1
|
Mahan VL. Heme oxygenase/carbon monoxide system and development of the heart. Med Gas Res 2025; 15:10-22. [PMID: 39324891 DOI: 10.4103/mgr.medgasres-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024] Open
Abstract
Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. "Normal" hypoxia is critical for heart formation, but "abnormal" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.
Collapse
Affiliation(s)
- Vicki L Mahan
- Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Drexel University Medical School, Phildelphia, PA, USA
| |
Collapse
|
2
|
Li Y, Yang X, Shi C, Wang L, Wang Y, Zhang W, Wang P, Zhang H, Yang X, Wen P. Insights into the microscopic heterogeneity of whey proteins between yak colostrum and mature milk based on 4D lable-free quantitative phosphoproteomics. Food Chem 2024; 460:140679. [PMID: 39106750 DOI: 10.1016/j.foodchem.2024.140679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
This study aimed to reveal the change patterns of the phosphorylation modification status of yak whey phosphoproteins during lactation and their physiological effects. Herein, we comprehensively characterized whey phosphoproteome in yak colostrum and mature milk using an ultra-high throughput phosphoproteomics approach incorporating trapped ion mobility technology. A total of 344 phosphorylation sites from 206 phosphoproteins were identified, with individual site modification predominating. Notably, 117 significantly different phosphorylation sites were distributed on 89 whey phosphoproteins. Gene ontology analysis indicated that these significantly different whey phosphoproteins (SDWPPs) were mainly annotated to carbohydrate metabolic process, membrane, extracellular region and calcium ion binding. Metabolic pathway enrichment analysis demonstrated that SDWPPs were critically involved in protein processing in endoplasmic reticulum, NOD-like receptor signaling pathway and N-glycan biosynthesis. Our results elucidate the phosphorylation profiles of yak whey phosphoproteins at different lactations and their adaptive regulatory role in meeting the nutritional requirements of yak calves during development.
Collapse
Affiliation(s)
- Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengrui Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Longlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoli Yang
- Gansu Institute of Business and Technology, Lanzhou 730010, China.
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Ivanova AD, Kotova DA, Khramova YV, Morozova KI, Serebryanaya DV, Bochkova ZV, Sergeeva AD, Panova AS, Katrukha IA, Moshchenko AA, Oleinikov VA, Semyanov AV, Belousov VV, Katrukha AG, Brazhe NA, Bilan DS. Redox differences between rat neonatal and adult cardiomyocytes under hypoxia. Free Radic Biol Med 2024; 211:145-157. [PMID: 38043869 DOI: 10.1016/j.freeradbiomed.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.
Collapse
Affiliation(s)
- Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia V Khramova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ksenia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Zhanna V Bochkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia D Sergeeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ivan A Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Vladimir A Oleinikov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow, 115409, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Alexey G Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|
4
|
Li X, Abdel-Moneim AME, Hu Z, Mesalam NM, Yang B. Effects of chronic hypoxia on the gene expression profile in the embryonic heart in three Chinese indigenous chicken breeds (Gallus gallus). Front Vet Sci 2022; 9:942159. [PMID: 35990266 PMCID: PMC9390884 DOI: 10.3389/fvets.2022.942159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia exposure (HE) has adverse impacts on the embryonic development of chicken, whereas the mechanism underlying the response of the heart to HE during embryo development in birds is still unclear. Therefore, our study was designed to reveal the hub genes and the signaling pathways linked to chronic hypoxia stress. Thus, the gene expression microarray GSE12675, downloaded from the GEO database, included 12 embryonic heart samples in hypoxia and normoxia of three Chinese indigenous chicken breeds [Shouguang (SG), Tibetan (TB), and Dwarf Recessive White (DRW) chickens]. A total of 653 to 714 breed-specific differentially expressed genes (DEGs) were detected in each pairwise comparison. Gene ontology (GO) showed that the DEGs were mainly involved in biological processes, including vasoconstriction, cell differentiation, and the positive regulation of vasoconstriction. KEGG enrichment revealed that the DEGs were mainly enriched in MAPK, PPAR, insulin, adrenergic signaling in cardiomyocytes, etc. Moreover, 48 genes (e.g., SGCD, DHRS9, HELQ, MCMDC2, and ESCO2) might contribute to the response of the heart to HE. Taken together, the current study provides important clues for understanding the molecular mechanism of the heart's response to HE during the embryonic period of chicken.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | | | - Zhongze Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
- *Correspondence: Bing Yang
| |
Collapse
|
5
|
Haron A, Ruzal M, Shinder D, Druyan S. Hypoxia during incubation and its effects on broiler's embryonic development. Poult Sci 2021; 100:100951. [PMID: 33652530 PMCID: PMC7936217 DOI: 10.1016/j.psj.2020.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
In all vertebrates, hypoxia plays an important role in fetal development, driving vasculogenesis, angiogenesis, hematopoiesis, and chondrogenesis. Therefore, the ability to sense and respond to changes in the availability of oxygen (O2) is crucial for normal embryonic development as well as for developmental plasticity. Moderate levels of hypoxia trigger a regulated process which leads to adaptive responses. Regulation of angiogenesis by hypoxia is an important component of homeostatic control mechanisms that link the cardio-pulmonary-vascular O2 supply to metabolic demands in local tissues. Hypoxia leads to the activation of genes that are important for cell and tissue adaptation to low O2 conditions, such as hypoxia-inducible factor 1. Previous studies have shown a dose-response effect to hypoxia in chicken embryos, with lower and/or prolonged O2 levels affecting multiple mechanisms and providing a spectrum of responses that facilitate the ability to maintain O2 demand despite environmental hypoxia. In chicken embryos, mild to extreme hypoxia during embryogenesis improves chorioallantoic membrane and cardiovascular development, resulting in an increase in O2 carrying capacity and leading to developmental plasticity that may affect post-hatch chick performance and improve adaptation to additional environmental stresses at suboptimal environmental conditions.
Collapse
Affiliation(s)
- Amit Haron
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel; Faculty of Agriculture Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Mark Ruzal
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel
| | - Dmitry Shinder
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel.
| |
Collapse
|
6
|
Effects of stress-induced increases of corticosterone on circulating triglyceride levels, biliverdin concentration, and heme oxygenase expression. Comp Biochem Physiol A Mol Integr Physiol 2020; 240:110608. [DOI: 10.1016/j.cbpa.2019.110608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
|
7
|
Increased systemic inflammation in children with Down syndrome. Cytokine 2019; 127:154938. [PMID: 31785499 DOI: 10.1016/j.cyto.2019.154938] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Children with Down syndrome (DS) develop more infections, have an increased mortality from sepsis and an increased incidence of chronic inflammatory conditions. Cytokine dysregulation may underpin these clinical sequelae and raised pro-inflammatory biomarkers are a feature in adults with DS. The importance of the anti-inflammatory mediators IL-1ra and IL-10, as well as cytokines Epo and VEGF, which could impact on the pathogenesis and outcomes in congenital heart disease (CHD) which is more prevalent in DS, are less well known. We examined a comprehensive array of pro-(IL-2, IL-6, IL-8, IL-18, IL-1β, TNF-α, IFN-γ), and anti-inflammatory (IL-10 and IL-1ra) mediators, cytokines involved in inflammation in response to hypoxia (EPO), propagating angiogenesis (VEGF), and myelopoiesis (GM-CSF), by enzyme linked immunosorbent assay (ELISA), as well as discussing the potential impact of significant CHD and Lipopolysaccharide endotoxin on these mediators. 114 children with DS and 60 age and sex matched controls were recruited. Children with Down syndrome exhibit significantly greater levels of pro and anti-inflammatory cytokines; IL-2, IL-6, IL-10, IL-1ra, as well as increased Epo, VEGF and GM-CSF at baseline. CHD does not seem to have an impact on circulating cytokines beyond the acute surgical phase. Both cohorts had similar responses to LPS stimulation. These differences may contribute to varied clinical outcomes, acutely like in sepsis, and over time in autoimmunity.
Collapse
|
8
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
9
|
Babacanoğlu E. Responses of developmental and physiological traits to manipulated incubation conditions in broiler embryos at hypoxic high altitude. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-337-2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract. The effects of hypoxia at
increased altitude levels on the cardio-respiratory development of broiler
embryos are distinct in comparison with those at sea level. The aim of the
study was to investigate the effects of high incubation temperature (H) and
oxygen supplementation (O) during hypoxic high altitude (HA) on developmental
and physiological traits of embryos and hatching performance of embryonated
hatching eggs in broilers at different embryonic stages. A total of 1280 eggs
obtained from broiler breeders laid at sea level were used. Eggshell quality
characteristics were measured for 20 eggs. The rest of the 1260 eggs were
divided into seven incubation condition (IC) groups (180 eggs per group)
including a control group at 37.8 ∘C and 21 % O2; O
groups, with daily 1 h 23.5 % O2 supplementation at
37.8 ∘C as O0−11, O12−21, and O18−21; H groups
at 38.5 ∘C high incubation temperature at 21 % O2 as
H0−11, H12−21, and H18−21 from days 0 to 11, 12 to 21, and 18 to 21 of incubation,
respectively. All groups were incubated in three different incubators at
hypoxic HA. The effect of IC was determined on eggshell temperature, hatching
performance, embryo development, right ventricular (RV) to total ventricular
(TV) ratio, and blood parameters. The highest egg water loss and embryonic
mortality and the lowest hatchability were in the H0−11 group, which
depended on increased eggshell temperature during incubation. On day 18 of
incubation, due to the decreased egg water loss in the O12−21 and
O18−21 groups, there was an increase in hatchability in fertile eggs
similar to the middle and late H groups. Towards the end of incubation,
embryo/chick weights were not different and RV and TV weights increased in
the treated groups, and the RV ∕ TV ratio changed between 15 and
26 %. At hatching, yolk
sac weight increased in H0−11 and H12−21 groups. The O groups
had the lowest serum tri-iodothyronine (T3) concentration as distinct
from H groups. The serum thyroxine (T4) concentration increased in the
treated groups, dependent on sex of the embryo. Blood hemoglobin
concentration of O groups decreased relative to other groups. The hematocrit
value was the lowest in the O12−21 and highest in the H12−21
groups. The H and O treatments during pre-hatch hypoxic HA condition can be
positively evaluated on physiological traits of embryos after half of
incubation depended on the timing of the IC exposure to the hatching eggs
obtained from broiler breeders at sea level.
Collapse
|
10
|
Zhao X, Ding X, Yang Z, Shen Y, Zhang S, Shi S. Effects of Clostridium butyricum on breast muscle lipid metabolism of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1453758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xu Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xiao Ding
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai-an, Shandong, China
| | - Zaibin Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai-an, Shandong, China
| | - Yiru Shen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Shan Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Sandoval‐Castillo J, Robinson NA, Hart AM, Strain LWS, Beheregaray LB. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (
Haliotis laevigata
), along a longitudinal environmental gradient. Mol Ecol 2018; 27:1603-1620. [DOI: 10.1111/mec.14526] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| | - Nick A. Robinson
- Nofima Ås Norway
- Sustainable Aquaculture Laboratory School of BioSciences University of Melbourne Parkville Vic Australia
| | - Anthony M. Hart
- Western Australian Fisheries and Marine Research Laboratories Department of Fisheries Western Australia Hillarys WA Australia
| | - Lachlan W. S. Strain
- Western Australian Fisheries and Marine Research Laboratories Department of Fisheries Western Australia Hillarys WA Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| |
Collapse
|
12
|
Itani N, Salinas CE, Villena M, Skeffington KL, Beck C, Villamor E, Blanco CE, Giussani DA. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J Physiol 2017; 596:2991-3006. [PMID: 28983923 DOI: 10.1113/jp274111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
It is now established that adverse conditions during pregnancy can trigger a fetal origin of cardiovascular dysfunction and/or increase the risk of heart disease in later life. Suboptimal environmental conditions during early life that may promote the development of cardiovascular dysfunction in the offspring include alterations in fetal oxygenation and nutrition as well as fetal exposure to stress hormones, such as glucocorticoids. There has been growing interest in identifying the partial contributions of each of these stressors to programming of cardiovascular dysfunction. However, in humans and in many animal models this is difficult, as the challenges cannot be disentangled. By using the chicken embryo as an animal model, science has been able to circumvent a number of problems. In contrast to mammals, in the chicken embryo the effects on the developing cardiovascular system of changes in oxygenation, nutrition or stress hormones can be isolated and determined directly, independent of changes in the maternal or placental physiology. In this review, we summarise studies that have exploited the chicken embryo model to determine the effects on prenatal growth, cardiovascular development and pituitary-adrenal function of isolated chronic developmental hypoxia.
Collapse
Affiliation(s)
- N Itani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - C E Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - M Villena
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Skeffington
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C Beck
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - E Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - C E Blanco
- Department of Neonatology, The National Maternity Hospital, Holles Street, Dublin, D02 YH21, Ireland
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
13
|
Combinatory Evaluation of Transcriptome and Metabolome Profiles of Low Temperature-induced Resistant Ascites Syndrome in Broiler Chickens. Sci Rep 2017; 7:2389. [PMID: 28539642 PMCID: PMC5443777 DOI: 10.1038/s41598-017-02492-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/13/2017] [Indexed: 12/23/2022] Open
Abstract
To select metabolic biomarkers and differentially expressed genes (DEGs) associated with resistant-ascites syndrome (resistant-AS), we used innovative techniques such as metabolomics and transcriptomics to comparatively examine resistant-AS chickens and AS controls. Metabolomic evaluation of chicken serum using ultra-performance liquid chromatography-quadruple time-of-flight high-sensitivity mass spectrometry (UPLC-QTOF/HSMS) showed significantly altered lysoPC(18:1), PE(18:3/16:0), PC(20:1/18:3), DG(24:1/22:6/0:0), PS(18:2/18:0), PI(16:0/16:0), PS(18:0/18:1), PS(14:1/14:0), dihydroxyacetone, ursodeoxycholic acid, tryptophan, L-valine, cycloserine, hypoxanthine, and 4-O-Methylmelleolide concentrations on day 21 and LysoPC(18:0), LysoPE(20:1/0:0), LysoPC(16:0), LysoPE(16:0/0:0), hypoxanthine, dihydroxyacetone, 4-O-Methylmelleolide, LysoPC(18:2), and PC(14:1/22:1) concentrations on day 35, between the susceptible and resistant groups. Compared to the susceptible group, transcriptomic analysis of liver samples using RNA-seq revealed 413 DEGs on day 21 and 214 DEGs on day 35 in the resistant group. Additional evaluations using gene ontology (GO) indicate that significant enrichment occurred in the oxygen transportation, defensive reactions, and protein modifications of the decreased DEGs as well as in the cell morphological formation, neural development, and transforming growth factor (TGF)-beta signalling of the increased DEGs on day 21. Oxygen transportation was also significantly enriched for downregulated DEGs on day 35. The combinatory evaluation of the metabolome and the transcriptome suggests the possible involvement of glycerophospholipid metabolism in the development of resistant-AS in broilers.
Collapse
|
14
|
Surai PF, Kochish II. Antioxidant Systems and Vitagenes in Poultry Biology: Heat Shock Proteins. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Haron A, Dahan Y, Shinder D, Druyan S. Physiological effects of hypoxic conditions during the plateau period on the chicken embryo. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:32-39. [PMID: 27557989 DOI: 10.1016/j.cbpa.2016.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/26/2022]
Abstract
The chick embryo employs several adaptive responses to hypoxic challenges, affecting both metabolism and oxygen (O2) transport. The present study assessed the effects of hypoxic conditions (17% O2) during the plateau phase on embryonic metabolic rate, cardiovascular parameters, and development up to hatching. The study was divided into 2 experiments: (1) Control; 17% O2 for 6h/d on E16-E18 (6H), and 17% O2 for 12h/d on E16-E18 (12H), and (2) Control; 12H, and 17% O2 continuously for 72h on E16-E18, (72H). Hypoxic embryos exhibited a significant increase in heart rate and an upward trend starting on E17 in hematocrit and hemoglobin levels. We observed a decrease in metabolism in 12H and 72H embryos during the plateau period; their oxygen consumption as well as yolk consumption were lower compared to Control and they hatched with a significantly lower body temperature, indicating lower heat production. There was no evidence of adaptation or long-term effects of exposure to 17% O2 for 6h/d. Exposure to 72h of hypoxic conditions led to significant physiological changes and had a detrimental influence on embryonic development and growth. In contrast, exposure to 12h/d produced moderate hypoxic changes, which helped the embryo to cope with the stress without significant influences on its growth and development. The decrease in metabolism may represent a metabolic adaptation through a decrease in resting metabolic rate and lower heat production. Such alterations may affect post-hatch performance and energy allocation between maintenance and growth, especially under stress when there is increased oxygen demand.
Collapse
Affiliation(s)
- A Haron
- Institute of Animal Science, Agrdicultural Research Organization, Volcani Center, HaMaccabim Road, Rishon Le Tsiyon, P.O. Box 15159, 7528809, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Y Dahan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - D Shinder
- Institute of Animal Science, Agrdicultural Research Organization, Volcani Center, HaMaccabim Road, Rishon Le Tsiyon, P.O. Box 15159, 7528809, Israel
| | - S Druyan
- Institute of Animal Science, Agrdicultural Research Organization, Volcani Center, HaMaccabim Road, Rishon Le Tsiyon, P.O. Box 15159, 7528809, Israel.
| |
Collapse
|
16
|
Zhou M, Zeng D, Ni X, Tu T, Yin Z, Pan K, Jing B. Effects of Bacillus licheniformis on the growth performance and expression of lipid metabolism-related genes in broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Lipids Health Dis 2016; 15:48. [PMID: 26957116 PMCID: PMC4782583 DOI: 10.1186/s12944-016-0219-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Background Necrotic enteritis (NE), caused by Clostridium perfringens, has cost the poultry industry $2 billion in losses. This study aimed to investigate the effect of Bacillus licheniformis as dietary supplement on the growth, serum antioxidant status, and expression of lipid-metabolism genes of broiler chickens with C. perfringens-induced NE. Methods A total of 240 one-day-old broilers were randomly grouped into four: a negative control, an NE experimental model (PC), chickens fed a diet supplemented with 30 % of fishmeal from day 14 onwards and challenged with coccidiosis vaccine (FC), and NE group supplied with feed containing 1.0 × 106 CFU/g B. licheniformis (BL). Results Body weight gain, feed conversion ratio, serum antioxidant status, and lipid-metabolism-gene expression were analyzed. In the PC group, FCR increased significantly whereas serum catalase and glutathione peroxidase activity decreased compared with NC group. Dietary B. licheniformis supplementation improved FCR and oxidative stress in experimental avian NE. Using Bacillus licheniformis as a direct-fed microbial (DFM) could also significantly upregulate catabolism-related genes, namely, peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1, in livers and changed the expression of lipid-anabolism genes. Conclusion These results suggested that dietary B. licheniformis supplementation can enhance growth and antioxidant ability, as well as change the expression of genes related to fatty-acid synthesis and oxidation in the livers of NE-infected broilers.
Collapse
Affiliation(s)
- Mengjia Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| | - Teng Tu
- Animal Genetics and Breeding Institute, College of Animal Science and technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B₁-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers. Toxins (Basel) 2015; 7:5435-47. [PMID: 26694462 PMCID: PMC4690129 DOI: 10.3390/toxins7124879] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023] Open
Abstract
Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B1 (AFB1). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB1. In the AFB1 group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB1 group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression.
Collapse
|
18
|
Sánchez O, Domínguez C, Ruiz A, Ribera I, Alijotas J, Cabero L, Carreras E, Llurba E. Angiogenic Gene Expression in Down Syndrome Fetal Hearts. Fetal Diagn Ther 2015; 40:21-7. [PMID: 26513650 DOI: 10.1159/000441356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Forty percent of Down syndrome (DS) fetuses have congenital heart defects (CHD). An abnormal angiogenic environment has been described in euploid fetuses with CHD. However, the underlying pathophysiologic pathway that contributes to CHD in DS remains unknown. The objective was to compare the expression of angiogenic factors and chronic hypoxia genes in heart tissue from DS and euploid fetuses with and without CHD. METHODS The gene expression profile was determined by real-time PCR quantification in heart tissue from 33 fetuses with DS, 23 euploid fetuses with CHD and 23 control fetuses. RESULTS Angiogenic factors mRNA expression was significantly increased in the DS group compared to the controls (soluble fms-like tyrosine kinase-1, 81%, p = 0.007; vascular endothelial growth factor A, 57%, p = 0.006, and placental growth factor, 32%, p = 0.0227). Significant increases in the transcript level of hypoxia-inducible factor-2α and heme oxygenase 1 were also observed in the DS group compared to the controls. The expression of angiogenic factors was similar in DS fetuses and CHD euploid fetuses with CHD. CONCLUSION Abnormal angiogenesis was detected in the hearts of DS fetuses with and without CHD. Our results suggest that DS determines an intrinsically angiogenic impairment that may be present in the fetal heart.
Collapse
Affiliation(s)
- Olga Sánchez
- Maternal and Child Health and Development Network II (SAMID II) RD12/0026, Institute of Health Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Belichenko VM, Turganbaeva AS, Khodyrev EV, Kislyakova LP, Kislyakov YY, Shoshenko CA. Tissue oxygen partial pressure in organs of chickens in the second half of embryogenesis and first days after hatching. Russ J Dev Biol 2014. [DOI: 10.1134/s1062360414050038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Gou W, Peng J, Wu Q, Zhang Q, Zhang H, Wu C. Expression pattern of heme oxygenase 1 gene and hypoxic adaptation in chicken embryos. Comp Biochem Physiol B Biochem Mol Biol 2014; 174:23-8. [PMID: 24947210 DOI: 10.1016/j.cbpb.2014.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/09/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022]
Abstract
Heme oxygenase 1 (HO-1), a rate-limiting enzyme of heme catabolism, has a crucial role of cytoprotective functions under hypoxia. The objective of the present study was to investigate potential differences in protective effect of HO-1 gene on chicken (Gallus gallus) embryo lung during late incubation. At embryonic day (D) D16, D18, D19, and D20 of incubation, the expression of HO-1 in the lungs of chicken embryos (Tibet and Shouguang chickens) incubated in normoxic (21% O2) and hypoxic (13% O2) conditions was measured. SNPs were screened within 5'-flanking region and coding regions with PCR-sequencing and the genotype of the SNPs was determined with PCR-RFLP in Tibet, Chahua and Shouguang chicken populations. In conclusion, the Tibet chicken had higher HO-1 expression on D19 under hypoxic incubation and had two SNPs with different frequency distributions from other chicken breeds, which might be a way that the Tibet chicken had hereditary adaptation to hypoxia during embryonic development.
Collapse
Affiliation(s)
- Wenyu Gou
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Junfei Peng
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Qian Wu
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics & Astronautics, Beijing 100191, China
| | - Qian Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Changxin Wu
- National Engineering Laboratory For Animal Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Li Y, Ma QG, Zhao LH, Wei H, Duan GX, Zhang JY, Ji C. Effects of lipoic acid on immune function, the antioxidant defense system, and inflammation-related genes expression of broiler chickens fed aflatoxin contaminated diets. Int J Mol Sci 2014; 15:5649-62. [PMID: 24699046 PMCID: PMC4013587 DOI: 10.3390/ijms15045649] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/16/2022] Open
Abstract
This study was designed to evaluate the effect of low level of Aflatoxin B1 (AFB1) on oxidative stress, immune reaction and inflammation response and the possible ameliorating effects of dietary alpha-lipoic acid (α-LA) in broilers. Birds were randomly allocated into three groups and assigned to receive different diets: basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1 for three weeks. The results showed that the serum levels of malondialdehyde, tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ) in the AFB1-treated group were significantly increased than the control group. In addition, the increased expressions of interleukin 6 (IL6), TNFα and IFNγ were observed in birds exposed to the AFB1-contaminated diet. These degenerative changes were inhibited by α-LA-supplement. The activities of total superoxide dismutase and glutathione peroxidase, the levels of humoral immunity, and the expressions of nuclear factor-κB p65 and heme oxygenase-1, however, were not affected by AFB1. The results suggest that α-LA alleviates AFB1 induced oxidative stress and immune changes and modulates the inflammatory response at least partly through changes in the expression of proinflammatory cytokines of spleen such as IL6 and TNFα in broiler chickens.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Qiu-Gang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Li-Hong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Hua Wei
- Translational Medicine Lab, Chinese National Human Genome Center, Beijing 100176, China.
| | - Guo-Xiang Duan
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Jian-Yun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Llurba E, Sánchez O, Ferrer Q, Nicolaides KH, Ruíz A, Domínguez C, Sánchez-de-Toledo J, García-García B, Soro G, Arévalo S, Goya M, Suy A, Pérez-Hoyos S, Alijotas-Reig J, Carreras E, Cabero L. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur Heart J 2013; 35:701-7. [PMID: 24159191 DOI: 10.1093/eurheartj/eht389] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AIMS Animal models showed that angiogenesis is related to abnormal heart development. Our objectives were to ascertain whether a relationship exists between congenital heart defects (CHDs) and angiogenic/anti-angiogenic imbalance in maternal and foetal blood and study the expression of angiogenic factors in the foetal heart. METHODS AND RESULTS Maternal and cord blood placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng) were compared in 65 cases of CHD and 204 normal controls. Angiogenic factor expression and markers of hypoxia were measured in heart tissue from 23 CHD foetuses and 8 controls. In the CHD group, compared with controls, plasma PlGF levels were significantly lower (367 ± 33 vs. 566 ± 26 pg/mL; P < 0.0001) and sFlt-1 significantly higher (2726 ± 450 vs. 1971 ± 130 pg/mL, P = 0.0438). Foetuses with CHD had higher cord plasma sFlt-1 (442 ± 76 vs. 274 ± 26 pg/mL; P = 0.0285) and sEng (6.76 ± 0.42 vs. 4.99 ± 0.49 ng/mL, P = 0.0041) levels. Expression of vascular endothelial growth factor (VEGF), sFlt-1, markers of chronic hypoxia, and antioxidant activity were significantly higher in heart tissue from CHD foetuses compared with normal hearts (VEGF, 1.59-fold; sFlt-1, 1.92-fold; hypoxia inducible factor (HIF)-2α, 1.45-fold; HO-1, 1.62-fold; SOD1, 1.31-fold). CONCLUSION An intrinsically angiogenic impairment exists in CHD that appears to be present in both the maternal and foetal circulation and foetal heart. Our data suggest that an imbalance of angiogenic-antiangiogenic factors is associated with developmental defects of the human heart.
Collapse
Affiliation(s)
- Elisa Llurba
- Department of Obstetrics, Maternal-Foetal Medicine Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peng YZ, Wang YW, Ning D, Guo YM. Changes of haematic parameters, redox status and mitochondrial complex activity in the heart and liver of broilers fed with different density diets under low ambient temperature. Avian Pathol 2013; 42:327-34. [DOI: 10.1080/03079457.2013.800941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Zhao X, Guo Y, Guo S, Tan J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl Microbiol Biotechnol 2013; 97:6477-88. [PMID: 23666481 DOI: 10.1007/s00253-013-4970-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
To investigate the effects of Clostridium butyricum and Enterococcus faecium on the growth performance, lipid metabolism, and cecal microbiota of broilers, 264 one-day-old male Ross 308 broiler chicks were randomly allocated into four treatments with six replicates in a 2 × 2 factorial arrangement and fed four diets with two levels of C. butyricum (0 or 1 × 10⁹ cfu/kg) and two levels of E. faecium (0 or 2 × 10⁹ cfu/kg) for 42 days. There was no significant interaction between C. butyricum and E. faecium on the growth performance, lipid metabolism, and cecal microbiota of broilers. However, broilers supplemented with E. faecium had lower (P = 0.022) serum leptin level at day 21 and higher (P < 0.001) fatty acid synthase (FAS), malic enzyme (ME), and acetyl-CoA carboxylase (ACC) mRNA levels in the liver at day 42. Supplementation of C. butyricum improved (P < 0.05) the average daily feed intake and average daily gain, increased (P = 0.016) the serum insulin level at 21 days of age, enhanced (P < 0.05) the content of intramuscular fat, activities of FAS in the liver and lipoprotein lipase (LPL) in the breast muscle, mRNA expression of FAS, ME, and ACC in the liver and LPL in the breast muscle at 42 days of age, but reduced (P = 0.030) cecal Bacteroidetes relative abundance at 21 days of age. The results of this study indicate that the increased intramuscular fat content of broilers fed C. butyricum as observed may be the result of enhanced lipogenesis.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Druyan S, Levi E. Reduced O2 concentration during CAM development--its effect on angiogenesis and gene expression in the broiler embryo CAM. Gene Expr Patterns 2012; 12:236-44. [PMID: 22609957 DOI: 10.1016/j.gep.2012.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 04/05/2012] [Accepted: 05/08/2012] [Indexed: 01/07/2023]
Abstract
Hypoxia during embryogenesis may induce changes in the development of some physiological regulatory systems, thereby causing permanent phenotypic changes in the embryo. Various levels of hypoxia at different time points during embryogenesis were found to affect both anatomical and physiological morphogenesis. These changes and adaptations depended on the timing, intensity, and duration of the hypoxic exposure and, moreover, were regulated by differential expression of developmentally important genes, mostly expressed in a stage- and time-dependent manner. Eggs incubated in a 17%-oxygen atmosphere for 12 h/d from E5 through E12 exhibited a clear and significant increase in the vascular area of the chorioallantoic membrane (CAM); an increase that was already significant within 12 h after the end of the 1st hypoxic exposures (E6). We used the combination of the genes, β-actin, RPLP0 and HPRT as a reference for gene expression profiling, in studying the expression levels of hypoxia-inducible factor 1-alpha (HIF1α), vascular endothelial growth factor alpha-2 (VEGF α 2), vascular endothelial growth factor receptor 2 (KDR), matrix metalloproteinase-2 (MMP2), and fibroblast growth factor 2 (FGF2), under normal and hypoxic conditions. In general, expression of all five investigated genes throughout the embryonic day of development had similar patterns of hypoxia-induced alterations. In E5.5 embryos, expression of HIF1α, MMP2, VEGFα2, and KDR was significantly higher in hypoxic embryos than in controls. In E6 embryos expression of HIF1α, VEGFα2, and FGF2 was significantly higher in hypoxic embryos than in controls. From E6.5 onward expression levels of the examined genes did not show any differences between hypoxic and control embryos. It can be concluded that in this experimental model, exposing broiler embryos to 17% O(2) from E5 to E7 induced significant angiogenesis, as expressed by the above genes. Further studies to examine whether this early exposure to hypoxic condition affects the chick's ability to withstand a post-hatch hypoxic environment is still required.
Collapse
Affiliation(s)
- S Druyan
- Institute of Animal Science, ARO, the Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | | |
Collapse
|
26
|
Qiu R, Croom J, Ali RA, Ballou AL, Smith CD, Ashwell CM, Hassan HM, Chiang CC, Koci MD. Direct fed microbial supplementation repartitions host energy to the immune system. J Anim Sci 2012; 90:2639-51. [PMID: 22367073 DOI: 10.2527/jas.2011-4611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P < 0.05) was measured in DFMD fed broilers. In contrast, the respiration rate of the thymus in those broilers was increased (P < 0.05). The PBMC from DFMD fed broilers had increased ATP concentrations and exhibited increased ATP turnover (P < 0.01). To determine if the increased energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P < 0.05) and an increase in total IgA (P < 0.05). Collectively, these data indicate that supplementation with the direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.
Collapse
Affiliation(s)
- R Qiu
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bento M, Correia E, Tavares AT, Becker JD, Belo JA. Identification of differentially expressed genes in the heart precursor cells of the chick embryo. Gene Expr Patterns 2011; 11:437-47. [PMID: 21767665 DOI: 10.1016/j.gep.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 07/04/2011] [Indexed: 02/04/2023]
Abstract
Genetic evidence has implicated several genes as being critical for heart development. However, the inducers of these genes as well as their targets and pathways they are involved with, remain largely unknown. Previous studies in the avian embryo showed that at HH4 Cerberus (cCer) transcripts are detected in the anterior endomesoderm including the heart precursor cells and later in the left lateral plate mesoderm. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Whole-mount in situ hybridization and sectioning of selected genes showed heart and vascular expression patterns for these transcripts during early chick development. We have developed an effective strategy to specifically identify genes that are differentially expressed in the HPC lineages. Within this set we have identified several genes that are expressed in the heart, blood and vascular lineages, which are likely to play a role in their development. These genes are potential candidates for future functional studies on early embryonic patterning.
Collapse
Affiliation(s)
- Margaret Bento
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Portugal.
| | | | | | | | | |
Collapse
|
28
|
Patterson AJ, Zhang L. Hypoxia and fetal heart development. Curr Mol Med 2011; 10:653-66. [PMID: 20712587 DOI: 10.2174/156652410792630643] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/30/2010] [Indexed: 12/18/2022]
Abstract
Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.
Collapse
Affiliation(s)
- A J Patterson
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|