVES This study aimed to determine the optimal level and effect of different zinc sources on performance, egg quality and the immune system of laying hens at the end of the production period. METHODS The experiment involved 520 Lohmann LSL laying hens, aged 80 weeks, divided into 13 treatments with 5 replications and 8 birds per replication. The hens were fed diets supplemented with 40, 60 and 80 mg/kg of zinc from various sources: mineral zinc oxide, mineral zinc sulphate, organic zinc chelated with glycine and organic zinc chelated with an organic acid. Key parameters measured included body weight, egg weight and immune response. RESULTS The basal diet contained 63.58 mg/kg of zinc, with the requirement per the Lohmann LSL guideline being 80 mg/kg. Zinc supplementation significantly increased body weight in the second month, with 80 mg/kg being the optimal dose. Zinc oxide notably increased egg weight compared to the control. The hens utilized zinc from all sources, resulting in weight gain and improved parameters such as egg quality. Immune parameters were also positively influenced by zinc supplementation. CONCLUSIONS Zinc supplementation at appropriate levels enhances the performance and egg quality of laying hens, particularly at the end of the production period. It improves bioavailability, enriches eggs and mitigates age-related declines in productivity.
Collapse
Affiliation(s)
| | - Farshid Kheiri
- Department of Animal ScienceShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Hamid Amanlou
- Department of Animal Science, Faculty of AgricultureUniversity of ZanjanZanjanIran
| | - Mostafa Faghani
- Department of Animal ScienceShahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Sayed Mohammad Ali Jalali
- Research Center of Nutrition and Organic Products (RCNOP)Shahrekord Branch, Islamic Azad UniversityShahrekordIran
| |
Collapse
|
5
|
da Silva GD, Maia J, da Silva Costa L, de Oliveira Sa GF, Mendes MTOG, Chaves NRB, Fonseca BB, Vieira BS. Organic or Inorganic Zinc for Laying Hens? A Systematic Review and Meta-analysis of the Effects of Zinc Sources on Laying Performance, Egg Quality, and Zinc Excretion. Biol Trace Elem Res 2024; 202:2812-2827. [PMID: 37733217 DOI: 10.1007/s12011-023-03861-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The higher availability of zinc (Zn) from organic than inorganic sources is already established, but more assertive and cost-friendly protocols on the total replacement of inorganic with organic Zn sources for laying hens still need to be developed. Because some discrepancy in the effects of this replacement in laying hen diets is noticeable in the literature, the objective of this meta-analysis was to properly quantify the effect size of total replacing inorganic Zn with organic Zn in the diet of laying hens on their laying performance, egg quality, and Zn excretion. A total of 2340 results were retrieved from Pubmed, Scielo, Scopus, WOS, and Science Direct databases. Of these, 18 primary studies met all the eligibility criteria and were included in this meta-analysis. Overall, the replacement of inorganic Zn with organic Zn, regardless of other factors, improved (p < 0.01) egg production by 1.46%, eggshell thickness by 0.01 mm, and eggshell resistance by 0.11 kgf/cm2. Positive results of the same nutritional strategy on egg weight and Zn excretion were only observed at specific conditions, especially when organic Zn was supplemented alone in the feed, not combined with other organic minerals. Therefore, there is evidence in the literature that the total replacement of inorganic Zn with organic Zn improves egg production, eggshell thickness, and eggshell resistance. Factors such as hen age and genetics, organic Zn source, concentration of Zn in the feed, and the strategy of its supplementation have to be more carefully considered in protocols designed to address egg weight and Zn excretion by the hen.
Collapse
Affiliation(s)
- Giovane Dias da Silva
- College of Animal Science, Federal Institute of Mato Grosso, Alta Floresta, Mato Grosso, Brazil
| | - Jéferson Maia
- College of Animal Science, Federal Institute of Mato Grosso, Alta Floresta, Mato Grosso, Brazil
| | - Leony da Silva Costa
- College of Animal Science, Federal Institute of Mato Grosso, Alta Floresta, Mato Grosso, Brazil
| | | | | | | | | | - Bruno Serpa Vieira
- School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Hu Y, Wu W, Huang L, Zhang L, Cao C, Zhang W, Hu Y, Cui X, Li T, Wang S, Luo X. Zinc proteinate with moderate chelation strength enhances zinc absorption by upregulating the expression of zinc and amino acid transporters in primary cultured duodenal epithelial cells of broiler embryos. J Anim Sci 2024; 102:skae204. [PMID: 39031082 PMCID: PMC11362845 DOI: 10.1093/jas/skae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Recent study showed that zinc (Zn) and amino acid transporters may be involved in enhancing Zn absorption from Zn proteinate with moderate chelation strength (Zn-Prot M) in the duodenum of broilers. However, the specific mechanisms by which Zn-Prot M promotes the above Zn absorption are unknown. Therefore, in this study, 3 experiments were conducted to investigate specific and direct effects of Zn-Prot M and Zn sulfate (ZnS) on Zn absorption and expression of related transporters in primary duodenal epithelial cells of broiler embryos so as to preliminarily address possible mechanisms. In experiment 1, cells were treated with 100 μmol Zn/L as ZnS or Zn-Prot M for 20, 40, 60, 80, 100, or 120 min. Experiment 2 consisted of 3 sub-experiments. In experiment 2A, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 100 or 200 μmol Zn/L as ZnS or Zn-Prot M for 60 min; in experiment 2B, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 200 μmol Zn/L of as the ZnS or Zn-Prot M for 120 min; in experiment 2C, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 400 or 800 μmol Zn/L as ZnS or Zn-Prot M for 120 min. In experiment 3, cells were treated with a Zn-unsupplemented basal medium (Control) or the basal medium supplemented with 400 μmol Zn/L as ZnS or Zn-Prot M for 120 min. The results of experiment 1 indicated that the minimum incubation time for saturable Zn absorption was determined to be 50.83 min using the best fit line. The results in experiment 2 demonstrated that a Zn concentration of 400 μmol/L and an incubation time of 120 min were suitable to increase the absorption of Zn from Zn-Prot M compared to ZnS. In experiment 3, Zn absorption across cell monolayers was significantly increased by Zn addition (P < 0.05), and was significantly greater with Zn-Prot M than with ZnS (P < 0.05). Compared to the control, Zn addition significantly decreased Zn transporter 10 and peptide-transporter 1 mRNA expression levels and increased y + L-type amino transporter 2 (y + LAT2) protein abundance (P < 0.05). Moreover, protein expression levels of zrt/irt-like protein 3 (ZIP3), zrt-irt-like protein 5 (ZIP5), and y + LAT2 were significantly greater for Zn-Prot M than for ZnS (P < 0.05). These findings suggest that Zn-Prot M promote Zn absorption by increasing ZIP3, ZIP5 and y + LAT2 protein expression levels in primary duodenal epithelial cells.
Collapse
Affiliation(s)
- Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Liang Huang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Chunyu Cao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
7
|
Rao SBN, Elangovan AV, Madiajagan B, Rajendran D, Franklin MEE, Gopi M, Pal D, Parthipan S, Nalina M, Dey DK, Manjunatha Reddy GB, Awachat VB. Production and Evaluation of Encapsulated Zinc Oxide on Performance, Ileal Digestibility and Zinc Transporter Gene Expression in Broiler Chicken. Biol Trace Elem Res 2023; 201:5774-5785. [PMID: 36907933 DOI: 10.1007/s12011-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
The present study was undertaken for the production of encapsulated zinc and its evaluation in broiler chicken diet. The process of microencapsulation involved the use of polymers, gum arabic and maltodextrin with a maximum encapsulation of efficiency of 66%. Encapsulated material contained about 20% zinc oxide (ZnO) as core material following the freeze-drying process. One hundred and ninety-two-day-old broiler chicks were distributed in four groups in six replications having eight birds in each. The four groups comprised control (inorganic source of zinc), En-Zn-100 (encapsulated zinc at 100% of control), En-Zn-50 (encapsulated zinc at 50% of control), and Org-Zn-50 (Zn-methionine at 50% of control). The experiment was carried out for 35 days following standard management practices. The live weight gain, feed intake and FCR were comparable among groups. Plasma and muscle zinc (ppm) content was unaffected by the level or source of zinc supplementation. The zinc apparent ileal digestibility coefficient was significantly (P < 0.05) higher in En-Zn-50 fed groups, while crude protein digestibility was not affected by the level or form of Zn supplementation. Bone weight, length, and zinc content were comparable, and bone ash content was significantly different among the groups. Relative expression of ZnT2 was significantly upregulated in encapsulated zinc-fed groups. From the study, it could be concluded that supplementation of zinc either as encapsulated or organic form at 50% of inorganic source (ZnO) could be sufficient to maintain the growth performance, serum, tissue and bone mineral content in broiler chicken.
Collapse
Affiliation(s)
| | | | - Bagath Madiajagan
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Duraisamy Rajendran
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - Marappan Gopi
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Dintaran Pal
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | - M Nalina
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Debpriyo Kumar Dey
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - G B Manjunatha Reddy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | | |
Collapse
|
8
|
Dong L, Li Y, Zhang Y, Zhang Y, Ren J, Zheng J, Diao J, Ni H, Yin Y, Sun R, Liang F, Li P, Zhou C, Yang Y. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci Rep 2023; 13:10803. [PMID: 37402861 DOI: 10.1038/s41598-023-37867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
The high cost of feed and nitrogen pollution caused by high-protein diets have become major challenges restricting sustainable development in China's animal husbandry sector. Properly reducing protein levels and improving protein utilization in feed are effective approaches to solving this problem. To determine the optimal dose of methionine hydroxyl analogue chelated zinc (MHA-Zn) in broiler diets with a 1.5% reduction in crude protein (CP), a total of 216 1-day-old broilers were randomly assigned into 4 groups (each group consisted of 3 replications with 18 broilers per replicate), and growth and development indexes were assessed after 42 days. The broilers in control group were fed a basic diet, whereas those in the three test groups were fed diets with a 1.5% reduction in CP. The results showed no significant difference in the edible parts of broilers between low-protein (LP) diet group (90 mg/kg MHA-Zn) and normal diet group (p > 0.05), and adding 90 mg/kg MHA-Zn to LP diet significantly improved ileum morphology and apparent total tract digestibility (ATTD) of nutrient (p < 0.01; p < 0.05). A 16S rRNA sequencing analysis indicated that supplementing the LP diet with 90 mg/kg MHA-Zn was adequate for production performance of broilers and promoted beneficial bacteria in the cecum (Lactobacillus, Butyricoccus, Oscillospira, etc.) (p < 0.01). In summary, adding an optimal dose of organic zinc (90 mg/kg MHA-Zn) in low protein diets led to enhanced production performance of broilers and optimized cecum microbiota. Additionally, the reduction of crude protein consumption in broiler production proved to be a cost-effective measure, while also mitigated nitrogen pollutant emissions in the environment.
Collapse
Affiliation(s)
- Liping Dong
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yumei Li
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yonghong Zhang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yan Zhang
- College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, 132109, China
| | - Jing Ren
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jinlei Zheng
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Jizhe Diao
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Hongyu Ni
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Yijing Yin
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Ruihong Sun
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Fangfang Liang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China
| | - Peng Li
- International Trading (Shanghai) Co., Ltd., Shanghai, 200080, China
| | - Changhai Zhou
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| | - Yuwei Yang
- College of Animal Sciences, The Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
de Arruda Roque F, Chen J, Araujo RB, Murcio AL, de Souza Leite BG, Dias Tanaka MT, Granghelli CA, Pelissari PH, Bueno Carvalho RS, Torres D, Vázquez‐Añón M, Hancock D, Soares da Silva Araujo C, Araujo LF. Maternal supplementation of different trace mineral sources on broiler breeder production and progeny growth and gut health. Front Physiol 2022; 13:948378. [PMID: 36267581 PMCID: PMC9577897 DOI: 10.3389/fphys.2022.948378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Trace mineral minerals Zn, Cu, and Mn play important roles in breeder production and progeny performance. The objective of this study was to determine maternal supplementation of trace mineral minerals on breeder production and progeny growth and development. A total of 540 broiler breeders, Cobb 500 (Slow feathering; 0-66 weeks old) were assigned to one of three treatment groups with the same basal diet and three different supplemental trace minerals: ITM-inorganic trace minerals in sulfates: 100, 16, and 100 ppm of Zn, Cu, and Mn respectively; MMHAC -mineral methionine hydroxy analog chelate: 50, 8, and 50 ppm of bis-chelated MINTREX®Zn, Cu and Mn (Novus International, Inc.), and TMAAC - trace minerals amino acid complex: 50, 8, and 50 ppm of Zn, Cu, and Mn. At 28 weeks of age, eggs from breeder treatments were hatched for progeny trial, 10 pens with 6 males and 6 female birds per pen were fed a common diet with ITM for 45 days. Breeder production, egg quality, progeny growth performance, mRNA expression of gut health associated genes in breeder and progeny chicks were measured. Data were analyzed by one-way ANOVA; means were separated by Fisher's protected LSD test. A p-Value ≤ 0.05 was considered statistically different and 0.1 was considered numerical trend. Breeders on ITM treatment had higher (p < 0.05) body weight (BW), weight gain and lower (p < 0.05) feed conversion ratio (FCR) from 0 to 10 weeks, when compared to birds fed MMHAC. MMHAC significantly improved egg mass by 3 g (p < 0.05) and FCR by 34 points (0.05 < p < 0.1) throughout the reproductive period (26-66 weeks) in comparison to ITM. MMHAC improved (p < 0.01) egg yolk color versus (vs.) ITM and TMAAC in all periods, except 28 weeks, increased (p < 0.01) eggshell thickness and resistance vs. TMAAC at 58 weeks, and reduced (p < 0.05) jejunal NF-κB gene expression vs. TMAAC at 24 weeks. There was a significant reduction in tibial dry matter weight, Seedor index and resistance for the breeders that received MMHAC and/or TMAAC when compared to ITM at 18 weeks. Lower seedor index but numerically wider tibial circumference was seen in hens fed MMHAC at 24 weeks, and wider tibial circumference but lower tibial resistance in hens fed TMAAC at 66 weeks. Maternal supplementation of MMHAC in breeder hens increased (p < 0.0001) BW vs. ITM and TMAAC at hatching, reduced (p < 0.05) feed intake vs. ITM at d14 and d28, and improved (p < 0.01) FCR and performance index vs. TMAAC at d28, reduced (p < 0.01) NF-κB gene expression and increased (p < 0.05) A20 gene expression vs. TMAAC on d0 and vs. ITM on d14, reduced (p < 0.05) TLR2 gene expression vs. ITM on d0 and vs. TMAAC on d14, increased (p < 0.05) MUC2 gene expression vs. both ITM and TMAAC on d45 in progeny jejunum. Overall, these results suggest that supplementation with lower levels of MHA-chelated trace minerals improved breeder production and egg quality and reduced breeder jejunal inflammation while maintaining tibial development in comparison to those receiving higher inorganic mineral supplementation, and it also carried over the benefits to progeny with better growth performance, less jejunal inflammation and better innate immune response and gut barrier function in comparison to ITM and/or TMAAC.
Collapse
Affiliation(s)
| | - Juxing Chen
- Novus International Inc., St. Charles, MO, United States
| | | | | | | | | | | | | | | | - David Torres
- Novus International Inc., St. Charles, MO, United States
| | | | - Deana Hancock
- Novus International Inc., St. Charles, MO, United States
| | | | | |
Collapse
|
10
|
Sahin N, Kucuk O, Orhan C, Savasli E, Cakmak I, Sahin K. Feeding Zinc-Biofortified Wheat Improves Performance, Nutrient Digestibility, and Concentrations of Blood and Tissue Minerals in Quails. Biol Trace Elem Res 2022; 200:3774-3784. [PMID: 34637103 PMCID: PMC8505784 DOI: 10.1007/s12011-021-02955-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/02/2022]
Abstract
The present study aimed to investigate the effects of feeding zinc (Zn)-biofortified wheat on performance, digestibility, and concentrations of minerals in quails. Zinc biofortification of wheat has been realized in the field by ergonomically applying Zn to foliar two and three times, which increased grain Zn from 18 mg/kg (control) to 34 and 64 mg/kg. A total of 180 quails were divided into six groups, each containing 30 birds, and fed diets containing wheat grain with either 18, 34, or 64 mg/kg with or without zinc picolinate (ZnPic) supplementation. Bodyweight, feed intake, feed efficiency, and cold carcass weights were greater (P = 0.0001) when the quails were fed a diet containing the biofortified wheat-containing 64 mg Zn/kg. Nitrogen, ash, Ca, P, Zn, Cu, and Fe retentions were greater with the Zn-biofortified wheat-containing 64 mg Zn/kg (P ≤ 0.026). The nutrient excretions were low with feeding a diet containing biofortified wheat-containing 64 mg Zn/kg (P ≤ 0.023). Serum, liver, and heart Zn concentrations increased with feeding biofortified wheat-containing 64 mg Zn/kg (P ≤ 0.002). Thigh meat Fe concentrations increased with increasing Zn concentrations of the wheat samples used (P = 0.0001), whereas the liver Cu concentrations decreased with feeding the wheat-containing 64 mg Zn/kg (P = 0.004). The Zn-biofortified wheat-containing greater Zn concentrations, particularly 64 mg Zn/kg, is a good replacement for corn in the poultry diet as long as its availability and low cost for better performance, greater digestibility, and elevated tissue Zn and Fe concentrations.
Collapse
Affiliation(s)
- Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, 23119 Turkey
| | - Osman Kucuk
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039 Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, 23119 Turkey
| | - Erdinc Savasli
- Transitional Zone Agricultural Research Institute, Eskisehir, 26002 Turkey
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956 Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, 23119 Turkey
| |
Collapse
|
11
|
Obianwuna UE, Oleforuh-Okoleh VU, Wang J, Zhang HJ, Qi GH, Qiu K, Wu SG. Natural Products of Plants and Animal Origin Improve Albumen Quality of Chicken Eggs. Front Nutr 2022; 9:875270. [PMID: 35757269 PMCID: PMC9226613 DOI: 10.3389/fnut.2022.875270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Albumen quality is recognized as one of the major yardsticks in measuring egg quality. The elasticity of thick albumen, a strong bond in the ovomucin-lysozyme complex, and excellent biological properties are indicators of high-quality albumen. The albumen quality prior to egg storage contribute to enhance egg’s shelf life and economic value. Evidence suggests that albumen quality can deteriorate due to changes in albumen structure, such as the degradation of β-ovomucin subunit and O-glyosidic bonds, the collapse of the ovomucin-lysozyme complex, and a decrease in albumen protein-protein interaction. Using organic minerals, natural plants and animal products with antioxidant and antimicrobial properties, high biological value, no residue effect and toxicity risk could improve albumen quality. These natural products (e.g., tea polyphenols, marigold extract, magnolol, essential oils, Upro (small peptide), yeast cell wall, Bacillus species, a purified amino acid from animal blood, and pumpkin seed meal) are bio-fortified into eggs, thus enhancing the biological and technological function of the albumen. Multiple strategies to meeting laying hens’ metabolic requirements and improvement in albumen quality are described in this review, including the use of amino acids, vitamins, minerals, essential oils, prebiotics, probiotics, organic trace elements, and phytogenic as feed additives. From this analysis, natural products can improve animal health and consequently albumen quality. Future research should focus on effects of these natural products in extending shelf life of the albumen during storage and at different storage conditions. Research in that direction may provide insight into albumen quality and its biological value in fresh and stored eggs.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vivian U Oleforuh-Okoleh
- Department of Animal Science, Faculty of Agriculture, Rivers State University, Port Harcourt, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Kraus A, Krunt O, Zita L, Vejvodová K, Drábek O. Laying hens under smallholder conditions: laying performance, growth and bone quality of tibia and femur including essential elements. Poult Sci 2022; 101:101927. [PMID: 35679666 PMCID: PMC9178482 DOI: 10.1016/j.psj.2022.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to assess laying performance, growth rate, and bone quality properties of tibia and femur bones of various genotypes of laying hens, including determining essential element composition at the end of the laying cycle in smallholder conditions. The study included three genotypes of laying hens; Czech golden spotted (CGS), White Leghorn (LE) and Dominant Partridge D300 (D300) hens. In total, 180 hens (60/genotype) were used in 3 replications (20 hens/replication). The eggs were collected to determine egg lay and hen-day egg production. Additionally, feed consumption was recorded to determine feed consumption per day or egg, resp. The mortality rate was recorded. Hens were individually weighed every 10 wk to analyze the growth performance and body weight changes during the laying cycle. The differences in performance characteristics were observed as significant in all studied parameters. The bone quality analysis consisted of the determination of bone weight, length, width, and fracture toughness. Furthermore, dry matter, ash, and selected elements, which included boron (B), calcium (Ca), cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), lead (Pb), and zinc (Zn) were assessed. Regarding the results of tibia and femur bones, the effect of genotype was determined as significant in all evaluated properties. In terms of element composition, all evaluated elements significantly differed among the genotypes in the tibia (with one exception of Cu) and in the femur (with one exception of Cd). In conclusion, our results showed that hens’ performance, production quality, mortality and bone properties significantly differed among genotypes under smallholder conditions. Thus, every genotype needs to be carefully considered, when the rearing conditions are set.
Collapse
Affiliation(s)
- Adam Kraus
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague- Suchdol 165 00, Czech Republic.
| | - Ondřej Krunt
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague- Suchdol 165 00, Czech Republic
| | - Lukáš Zita
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague- Suchdol 165 00, Czech Republic
| | - Kateřina Vejvodová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Prague - Suchdol 165 00, Czech Republic
| | - Ondřej Drábek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Prague - Suchdol 165 00, Czech Republic
| |
Collapse
|
13
|
Long L, Zhao X, Li H, Yan X, Zhang H. Effects of Zinc Lactate Supplementation on Growth Performance, Intestinal Morphology, Serum Parameters, and Hepatic Metallothionein of Chinese Yellow-Feathered Broilers. Biol Trace Elem Res 2022; 200:1835-1843. [PMID: 34142310 PMCID: PMC8854323 DOI: 10.1007/s12011-021-02785-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
In poultry, organic zinc compounds have higher bioavailability than inorganic zinc sources. However, as an organic zinc source, the application of zinc lactate (ZL) on Chinese yellow-feathered broilers has been rarely reported. Hence, the present study aimed to investigate the effects of ZL supplementation on growth performance, small intestinal morphology, serum biochemical parameters, immune organ index, as well as hepatic metallothionein of Chinese yellow-feathered broilers. A total of 2100 broilers (19 days old) were randomly assigned to 5 treatment groups, including the control (fed basal diet), ZL40 (basal diet plus 40 mg/kg ZL), ZL60 (basal diet plus 60 mg/kg ZL), ZL80 (basal diet plus 80 mg/kg ZL), and ZS80 (basal diet plus 80 mg/kg ZS. Each treatment group had 6 replicates with 70 chickens per replicate. Compared to the control group, the ZL40 and the ZS80 groups had a lower feed to gain ratio (P < 0.05), ZL40 group had higher duodenum and ileum villus heights (P < 0.05), and ZS80 and ZL80 groups had a lower ratio of villus height to crypt depth in the jejunum (P < 0.01). In addition, the ZL60 group had a higher concentration of total protein (P < 0.05) and activity of glutathione peroxidase (GSH-Px) (P < 0.01) compared with the ZS80 and the control groups. Interestingly, the ZL40, ZL60, and ZL80 groups all had higher levels of hepatic metallothionein than the other groups (P < 0.01). In conclusion, zinc lactate had a higher bioavailability and could be used as an alternative to zinc sulfate.
Collapse
Affiliation(s)
- Lina Long
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Xichen Zhao
- College of Animal Science, South China Agricultural University, Tianhe District, 483Wushan Road, Guangzhou, 510642, China.
| | - Haojie Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Xia Yan
- Institute of Animal Science, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
14
|
Jiang Q, Sun J, He Y, Ma Y, Zhang B, Han Y, Wu Y. Hydroxychloride trace elements improved eggshell quality partly by modulating uterus histological structure and inflammatory cytokines expression in aged laying hens. Poult Sci 2021; 100:101453. [PMID: 34624774 PMCID: PMC8503664 DOI: 10.1016/j.psj.2021.101453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The objectives of this study were to investigate the effectiveness of dietary zinc, copper, and manganese hydroxychloride (HC) supplementation on performance, minerals deposition, serum parameters, eggshell ultrastructure, uterus histological structure, and inflammatory cytokines in aged hens. A total of 560 Hyline Brown layers at 62 wk of age were randomly allotted into 3 groups (CON, basal diet without extra minerals supplemented; Sulphate and HC, basal diet with sulphate or hydroxychloride zinc, copper, and manganese supplementation at levels of 80, 15, and 80 mg/kg, respectively). The trial lasted for 16 wk consisting of 4 wk depletion period and 12 wk testing period. The results indicated that dietary hydroxychloride trace elements increased egg weight (P < 0.05) when compared with CON group and improved average Haugh unit and albumen height (P < 0.05) when compared with Sulphate group from 70 to 73 wk. Trace element supplementation significantly increased eggshell strength, ceruloplasmin content in serum, and modified crystallographic structure of eggshell (P < 0.05) that included effective layer height, palisade height, mammillary layer width, and mammillary internal area ratio, but the results did not differ regarding the trace mineral sources used. Furthermore, hens fed with hydroxychloride trace element showed the highest mucosal fold height (P < 0.05) and epithelial height (P = 0.053) in eggshell gland, as well as mRNA expression of TNF-α (P < 0.05) and IL-22 (P = 0.094). It is concluded that supplementation of Zn, Cu, and Mn mixture modified eggshell quality partly through enhancing histological structure and immune responses of uterus. Hydroxychloride source of Zn, Cu, and Mn excelled sulphate in its beneficial effects for birds.
Collapse
Affiliation(s)
- Qiuyu Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jingjing Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Yanming Han
- Trouw Nutrition R&D, Amersfoort, the Netherlands
| | - Yuanyuan Wu
- Trouw Nutrition R&D, Amersfoort, the Netherlands
| |
Collapse
|
15
|
Evaluating zinc glycine chelate in Cherry Valley Ducks: Responses of growth performance, nutrient utilization, serum parameters, antioxidant status, meat quality and zinc accumulation. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Li S, Wang X, Xiao Y, Wang Y, Wan Y, Li X, Li Q, Tang X, Cai D, Ran B, Wu C. Curcumin ameliorates mercuric chloride-induced liver injury via modulating cytochrome P450 signaling and Nrf2/HO-1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111426. [PMID: 33096358 DOI: 10.1016/j.ecoenv.2020.111426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental mercury is a concern for coastal ecosystem health, and exerts adverse effects on human health. Despite the growing body of evidence showing the hepatoprotective roles of curcumin on mercury, the knowledge between the macroscopic descriptions and the actual mechanism(s) underlying these processes is getting larger remains elusive. Herein, mice received single injection of mercuric chloride (HgCl2) (5 mg/kg body weight) and/or curcumin (50 mg/kg, body weight, p.o.). Firstly, the results showed curcumin could decline HgCl2-induced up-regulated the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, we also found that curcumin could suppress inflammatory damage, unbalance of trace elements (including sodium, magnesium, kalium, calcium overload), oxidative burst induced by HgCl2, which could be associated with cytochrome P450 (CYP450) signaling. Secondly, we found that curcumin could prevent HgCl2-induced cell death both in vivo and in vitro. Furthermore, curcumin significantly increased the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and consequently upregulated the expression of heme oxygenase 1 (HO-1) under HgCl2 treatment. Meanwhile, inhibition of HO-1 by zinc protoporphyria could abolish the cytoprotective effects of curcumin in HgCl2-treated L02 hepatocytes. In conclusion, our data identify that curcumin could enhance Nrf2-mediated HO-1 to upregulate antioxidant ability, which might be associate with CYP450 signaling to suppress liver damage induced by HgCl2. The present study further enriches and perfects the mechanism theory of HgCl2 toxicity and suggest that the CYP450 signaling and Nrf2/HO-1 pathway is important in shedding light on curcumin's hepatoprotective effects in HgCl2 toxicity.
Collapse
Affiliation(s)
- Siwen Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xiali Wang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Yewei Xiao
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Yanling Wang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Ying Wan
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xinlian Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Qiuyue Li
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Xiaoqing Tang
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Daihong Cai
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Bing Ran
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China.
| | - Chunling Wu
- Department of Physiology, College of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, PR China.
| |
Collapse
|
17
|
Zhang YN, Wang S, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Abouelezz KFM, Zheng CT. Estimation of dietary manganese requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, and serum biochemical and antioxidant indices. Poult Sci 2020; 99:5752-5762. [PMID: 33142493 PMCID: PMC7647759 DOI: 10.1016/j.psj.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
This study was aimed at estimating the dietary manganese (Mn) requirement for laying duck breeders. A total of 504 Longyan duck breeders (body weight: 1.20 ± 0.02 kg) aged 17 wk were randomly allocated to 6 treatments. The birds were fed with a basal diet (Mn, 17.5 mg/kg) or diets supplemented with 20, 40, 80, 120, or 160 mg/kg of Mn (as MnSO4·H2O) for 18 wk. Each treatment had 6 replicates of 14 ducks each. As a result of this study, dietary Mn supplementation did not affect the productive performance of laying duck breeders in the early laying period (17–18 wk), but affected egg production, egg mass, and feed conversion ratio (FCR) from 19 to 34 wk (P < 0.05), and there was a linear and quadratic effect of supplement level (P < 0.05). The proportion of preovulatory ovarian follicles increased (P < 0.01) linearly and quadratically, and atretic follicles (weight and percentage) decreased (P < 0.05) quadratically with dietary Mn supplementation. The density and breaking strength of tibias increased (quadratic; P < 0.05), the calcium content of tibias decreased (linear, quadratic; P < 0.01), and Mn content increased (linear, quadratic; P < 0.001) with increase in Mn. The addition of Mn had a quadratic effect on serum contents of estradiol, prolactin, progesterone, luteinizing hormone, and follicle-stimulating hormone (P < 0.001). Dietary Mn supplementation decreased serum contents of total protein (linear, P < 0.05), glucose (quadratic, P < 0.05), total bilirubin, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and calcium (linear, quadratic; P < 0.05). The serum total antioxidant capacity and total and Mn-containing superoxide dismutase activities increased (linear, quadratic; P < 0.001), and malondialdehyde content decreased (linear, quadratic; P < 0.001) in response to Mn supplemental levels. The dietary Mn requirements, in milligram per kilogram for a basal diet containing 17.5 mg/kg of Mn, for Longyan duck breeders from 19 to 34 wk of age were estimated to be 84.2 for optimizing egg production, 85.8 for egg mass, and 95.0 for FCR. Overall, dietary Mn supplementation, up to 160 mg/kg of feed, affected productive performance, tibial characteristics, and serum biochemical and antioxidant status of layer duck breeders. Supplementing this basal diet (17.5 mg/kg of Mn) with 85 to 95 mg/kg of additional Mn was adequate for laying duck breeders during the laying period.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
18
|
Effects of the Methionine Hydroxyl Analogue Chelate Zinc on Antioxidant Capacity and Liver Metabolism Using 1H-NMR-Based Metabolomics in Aged Laying Hens. Animals (Basel) 2019; 9:ani9110898. [PMID: 31683848 PMCID: PMC6912617 DOI: 10.3390/ani9110898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Zinc, an essential trace element for laying hens, plays an important role in biological processes, such as growth, tissue growth and repairment, skeletal development, and immune competence, which also has better effects on growth performance, biochemical indexes, and antioxidant capacity. Our previous work has shown that methionine hydroxyl analogue chelated zinc (MHA-Zn) has better effects on eggshell quality, the apparent retention of minerals and nutrients, trace element deposit, and metallothionein (MT) mRNA expression. The objective of the current study was to investigate the effects of different levels of MHA-Zn on antioxidant capacity and liver metabolism of aged laying hens. The results suggest that dietary supplementation of MHA-Zn levels at 80 mg/kg has better effects on antioxidant capacity and liver metabolism, as well as homeostasis of the body. Abstract This study aimed to investigate the effects of different levels of methionine hydroxyl analogue chelated zinc (MHA-Zn) on antioxidant capacity and liver metabolism of aged laying hens. A total of 960 57-week-old layers were fed a basal diet (Zn: 35.08 mg/kg) without extra zinc for two weeks, and then allocated to four treatments consisting of eight replicates of 30 birds each for 14 weeks. Four levels of Zn (zinc sulfate (ZnSO4): 80 mg/kg; MHA-Zn: 20, 40, 80 mg/kg) were added to the diet. The results indicated that compared with inorganic zinc, organic zinc of 80 mg/kg has a significant advantage in improving the antioxidant capacity of aged hens, which increased the level of Cu/Zn-superoxide dismutase (SOD) and the total antioxidant capacity (T-AOC) in the serum and liver, and reduced the concentration of malondialdehyde (MDA) of laying hens. The serum albumen composition was significantly modified, meanwhile, the level of total protein, globulin, and urea increased remarkably, whereas serum glutamic-oxaloacetic transaminase decreased notably in 80 mg/kg MHA-Zn groups. Compared with the 20 mg/kg MHA-Zn group, the metabolic profile of 40 and 80 mg/kg MHA-Zn groups was higher than that of the inorganic zinc group. Furthermore, integrated key metabolic pathway analysis showed that 40 and 80 mg/kg MHA-Zn groups participated in the regulation of glutathione metabolism, glycine, serine, and threonine metabolism. Therefore, this study suggests that 40 and 80 mg/kg supplementation of MHA-Zn can increase the activity of Cu/Zn-SOD and T-AOC and decrease MDA; additionally the 80 mg/kg MHA-Zn group has better antioxidant capacity. Meanwhile, the enhanced MHA-Zn promoted methionine (Met) synthesis and protein metabolism.
Collapse
|
19
|
Zinc source modulates zootechnical characteristics, intestinal features, humoral response, and paraoxonase (PON1) activity in broilers. Trop Anim Health Prod 2019; 52:511-515. [PMID: 31422525 DOI: 10.1007/s11250-019-02036-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
The current experiment was performed to find the potential effect of inorganic and organic forms of zinc (Zn) on growth, intestinal histomorphology, immune response, and paraoxonase (PON1) activity in broiler. In this experiment, a total of 450 broiler chickens were assigned to four experimental and control groups. The birds received organic Zn at the rate of 50 mg/kg (OZ-50) and 60 mg/kg (OZ-60) or inorganic Zn at the rate of 50 mg/kg (IZ-50) and 60 mg/kg (IZ-60) for an experimental period of 30 days. Significantly (P < 0.05) higher feed consumption, body weight, feed conversion ratio, and production efficiency factor (PEF) were recorded in OZ-50. Similarly, antibody titer against infectious bronchitis (IB) and PON1 activity was higher (P < 0.05) in OZ-50 compared with the control group. In addition, significantly (P < 0.05) higher villus dimensions and goblet cell count were recorded for the group OZ-50 compared with other treatments. It was concluded that the organic form of Zn was superior in improving the growth, histological features of intestines, humoral response, and PON1 activity in broiler.
Collapse
|