1
|
Hasan M, Ahmed S, Imranuzzaman M, Bari R, Roy S, Hasan MM, Mia MM. Designing and development of efficient multi-epitope-based peptide vaccine candidate against emerging avian rotavirus strains: A vaccinomic approach. J Genet Eng Biotechnol 2024; 22:100398. [PMID: 39179326 PMCID: PMC11260576 DOI: 10.1016/j.jgeb.2024.100398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Enteric avian rotavirus (ARV) is the etiological agent of several health problems that pose a global threat to commercial chickens. Therefore, to avoid these widespread epidemics and high mortality rates, only vaccine and strict biosecurity are required. METHOD The present study employs computational techniques to design a unique multi-epitope-based vaccine candidate that successfully activates immune cells against the ARV by combining adjuvant, linker, and B and T-cell epitopes. Starting, homologous sequences in the various ARV serotypes were revealed in the NCBI BLAST database, and then the two surface proteins (VP4 and VP7) of the ARV were retrieved from the UniprotKB database. The Clustal Omega server was then used to identify the conserved regions among the homologous sequences, and the B and T-cell epitopes were predicted using IEDB servers. Then, superior epitopes-2 MHC-1 epitopes, 2 MHC-2 epitopes, and 3B-cell epitopes-were combined with various adjuvants to create a total of four unique vaccine candidates. Afterward, the designed vaccine candidates underwent computational validation to assess their antigenicity, allergenicity, and stability. The vaccine candidate (V2) that demonstrated non-antigenicity, a high VaxiJen score, and non-allergenicity was ultimately chosen for molecular docking and dynamic simulation. RESULTS Although the V2 and V4 vaccine candidates were highly immunogenic, V2 had a higher solubility rate. The predicted values of the aliphatic index and GRAVY value were 30.4 and 0.417, respectively. In terms of binding energy, V2 outperformed V4. Being successfully docked with TLRs, V2 was praised as the finest. After adaptation, the sequence's 50.73 % GC content outside of the BglII or ApaI restriction sites indicated that it was equivalently safe to clone. The chosen sequence was then inserted into the pET28a(+) vector within the BglII and ApaI restriction sites. This resulted in a final clone that was 4914 base pairs long, with the inserted sequence accounting for 478 bp and the vector accounting for the remainder. CONCLUSIONS The immune-mediated simulation results for the selected vaccine construct showed significant response; thus, the study confirmed that the selected V2 vaccine candidate could enhance the immune response against ARV.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh.
| | - Md Imranuzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rezaul Bari
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Shiplu Roy
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Livestock Production and Management, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mahadi Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md Mukthar Mia
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
2
|
Rafique S, Rashid F, Wei Y, Zeng T, Xie L, Xie Z. Avian Orthoreoviruses: A Systematic Review of Their Distribution, Dissemination Patterns, and Genotypic Clustering. Viruses 2024; 16:1056. [PMID: 39066218 PMCID: PMC11281703 DOI: 10.3390/v16071056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Avian orthoreviruses have become a global challenge to the poultry industry, causing significant economic impacts on commercial poultry. Avian reoviruses (ARVs) are resistant to heat, proteolytic enzymes, a wide range of pH values, and disinfectants, so keeping chicken farms free of ARV infections is difficult. This review focuses on the global prevalence of ARVs and associated clinical signs and symptoms. The most common signs and symptoms include tenosynovitis/arthritis, malabsorption syndrome, runting-stunting syndrome, and respiratory diseases. Moreover, this review also focused on the characterization of ARVs in genotypic clusters (I-VI) and their relation to tissue tropism or viral distribution. The prevailing strains of ARV in Africa belong to all genotypic clusters (GCs) except for GC VI, whereas all GCs are present in Asia and the Americas. In addition, all ARV strains are associated with or belong to GC I-VI in Europe. Moreover, in Oceania, only GC V and VI are prevalent. This review also showed that, regardless of the genotypic cluster, tenosynovitis/arthritis was the predominant clinical manifestation, indicating its universal occurrence across all clusters. Globally, most avian reovirus infections can be prevented by vaccination against four major strains: S1133, 1733, 2408, and 2177. Nevertheless, these vaccines may not a provide sufficient defense against field isolates. Due to the increase in the number of ARV variants, classical vaccine approaches are being developed depending on the degree of antigenic similarity between the vaccine and field strains, which determines how successful the vaccination will be. Moreover, there is a need to look more closely at the antigenic and pathogenic properties of reported ARV strains. The information acquired will aid in the selection of more effective vaccine strains in combination with biosecurity and farm management methods to prevent ARV infections.
Collapse
Affiliation(s)
- Saba Rafique
- SB Diagnostic Laboratory, Sadiq Poultry Pvt. Ltd., Rawalpindi 46000, Pakistan;
| | - Farooq Rashid
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - You Wei
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Tingting Zeng
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Liji Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (F.R.); (Y.W.); (T.Z.); (L.X.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| |
Collapse
|
3
|
Farnoushi Y, Heller D, Lublin A. Genetic characterization of newly emerging avian reovirus variants in chickens with viral arthritis/tenosynovitis in Israel. Virology 2024; 589:109908. [PMID: 37952464 DOI: 10.1016/j.virol.2023.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
In recent years, new avian reovirus (ARV) variants caused a variety of symptoms in chickens worldwide, the most important of which was Viral arthritis/tenosynovitis which caused substantial economic losses and has become a concern to the worldwide chicken industry. In this study, we characterized emerging ARV variants in Israel and analyzed their genetic relationship with reference strains. One hundred thirty-four ARV variants were isolated from tendons and synovial fluids of commercial broiler chickens with signs of arthritis/tenosynovitis. Phylogenetic analysis of the partial segment of the sigma C (σC) gene confirmed that these field isolates from Israel could be clustered into all six known clusters. The majority of ARV isolates in Israel belonged to the genotypic cluster 5 (GC5). The strains in this study had a low sequence identity when compared to the commercial vaccine (strain S1133). The findings of this study demonstrated the genetic diversity of ARV strains in Israel from 2015 to 2022. It is reasonable to conclude from the preliminary results of this investigation that Israel has not been subject to selection pressure or the emergence of new ARV variants since the introduction of the live vaccine (ISR-7585). Due to the ongoing emergence of ARV variants, a robust epidemiological monitoring program supported by molecular biology techniques is required to track ARV strains in Israeli poultry flocks.
Collapse
Affiliation(s)
- Yigal Farnoushi
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, 5025001, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Dan Heller
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Avishai Lublin
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, 5025001, Israel
| |
Collapse
|
4
|
Wan L, Wang S, Xie Z, Ren H, Xie L, Luo S, Li M, Xie Z, Fan Q, Zeng T, Zhang Y, Zhang M, Huang J, Wei Y. Chicken IFI6 inhibits avian reovirus replication and affects related innate immune signaling pathways. Front Microbiol 2023; 14:1237438. [PMID: 38033564 PMCID: PMC10687481 DOI: 10.3389/fmicb.2023.1237438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Interferon-alpha inducible protein 6 (IFI6) is an important interferon-stimulated gene. To date, research on IFI6 has mainly focused on human malignant tumors, virus-related diseases and autoimmune diseases. Previous studies have shown that IFI6 plays an important role in antiviral, antiapoptotic and tumor-promoting cellular functions, but few studies have focused on the structure or function of avian IFI6. Avian reovirus (ARV) is an important virus that can exert immunosuppressive effects on poultry. Preliminary studies have shown that IFI6 expression is upregulated in various tissues and organs of specific-pathogen-free chickens infected with ARV, suggesting that IFI6 plays an important role in ARV infection. To analyze the function of avian IFI6, particularly in ARV infection, the chicken IFI6 gene was cloned, a bioinformatics analysis was conducted, and the roles of IFI6 in ARV replication and the innate immune response were investigated after the overexpression or knockdown of IFI6 in vitro. The results indicated that the molecular weight of the chicken IFI6 protein was approximately 11 kDa and that its structure was similar to that of the human IFI27L1 protein. A phylogenetic tree analysis of the IFI6 amino acid sequence revealed that the evolution of mammals and birds was clearly divided into two branches. The evolutionary history and homology of chickens are similar to those of other birds. Avian IFI6 localized to the cytoplasm and was abundantly expressed in the chicken lung, intestine, pancreas, liver, spleen, glandular stomach, thymus, bursa of Fabricius and trachea. Further studies demonstrated that IFI6 overexpression in DF-1 cells inhibited ARV replication and that the inhibition of IFI6 expression promoted ARV replication. After ARV infection, IFI6 modulated the expression of various innate immunity-related factors. Notably, the expression patterns of MAVS and IFI6 were similar, and the expression patterns of IRF1 and IFN-β were opposite to those of IFI6. The results of this study further advance the research on avian IFI6 and provide a theoretical basis for further research on the role of IFI6 in avian virus infection and innate immunity.
Collapse
Affiliation(s)
- Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, China
| |
Collapse
|
5
|
Jiang X, He D, Gao L, Wei F, Wu B, Niu X, Tian M, Tang Y, Diao Y. Synergistic pathogenicity of avian orthoreovirus and Staphylococcus aureus on SPF chickens. Poult Sci 2023; 102:102996. [PMID: 37573844 PMCID: PMC10448332 DOI: 10.1016/j.psj.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Avian arthritis is a relatively common disease in the poultry industry, the cause of which is complex. Bacterial arthritis is often caused by infection of Staphylococcus aureus (S. aureus), whereas viral arthritis is caused by avian orthoreovirus (ARV). To investigate the infection of S. aureus and ARV in cases of avian arthritis, a total of 77 samples characterized by arthritis were collected and detection. The results showed that 68.83% of the samples were positive for ARV, and 66.23% were positive for S. aureus. Among them, the ARV mono-infection rate was 22.08%, the S. aureus mono-infection rate was 19.48%, and ARV and S. aureus co-infection rate was 45.45%, indicating that ARV and S. aureus co-infection is common in arthritis cases. To further investigate the synergistic pathogenicity of ARV and S. aureus, ARV and S. aureus were used to mono-infect, co-infect, and (or) sequential infect SPF chickens and the clinical indications, pathologic changes, ARV load, S. aureus bacterial distribution, and cytokine level of the challenged chickens were evaluated. Decreased weight gain, increased mortality, and difficulties in standing were observed in all dual-infected groups and the singular-infected group. There were significantly more severe macroscopic and microscopic hock lesions, and larger amounts of a wider range of tissue distribution of ARV antigens and S. aureus bacterial distribution in the dual-infected groups compared to the single-infected and control groups. Cytokine detection showed a significant change in IFN-γ, IL-1β, and IL-6 levels in the infected groups, especially in the ARV-S. aureus co-infection, and (or) sequential infection groups, compared with the control group. Hence, ARV and S. aureus synergistically increased mortality in infected chickens, potentiated the severity of arthritis, and increased the amount of ARV RNA in tendons.
Collapse
Affiliation(s)
- Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Ling Gao
- Laoling Animal Husbandry Development Center, De'zhou, Shandong 253600, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Xing Niu
- Linyi Vocational University of Science and Technology, Linyi, Shandong, 276000, China
| | - Maoquan Tian
- Laoling Animal Husbandry Development Center, De'zhou, Shandong 253600, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
6
|
Liu D, Zou Z, Song S, Liu H, Gong X, Li B, Liu P, Wang Q, Liu F, Luan D, Zhang X, Du Y, Jin M. Epidemiological Analysis of Avian Reovirus in China and Research on the Immune Protection of Different Genotype Strains from 2019 to 2020. Vaccines (Basel) 2023; 11:vaccines11020485. [PMID: 36851362 PMCID: PMC9960544 DOI: 10.3390/vaccines11020485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Avian reovirus (ARV) is the primary pathogen responsible for viral arthritis. In this study, 2340 samples with suspected viral arthritis were collected from 2019 to 2020 in 16 provinces of China to investigate the prevalence of ARV in China and to characterize the molecular genetic evolution of epidemic strains. From 113 samples analyzed by RT-PCR, 46 strains of avian reovirus were successfully isolated and identified. The genetic evolution of the σC gene showed that 46 strains were distributed in 1-5 branches, with the largest number of strains in branches 1 and 2. The σC gene homology among the strains was low, with approximately 62% homology in branches 4 and 5 and about 55% in the remaining branches. The strains circulating during the ARV epidemic in different provinces were distributed in different branches. The SPF chickens were immunized with inactivated vaccines containing strains from branches 1 and 4 to analyze the cross-immune protection elicited by different branches of ARV strains. A challenge protection test was performed using strains in branches 1, 2, 4, and 5. Our results showed that inactivated vaccines containing strains from branches 1 and 4 could fully protect from strains in branches 1, 4, and 5. The results of this study revealed the genetic diversity among the endemic strains of ARV in China from 2019 to 2020. Each genotype strain elicited partial cross-protection, providing a scientific basis for the prevention and control of ARV.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
| | - Shanshan Song
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Hongxiang Liu
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Xiao Gong
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Bin Li
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Ping Liu
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Qunyi Wang
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Fengbo Liu
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Dongzu Luan
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Xiang Zhang
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Yuanzhao Du
- YEBIO Bio-Engineering Co., Ltd. of Qingdao, Qingdao 266032, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87286905
| |
Collapse
|
7
|
Lunge VR, De Carli S, Fonseca ASK, Ikuta N. Avian Reoviruses in Poultry Farms from Brazil. Avian Dis 2022; 66:459-464. [PMID: 36715480 DOI: 10.1637/aviandiseases-d-22-99998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Avian reovirus (ARV) is highly disseminated in commercial Brazilian poultry farms, causing arthritis/tenosynovitis, runting-stunting syndrome, and malabsorption syndrome in different meat- and egg-type birds (breeders, broilers, grillers, and layers). In Brazil, ARV infection was first described in broilers in the 1970s but was not considered an important poultry health problem for decades. A more concerning outcome of field infections has been observed in recent years, including condemnations at slaughterhouses because of the unsightly appearance of chicken body parts, mainly the legs. Analyses of the performance of poultry flocks have further evidenced economic losses to farms. Genetic and antigenic characterization of ARV field strains from Brazil demonstrated a high diversity of lineages circulating in the entire country, including four of the five main phylogenetic groups previously described (I, II, III, and V). It is still unclear if all of them are associated with different diseases affecting flocks' performance in Brazilian poultry. ARV infections have been controlled in Brazilian poultry farms by immunization of breeders and young chicks with classical commercial live vaccine strains (S1133, 1733, 2408, and 2177) used elsewhere in the Western Hemisphere. However, genetic and antigenic variations of the field isolates have prevented adequate protection against associated diseases, so killed autogenous vaccines are being produced from isolates obtained on specific farms. In conclusion, ARV field variants are continuously challenging poultry farming in Brazil. Epidemiological surveillance combined with molecular biological analyses from the field samples, as well as the development of vaccine strains directed toward the ARV circulating variants, are necessary to control this economically important poultry pathogen.
Collapse
Affiliation(s)
- Vagner R Lunge
- Laboratório de Diagnóstico em Medicina Veterinária, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil, .,Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil.,Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| | - Silvia De Carli
- Laboratório de Diagnóstico Molecular, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Genetic and pathogenic characteristics of two novel/recombinant avian orthoreovirus. Vet Microbiol 2022; 275:109601. [DOI: 10.1016/j.vetmic.2022.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
9
|
Choi YR, Kim SW, Shang K, Park JY, Zhang JF, Jang HK, Wei B, Cha SY, Kang M. Avian Reoviruses From Wild Birds Exhibit Pathogenicity to Specific Pathogen Free Chickens by Footpad Route. Front Vet Sci 2022; 9:844903. [PMID: 35280152 PMCID: PMC8907544 DOI: 10.3389/fvets.2022.844903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Avian reoviruses (ARVs) are ubiquitous in domestic poultry with 80% of them being non-pathogenic and they are frequently found in clinically healthy birds. ARVs have also been known to be the etiological agents of viral arthritis (VA), tenosynovitis, myocarditis, runting-stunting syndrome (RSS), and respiratory and enteric disease in chickens. Significant economic losses during the process of poultry husbandry are due, in part, to unmitigated ARV infections throughout the poultry industry. Recently, many isolates shared genetic similarities between those recovered from wild birds and those recovered from poultry. One explanation may be that there is a degree of spillover and spillback of ARVs between the two groups. However, studies on the role of wild birds in the epidemiology and pathogenicity of ARVs are insufficient. Here, we describe the pathogenicity in specific pathogen-free (SPF) chickens of ARV originating from wild birds. The challenge experiment was conducted in six groups including a negative control group, a positive control group (reference strain of S1133), and four groups (A15-157, A18-13, A18-205, A19-106) infected with ARVs from wild birds. The 7-day-old SPF chickens were inoculated with 106TCID50 ARV to evaluate the clinical signs, changes in weight gain, gross lesions, histological changes, virus replication, and serum antibody levels. The peak of clinical signs was from 3 to 5 days post infection (dpi). In addition, the death of one chicken was found in the group infected with the A18-13 isolate. Reduced body weight was also found in chickens infected with ARVs from wild birds compared to the negative control group. All the ARVs infection groups showed noticeable swelling of the footpad. In addition, ARVs were detected in the bursa, tendon, and hock joint by reverse transcription-polymerase chain reaction (RT-PCR) in all infected groups at 5 and 15 dpi. Histopathological observations revealed acute inflammatory responses on the synovium covering the joint surfaces (arthritis) and tendon sheaths (tenosynovitis), as well as bursa atrophy and lymphocyte depletion. The analysis of the humoral response was performed by ELISA assay, and chickens infected with ARVs showed seroconverted. In conclusion, this study described the typical severe disease of acute VA and tenosynovitis in SPF chickens infected with ARVs derived from wild birds. This study confirmed the pathogenicity of ARVs infection in SPF chickens for the first time, and these results enrich our understanding of the pathogenicity of ARVs derived from wild birds.
Collapse
|
10
|
Egaña-Labrin S, Jerry C, Roh HJ, da Silva AP, Corsiglia C, Crossley B, Rejmanek D, Gallardo RA. Avian Reoviruses of the Same Genotype Induce Different Pathology in Chickens. Avian Dis 2021; 65:530-540. [DOI: 10.1637/0005-2086-65.4.530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 11/05/2022]
Affiliation(s)
- S. Egaña-Labrin
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - C. Jerry
- California Animal Health and Food Safety Laboratory System, Turlock branch, University of California, Davis, 1550 N Soderquist Road, Turlock, CA 95380
| | - H. J. Roh
- CEVA Scientific Support and Investigation Unit (SSIU) and Science and Investigation Department (SID), CEVA Animal Health USA, 8930 Rosehill Road, Lenexa, KS 66215
| | - A. P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - C. Corsiglia
- Foster Farms, 14519 Collier Road, Delhi, CA 95315
| | - B. Crossley
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California, Davis, 620 W Health Science Drive, Davis, CA 95616
| | - D. Rejmanek
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California, Davis, 620 W Health Science Drive, Davis, CA 95616
| | - R. A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
11
|
Egaña-Labrin S, Jerry C, Roh HJ, da Silva AP, Corsiglia C, Crossley B, Rejmanek D, Gallardo RA. Avian Reoviruses of the Same Genotype Induce Different Pathology in Chickens. Avian Dis 2021. [DOI: 10.1637/0005-2086-65.4.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- S. Egaña-Labrin
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - C. Jerry
- California Animal Health and Food Safety Laboratory System, Turlock branch, University of California, Davis, 1550 N Soderquist Road, Turlock, CA 95380
| | - H. J. Roh
- CEVA Scientific Support and Investigation Unit (SSIU) and Science and Investigation Department (SID), CEVA Animal Health USA, 8930 Rosehill Road, Lenexa, KS 66215
| | - A. P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - C. Corsiglia
- Foster Farms, 14519 Collier Road, Delhi, CA 95315
| | - B. Crossley
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California, Davis, 620 W Health Science Drive, Davis, CA 95616
| | - D. Rejmanek
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California, Davis, 620 W Health Science Drive, Davis, CA 95616
| | - R. A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
12
|
Yan T, Guo L, Jiang X, Wang H, Yao Z, Zhu S, Diao Y, Tang Y. Discovery of a novel recombinant avian orthoreovirus in China. Vet Microbiol 2021; 260:109094. [PMID: 34271302 DOI: 10.1016/j.vetmic.2021.109094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
In mid-2020, using next-generation sequencing (NGS) technology, we identified a recombinant cluster 2 avian orthoreovirus (ARV) variant named PHC-2020-0545, isolated from tendons of 33-day-old broilers with leg swelling in China. Complete genomic sequencing and analyses demonstrated that the isolate was genetically significantly distinct from known ARV strains in M1 and M3 genes and its σC coding gene had an extremely high variability, compared with the identified ARV strains grouped into other genotyping cluster. Further analysis showed that many base substitutions were silent and non-silent substitutions are most likely to occur in the first positions of codons. Multiple segmental recombination, intra-segmental recombination and accumulation of point mutations might contribute to the emergence of this isolate. The PHC-2020-0545 strain had a strong replication ability in 1-day-old broilers, and mainly affected the movement, digestion and metabolism of broilers. In addition, the infection route of the isolate is related to its pathogenicity to broilers. Therefore, combined with its unique genetic characteristics and potential origin, we determined that the PHC-2020-0545 field strain is a novel recombinant ARV strain, which has certain reference value for the preparation and evaluation of new vaccines.
Collapse
Affiliation(s)
- Tian Yan
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Liuchuan Guo
- College of Animal Medicine, China Agricultural University, Beijing, 100094, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Hongzhi Wang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Zhonghui Yao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Siming Zhu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China.
| |
Collapse
|
13
|
Luo D, Liu R, Weng L, Li K, Qi X, Gao Y, Liu C, Zhang Y, Cui H, Pan Q, Gao L, Wang X. Genomic sequences and pathogenic characteristics of two variant duck reoviruses associated with spleen necrosis. INFECTION GENETICS AND EVOLUTION 2021; 92:104847. [PMID: 33823307 DOI: 10.1016/j.meegid.2021.104847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022]
Abstract
Emerging variant novel duck reovirus (NDRV) strains that cause spleen swelling and necrosis have seriously threatened the waterfowl industry since 2017. However, there is no report about the complete genomic sequence of emerging variant strains isolated from Cherry valley ducks. In this study, we acquired the complete genome sequences of two variant NDRV strains, SD19/6201 and SD19/6202, and analyzed their genetic and evolutionary relationship with other orthoreoviruses. The phylogenetic analysis of σC showed that all the Chinese NDRVs were clustered into two distinct branches. The SD19/6201 strain located in branch I with most of the Chinese NDRVs, while SD19/6202 was clustered in branch II with significantly different from the existing strains. Within the branch I, the NDRVs isolated in 2017 and thereafter clustered in a new subgroup. Comparison analysis of σC amino acid sequences indicated that ten amino acid differences were found between SD19/6201 and SD19/6202. Apart from the SD19/6201 and SD19/6202 strains, isolates in 2017 and thereafter had specific mutations at residues 132A, 138R, 158H, and 258A. These two NDRV strains showed different pathogenicity in SPF duck embryos and ducks. The viral loads in the spleen of infected ducks were significantly higher than those of other organs, which might be the reason why NDRV could cause obvious spleen necrosis in ducks. This study will help us to formulate effective prevention and control strategies against NDRV and enrich our understanding of the intra- and inter-species relationships of orthoreoviruses.
Collapse
Affiliation(s)
- Dan Luo
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Rui Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lixue Weng
- Yantai Fushan Administration Examination and Approval Center, Yantai 265500, PR China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis,Yangzhou University,Yangzhou 225009,PR China.
| |
Collapse
|
14
|
De la Torre D, Astolfi-Ferreira CS, Chacón RD, Puga B, Piantino Ferreira AJ. Emerging new avian reovirus variants from cases of enteric disorders and arthritis/tenosynovitis in Brazilian poultry flocks. Br Poult Sci 2021; 62:361-372. [PMID: 33448227 DOI: 10.1080/00071668.2020.1864808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The objective of this study was to characterise circulating Brazilian avian reovirus (ARV) strains by genetic analysis of the σC protein encoded by segment 1 of the viral genome and compare these with those of viral strains used for immunising commercial poultry.2. The analysis detected the presence of ARV genomes by quantitative reverse transcriptase PCR (RT-qPCR) in the enteric samples and the joint tissues (JT) of birds with signs of viral arthritis/tenosynovitis. Nucleotide sequencing used 16 strains (three commercial vaccines, 10 from enteric tissues and three from JT). The results indicated high variability in the amino acid sequences of 13 wild strains, showing between 40% and 75% similarity compared with the vaccine strains (S1133 and 2177).3. The sequences were grouped into three well-defined clusters in a phylogenetic tree, two of these clusters together with previous Brazilian σC ARV sequences, and one cluster (VII) that was novel for Brazilian strains. Antigenic analysis showed that there were amino acids within putative epitopes located on the surface of the receptor-binding region of the σC protein with a high degree of variability.4. The study confirmed the presence of ARV genetic variants circulating in commercial birds in Brazil, and according to the antigenic prediction, the possibility of antigenic variants appears to be high.
Collapse
Affiliation(s)
- D De la Torre
- School of Veterinary Medicine, Institute for Research in Biomedicine, Central University of Ecuador, Quito, CP, Ecuador.,School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - R D Chacón
- School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - B Puga
- School of Veterinary Medicine, Institute for Research in Biomedicine, Central University of Ecuador, Quito, CP, Ecuador
| | | |
Collapse
|
15
|
De Carli S, Wolf JM, Gräf T, Lehmann FKM, Fonseca ASK, Canal CW, Lunge VR, Ikuta N. Genotypic characterization and molecular evolution of avian reovirus in poultry flocks from Brazil. Avian Pathol 2020; 49:611-620. [PMID: 32746617 DOI: 10.1080/03079457.2020.1804528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Avian reovirus (ARV) is one of the main causes of infectious arthritis/tenosynovitis and malabsorption syndrome (MAS) in poultry. ARVs have been disseminated in Brazilian poultry flocks in the last years. This study aimed to genotype ARVs and to evaluate the molecular evolution of the more frequent ARV lineages detected in Brazilian poultry-producing farms. A total of 100 poultry flocks with clinical signs of tenosynovitis/MAS, from all Brazilian poultry-producing regions were positive for ARV by PCR. Seventeen bird tissues were submitted to cell culture and ARV RNA detection/genotyping by two PCRs. The phylogenetic classification was based on σC gene alignment using a dataset with other Brazilian and worldwide ARVs sequences. ARVs were specifically detected by both PCRs from the 17 cell cultures, and σC gene partial fragments were sequenced. All these sequences were aligned with a total of 451 ARV σC gene data available in GenBank. Phylogenetic analysis demonstrated five well-defined clusters that were classified into lineages I, II, III, IV, and V. Three lineages could be further divided into sub-lineages: I (I vaccine, Ia, Ib), II (IIa, IIb, IIc) and IV (IVa and IVb). Brazilian ARVs were from four lineages/sub-lineages: Ib (48.2%), IIb (22.2%), III (3.7%) and V (25.9%). The Bayesian analysis demonstrated that the most frequent sub-lineage Ib emerged in the world around 1968 and it was introduced into Brazil in 2010, with increasing spread soon after. In conclusion, four different ARV lineages are circulating in Brazilian poultry flocks, all associated with clinical diseases. RESEARCH HIGHLIGHTS One-hundred ARV-positive flocks were detected in all main poultry-producing regions from Brazil. A large dataset of 468 S1 sequences was constructed and divided ARVs into five lineages. Four lineages/sub-lineages (Ib, IIb, III and V) were detected in commercial poultry flocks from Brazil. Brazilian lineages shared a low identity with the commercial vaccine lineage (I vaccine). Sub-lineage Ib emerged around 1968 and was introduced into Brazil in 2010.
Collapse
Affiliation(s)
- Silvia De Carli
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Fernanda K M Lehmann
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil
| | | | - Cláudio W Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vagner R Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Nilo Ikuta
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Brazil.,Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
16
|
Sequencing and phylogenetic analysis of partial S1 genes of avian orthoreovirus isolates in Shandong province during 2015-2017. Poult Sci 2020; 99:2416-2423. [PMID: 32359576 PMCID: PMC7597403 DOI: 10.1016/j.psj.2019.11.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 11/23/2022] Open
Abstract
Outbreaks of avian orthoreovirus (ARV) infection with primary symptoms of arthritis/tenosynovitis syndrome have been occurring more frequently in broiler flocks in China in recent years. This study aimed to investigate the genetic characteristics of ARV field strains in broiler flocks exhibiting arthritis/tenosynovitis syndrome from 9 cities in Shandong province during 2015 to 2017. A total of 64 synovial and tendon samples were obtained from broilers with significant arthritis/tenosynovitis syndrome, and 21 ARV field strains were obtained. Phylogenetic analysis of the σC nt/aa sequences revealed that only 4 isolates were clustered in genotype I, including vaccine strains S1133, 1733, and most of the ARV field strains identified previously in China. Eleven and 6 ARV field isolates were identified in genotypes II and V, sharing 70.9 to 76.0% and 53.0 to 55.2% nt identities with the vaccine strains, respectively. Previous studies in China have not reported these 2 serotypes of field strains, and prevalence of these ARV variants may be increasing in Chinese broiler flocks. Results of this study suggest that large-scale investigation of epidemic ARV should be conducted to explore the genetic diversity of ARV field isolates in China.
Collapse
|