1
|
Shan X, Xu X, Wang L, Lu Y, Chen X, Li F, Du M, Xing H, Pan S. Dietary curcumin supplementation attenuates hepatic damage and function abnormality in a chronic corticosterone-induced stress model in broilers. J Steroid Biochem Mol Biol 2024; 243:106579. [PMID: 39032671 DOI: 10.1016/j.jsbmb.2024.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Chronic stress refers to the activation of the hypothalamic-pituitary-adrenal (HPA) axis and elevated blood contents of ACTH and corticosterone (CORT), exhibiting significant adverse effects on health outcomes. Currently, natural polyphenol compounds are increasingly being explored as potential therapeutic agents and have been considered as a treatment option for a variety of stress-induced diseases. Curcumin (CUR) is the main substance in Curcuma longa (Zingiberacea) rhizome that has strong health-beneficial properties. The study aimed to assess the potential protective effects of CUR on hepatic oxidative stress damage and abnormal lipid deposition in a chronic CORT-induced stress (CCIS) model in broilers. One hundred and twenty experimental broilers were randomly divided into 1) control group (CON), 2) CUR group (200 mg/kg feed), 3) CORT group (4 mg/kg BW CORT) and 4) CORT+CUR group (200 mg/kg feed plus 4 mg/kg BW CORT). The liver histology, glycolipid metabolism and oxidative stress were determined. In addition, qPCR was performed to identify shifts in genes expression. Compared with CON group, broilers under CCIS showed a decreased body weight, body weight gain and average daily gain, while dietary CUR significantly reversed these adverse effects. Furthermore, the plasma contents of TCH, TG, HDL-C, LDL-C, TP, GLB and AST were all significantly increased in CCIS broilers, while dietary CUR obviously alleviated the increase of TCH, HDL-C, LDL-C and AST, and relieved the hepatic lipid deposition disorder and liver injury. Moreover, CCIS significantly increased the contents of MDA in both liver and plasma, and decreased the content of plasma SOD, while CUR obviously reversed these changes, showing reduced oxidative stress damage. Finally, the mRNA expressions of FAS, ACC, SCD and the protein level of PPAR-γ were significantly increased, meanwhile the mRNA expression of lipolytic genes ACOX1, ATGL and CPT as well as two major intracellular antioxidant enzymes SOD1 and GPX1 were obviously decreased, while CUR effectively reversed these effects. These results showed that dietary CUR effectively alleviated CCIS-induced body weight loss, hepatic oxidative damage and lipid deposition disorder, suggesting the possible therapeutic effectiveness of CUR against hepatic damage and function abnormality caused by CCIS.
Collapse
Affiliation(s)
- Xuemei Shan
- Guangling College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yao Lu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- Guangling College of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Tachibana T, Okuyama H, Takahashi M, Khan S, Makino R, Cline MA. Possible role of corticosterone on behavioral, physiological, and immune responses in chicks. Physiol Behav 2023; 272:114357. [PMID: 37741605 DOI: 10.1016/j.physbeh.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Glucocorticoids are one of steroid hormone and have a variety of functions including stress response, carbohydrate metabolism, and modulation of immune system in vertebrates. Corticosterone is the main glucocorticoid in birds, although the precise role of the glucocorticoid during immune challenge is not fully understood. Therefore, the purpose of the present study was to determine if a single subcutaneous injection of corticosterone could affect inflammation-related gene expressions in the spleen and liver of chicks (Gallus gallus). In addition, the effects of corticosterone injection on the food intake, cloacal temperature, formation of conditioned visual aversion, and plasma constituents were also measured. Corticosterone did not affect the food intake or cloacal temperature and did not cause conditioned visual aversion in chicks. The corticosterone injection was associated with a significant decrease in gene expression of several pro-inflammatory cytokines including inducible nitric oxide synthase and cyclooxygenase-2 in the spleen and liver at 1 and 3 h post-injection. Corticosterone increased the plasma glucose and uric acid concentrations and the antioxidant capacity. In summary, the present study suggests that corticosterone is likely not associated with food intake, cloacal temperature or the development of aversive sensation, but suppresses the synthesis of inflammation-associated bioactive molecules and increases the antioxidant capacity in chicks.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Hirofumi Okuyama
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Ryosuke Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, United States
| |
Collapse
|
3
|
Li S, Wang Z, Yao JW, Jiao HC, Wang XJ, Lin H, Zhao JP. Reduced PGC-1β protein expression may underlie corticosterone inhibition of mitochondrial biogenesis and oxidative phosphorylation in chicken muscles. Front Physiol 2022; 13:989547. [PMID: 36311241 PMCID: PMC9605778 DOI: 10.3389/fphys.2022.989547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
To uncover the molecular mechanism underlying glucocorticoid-induced loss of mitochondrial integrity in skeletal muscles, studies were performed to investigate whether the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)-mediated pathway was involved in this process. In an in vivo trial, 3 groups of 30-d-old Arbor Acres male broilers were randomly subjected to one of the following treatments for 7 days: corticosterone (CORT, 30 mg/kg diet), control (blank), and pair-feeding (restricted to the same feed intake as for the CORT treatment), each with 6 replicates of 15 birds. Mitochondrial abundance, morphology, and function were determined in the pectoralis major and biceps femoris muscles. In an in vitro trial, a primary culture of embryonic chick myotubes was incubated with a serum-free medium for 24 h in the presence or absence of CORT (0, 200, and 1,000 nM). Results showed that CORT destroyed mitochondrial ultrastructure (p < 0.01), and decreased the enzymatic activity and protein expression of respiratory chain complexes (p < 0.05), leading to an inferior coupling efficiency (p < 0.05). As reflected by a decline in mitochondrial density (p < 0.01) and mitochondrial DNA copy number (p < 0.05), CORT reduced mitochondrial contents. Among all three PGC-1 family members, only PGC-1β was down-regulated by CORT at the protein level (p < 0.05). Some aspects of these responses were tissue-specific and seemed to result from the depressed feed intake. Overall, CORT may impair mitochondrial biogenesis and oxidative phosphorylation in a PGC-1β-dependent manner in chicken muscles.
Collapse
Affiliation(s)
- Sheng Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Wen Yao
- Pharmacy Department, Taian City Central Hospital, Taian, Shandong, China
| | - Hong Chao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Xiao Juan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- *Correspondence: Jing Peng Zhao,
| |
Collapse
|
4
|
Wang M, Jiao H, Zhao J, Lin H, Wang X. The involvement of FATP1 regulating skeletal muscle fat deposition in stressed broilers was affected by fatty acid substrates. Front Vet Sci 2022; 9:965894. [PMID: 35909684 PMCID: PMC9334852 DOI: 10.3389/fvets.2022.965894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Fatty acid transport protein 1 (FATP1), plays a major role in the transport and uptake of fatty acids into cells. The effect of FATP1 on the regulation of skeletal muscle fat uptake and deposition in stressed broiler chickens was investigated both in vivo and in vitro, and the effect of different fatty acid substrates were also included. Dexamethasone (DEX), a synthetic glucocorticoid (GCs), was employed to induce a hyper glucocorticoid milieu and simulate stress. The in vivo results showed that DEX would increase the mRNA expression of FATP1 and fat deposition in muscle tissues (P < 0.05), the very-low-density lipoprotein (VLDL) and insulin (INS) levels were significantly increased in the plasma by DEX (P < 0.05), and the mRNA levels of the glucocorticoid receptor (GR), adiponectin receptor (ADPNR) and peroxisomal proliferator-activated receptor α (PPARα) in thigh were also up-regulated by DEX (P < 0.05). In vitro experiment, DEX did not affect the myoblast fat deposition and PPARα and FATP1 expressions without the external fatty acid (P > 0.05). Under PA pre-treatment, both myoblast fatty acid uptake and fat deposition were promoted by DEX treatment (P < 0.05), and the effects of DEX on the gene expressions of GR, ADPNR, PPARα and FATP1 were upregulated first and then downregulated as the dose of DEX increases; while under OA pre-treatment, the myoblast fat deposition was not affected by DEX (P > 0.05), the fatty acid uptake was decreased by DEX at 500 nM compared to control (P < 0.05). When GR and PPARα were, respectively inhibited by specific inhibitors RU486 and GW6471, the effects of DEX on fatty acid uptake were reversed for PA pre-treated myoblasts (P < 0.05) but not for OA pre-treated myoblasts (P > 0.05). These results indicate that FATP1 regulation by GCs was affected by fatty acid substrate - saturated fatty acids were favorable for fat uptake and deposition, while unsaturated fatty acids were not. GCs may affect the ADPNR-PPARα-FATP1 pathway by binding to its receptors, thus regulating the uptake of saturated fatty acids into myoblasts.
Collapse
|
5
|
Finger JW, Kelley M, Hamilton M, Zhang Y, Elsey R, Mendonca M, Kavazis AN. Changes in antioxidant enzyme levels following capture in juvenile American Alligators (Alligator mississippiensis) are tissue dependent. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many parameters used to investigate stress in vertebrates are temporally sensitive. The act of capture and sampling can influence them, hindering their functionality for evaluating the effects of stressors. Consequently, the investigation and subsequent incorporation of less time sensitive parameters are necessary to better evaluate stressors affecting vertebrates. In this study, we investigated how capture stress and handling associated with sampling influences antioxidant status in American Alligators (Alligator mississippiensis, Daudin, 1802; hereafter Alligator), long-lived, top-trophic carnivores found in the southeastern United States, by measuring levels of two antioxidant enzymes in destructive (brain and pancreas) and nondestructive (tail scutes) tissues: superoxide-dismutase-1 (SOD1) and glutathione peroxidase-1 (GPX1). Capture stress had no effect on pancreatic SOD1 and no effect on brain and pancreatic GPX1 (all p > 0.05). However, brain SOD1, scute SOD1, and scute GPX1 were all impacted by capture stress. These disparate results illustrate that the influence of capture stress on antioxidant enzymes in Alligators is tissue and marker dependent, necessitating further investigation. Our results provide a firm foundation to further investigate oxidative status in crocodilians.
Collapse
Affiliation(s)
- John W. Finger
- Auburn University, 1383, Department of Biological Sciences, Auburn, United States, 36849-5412
| | - Meghan Kelley
- Auburn University, 1383, Auburn, Alabama, United States
| | - Matthew Hamilton
- Purdue University, 311308, West Lafayette, Indiana, United States
| | - Yufeng Zhang
- The University of Memphis, 5415, Memphis, Tennessee, United States
| | - Ruth Elsey
- Departement of wildlife and fisheries, Louisiana, USA, 5476 Grand Chenier Highway, Grand Chenier, United States, 70643
| | - Mary Mendonca
- Auburn University, 1383, Auburn, Alabama, United States
| | | |
Collapse
|
6
|
Zhang K, Li X, Zhao J, Wang Y, Hao X, Liu K, Liu H. Protective effects of chlorogenic acid on the meat quality of oxidatively stressed broilers revealed by integrated metabolomics and antioxidant analysis. Food Funct 2022; 13:2238-2252. [PMID: 35133368 DOI: 10.1039/d1fo03622j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oxidation is a major cause of meat quality deterioration during broiler production, which leads to undesirable meat color and impaired water holding capacity (WHC), thereby impacting consumer appeal and satisfaction. Chlorogenic acid (CGA), a natural phenolic acid, is regarded as a potential, safer and healthier antioxidant to improve meat quality. To investigate the protective effects of CGA on the meat quality of oxidatively stressed broilers, 240 one-day-old male Cobb broiler chickens were allocated to four treatments: basal diet (control group), basal diet + dexamethasone (DEX) injection (DEX group), basal diet containing 500 mg kg-1 CGA (CGA group), and basal diet containing 500 mg kg-1 CGA + DEX injection (DEX_CGA group). Meat quality, antioxidant capacity, the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, and metabolomic profile were detected in the breast muscle of broilers. Then, correlation analysis between meat quality and antioxidant capacity, antioxidant-related genes, and metabolites was performed. The results indicated that CGA supplementation improved the growth performance and meat quality traits (pH, WHC, and meat color) and enhanced the antioxidant enzyme activity by activating the Nrf2 pathway in the breast muscle of oxidatively stressed broilers. A total of 619 metabolites were identified, among which 93 differential metabolites were found between control and DEX groups, and 65 differential metabolites were observed between DEX and DEX_CGA groups. Breast metabolic profiles were changed by DEX treatment, while CGA supplementation could normalize the metabolic changes in DEX-challenged broilers. Metabolic pathway analysis revealed that most of the differential metabolites between DEX and DEX_CGA groups were involved in pyrimidine/purine, propanoate and phenylalanine metabolism, primary bile acid biosynthesis, and lysine metabolism, which may contribute to explain the protective effects of CGA on meat quality. Moreover, according to the correlation analysis, four metabolites were identified as potential biomarkers to predict the meat quality. In conclusion, our findings demonstrate that CGA is an effective, natural and safe antioxidant to enhance the quality of meat from intensive industrial poultry production.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaojing Hao
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266199, China
| | - Kaidong Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, 266199, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
7
|
Ha SH, Kang HK, Hosseindoust A, Mun JY, Moturi J, Tajudeen H, Lee H, Cheong EJ, Kim JS. Effects of Scopoletin Supplementation and Stocking Density on Growth Performance, Antioxidant Activity, and Meat Quality of Korean Native Broiler Chickens. Foods 2021; 10:foods10071505. [PMID: 34209795 PMCID: PMC8305197 DOI: 10.3390/foods10071505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Stocking density stress is one of the most common management stressors in the poultry industry. The present study was designed to investigate the effect of dietary Sophora koreensis (SK; 0 and 20 mg/kg diet) and stocking density (SD; 14 and 16 chickens/m2) on the antioxidant status, meat quality, and growth performance of native Korean chickens. There was a lower concentration of malondialdehyde (MDA) and a higher concentration of catalase, superoxide dismutase (SOD), and total antioxidant capacity in the serum and leg muscle with the supplementation of SK. The concentration of MDA was increased and concentrations of SOD were decreased in the leg muscle of chickens in low SD treatments. The SK-supplemented treatments showed an increased 3-ethylbenzothiazoline-6-sulfonate-reducing activity of leg muscles. The higher water holding capacity of breast muscle and a lower cooking loss and pH were shown in the SK-supplemented treatments. The addition of dietary SK resulted in a greater body weight gain and greater spleen and bursa Fabricius weight, as well as lower feed intake and abdominal fat. The low SD and supplementation of SK increased the concentrations of cholesterol. The concentration of glucose was increased in the low SD treatment. Corticosterone level was decreased in the SK-supplemented and low SD treatments. In conclusion, SK supplementation reduced the oxidative stress and increased meat quality and antioxidant status of chickens apart from the SD stress.
Collapse
Affiliation(s)
- Sang Hun Ha
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Hwan Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang 25342, Korea;
| | - Abdolreza Hosseindoust
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Jun Young Mun
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Joseph Moturi
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Habeeb Tajudeen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
| | - Hwa Lee
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea;
| | - Eun Ju Cheong
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (E.J.C.); (J.S.K.)
| | - Jin Soo Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea; (S.H.H.); (A.H.); (J.Y.M.); (J.M.); (H.T.)
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (E.J.C.); (J.S.K.)
| |
Collapse
|
8
|
Omega-3 fatty acids reduce the negative effects of dexamethasone-induced physiological stress in laying hens by acting through the nutrient digestibility and gut morphometry. Poult Sci 2020; 100:100889. [PMID: 33516483 PMCID: PMC7936135 DOI: 10.1016/j.psj.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, the effects of omega-3 fatty acids on egg production, nutrients digestibility, eggs yolk lipid peroxidation, and intestinal morphology in laying hens under physiological stress were investigated. Ninety-six 35-wk-old Lohmann LSL-Lite laying hens were used in 2 × 3 factorial arrangement with 2 levels of dexamethasone (DEX) (0 and 1.5 mg/kg of the diet) and 3 levels of omega-3 fatty acids (0, 0.24, or 0.48% of the diet) in a completely randomized design. At 41 wk of age, the stress groups were continuously fed with a DEX 1.5 mg/kg diet for 1 wk. Egg production, egg mass, feed intake, egg weight, and feed conversion ratio were recorded. In addition, the AME, digestibility of CP, crude fat (CF), and organic matter were measured during the stress induction period. At the end of 41 wk of age, malondialdehyde and cholesterol concentrations in the egg yolk and intestinal morphology were investigated. The results showed that egg production, egg mass (P < 0.0001), egg weight (P = 0.043), and BW (P = 0.0005) were lower in DEX layers. Feed intake was reduced by the interaction between DEX and omega-3 fatty acid (P = 0.042). Malondialdehyde value (P = 0.002) and cholesterol concentration (P = 0.001) in egg yolk increased by DEX administration. The combination of DEX administration and omega-3 fatty acids supplementation was found in the indices of intestinal morphology such as villus height and width and crypt depth (P < 0.05). Administration of DEX decreased the CP digestibility (P < 0.0001) and AME (P = 0.006). Digestibility of CF and AME in the group of 0.48% omega-3 fatty acids were higher (P < 0.05) than those of 0 and 0.24%. In conclusion, we found that dietary omega-3 fatty acids had beneficial effects on gut morphology and nutrient digestibility in laying hens under physiological stress. However, they could not alleviate the negative effects of physiological stress on performance.
Collapse
|
9
|
A Discovery of Relevant Hepatoprotective Effects and Underlying Mechanisms of Dietary Clostridium butyricum Against Corticosterone-Induced Liver Injury in Pekin Ducks. Microorganisms 2019; 7:microorganisms7090358. [PMID: 31527489 PMCID: PMC6780423 DOI: 10.3390/microorganisms7090358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium butyricum (C. butyricum) can attenuate oxidative stress, inflammation, and hepatic fatty deposition in poultry, however, the underlying mechanisms for this in Pekin ducks remain unclear. This study evaluated these hepatoprotective effects and the underlying mechanisms in a corticosterone (CORT)-induced liver injury model in Pekin ducks fed a C. butyricum intervention diet. A total of 500 Pekin ducks were randomly divided into five groups: one group (CON group) was only provided with a basal diet, three groups were provided a basal diet with 200 mg/kg (LCB group), 400 mg/kg (MCB group), or 600 mg/kg (HCB group) C. butyricum, respectively, and one group was provided a basal diet with 150 mg/kg aureomycin (ANT group) for 42 d. At 37 days-old, all ducks received daily intraperitoneal injections of CORT for five days to establish a liver injury model. C. butyricum intervention alleviated liver injury by decreasing the liver organ indices, hepatic steatosis and hepatocyte necrosis, and improving liver function, antioxidant capacity, and inflammatory factors. Hepatic RNA-seq revealed 365 differentially expressed genes (DEGs) between the MCB and CON groups, with 229 up- and 136 down-regulated DEGs in the MCB group. Between the MCB and ANT groups, 407 DEGs were identified, including 299 up- and 108 down-regulated genes in MCB group. Some DEGs in the MCB group related to oxidative stress and inflammatory responses such as Sod3, Tlr2a/b, and Il10, which were up-regulated, while Apoa1, Cyp7a1, Acsl1/5, Fasn, Ppar-γ, and Scd, which are involved in lipid metabolism, were down-regulated, indicating that these genes were responsive to dietary C. butyricum for the alleviation of corticosterone-induced hepatic injury. Toll-like receptor signaling, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine and glycerophospholipid metabolism signaling pathway were significantly enriched in the MCB group. These findings indicate that C. butyricum intervention can protect Pekin ducks from corticosterone-induced liver injury by the modulation of immunoregulatory- and lipid metabolism-related genes and pathways.
Collapse
|
10
|
Pan L, Zhao PF, Ma XK, Shang QH, Long SF, Wu Y, Wang W, Piao XS. Forsythia suspensa extract protects broilers against breast muscle oxidative injury induced by corticosterone mimicked pre-slaughter acute stress. Poult Sci 2018. [PMID: 29514276 DOI: 10.3382/ps/pey046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broilers were used to determine the protective effects of Forsythia suspensa extract (FSE) against breast muscle oxidative injury induced by corticosterone (CS) mimicking pre-slaughter acute stress. A total of 144 male Arbor Acre broilers was randomly allotted to one of 4 treatments in a 2 × 2 factorial arrangement that included FSE supplementation (0 or 100 mg/kg) and subcutaneous injection of CS (0 or 4 mg/kg) at 3 h before slaughter. Corticosterone increased live BW loss, and the adverse effect was attenuated by FSE in broilers subjected to CS (P < 0.05). Serum levels of CS, uric acid, and glucose were increased, and postmortem breast muscle pH values at 45 min and 24 h were decreased for CS-challenged broilers (P < 0.05). Corticosterone increased lightness and yellowness values and decreased redness of breast muscle (P < 0.05), and FSE decreased yellowness and increased redness of breast muscle (P < 0.05). Drip loss was increased by CS for birds supplemented without FSE (P < 0.05) and decreased by FSE for birds under CS challenge (P < 0.05). Corticosterone increased monounsaturated fatty acid (FA) and decreased polyunsaturated FA in breast muscle (P < 0.05), and saturated FA was decreased and polyunsaturated FA was increased by FSE (P < 0.05). Malondialdehyde and carbonyl contents in breast muscle were increased by CS and decreased by FSE (P < 0.05). Inhibition of 1,1-diphenyl-2-picryl-hydrazyl was decreased by CS and increased by FSE (P < 0.05). The activities of total-antioxidant capacity, glutathione peroxidase, and superoxide dismutase in breast muscle were lower in birds subjected to CS (P < 0.05) and were greater in birds supplemented with FSE (P < 0.05). Collectively, live BW loss and breast muscle oxidative injury were increased by CS in broilers, and these stress-related adverse effects could be attenuated by FSE supplementation via enhanced scavenging ability of free radicals and antioxidant capacity. Therefore, FSE could protect broilers against breast muscle oxidative injury when acute stress happens.
Collapse
Affiliation(s)
- L Pan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - P F Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - X K Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Q H Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - S F Long
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - Y Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - W Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| | - X S Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
The Electrical Stimulation of the Bed Nucleus of the Stria Terminalis Causes Oxidative Stress in Skeletal Muscle of Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4671213. [PMID: 29955246 PMCID: PMC6000852 DOI: 10.1155/2018/4671213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023]
Abstract
Recent studies indicate that activation of hypothalamus-pituitary-adrenocortical axis (HPA) plays the crucial role in stress response, while several lines of evidence mark the bed nucleus of the stria terminalis (BST) as a major mediator of the HPA axis responses to stress. The purpose of this study was to investigate the influence of the corticosterone flux induced by the electrical stimulation of BST on markers of free radical damage of lipids and proteins and antioxidant enzyme activity in skeletal muscle of rats. The male Wistar rats were used and assigned to one of three groups: sham-operated (SHM; n = 6), two-week (ST2; n = 6), and four-week stimulated (ST4; n = 5) groups. Blood, soleus, and extensor digitorum longus muscles were collected. The chronic, 4-week electrical stimulation of the BST evokes increased plasma corticosterone concentration, which resulted in oxidative stress in skeletal muscles. We found higher level of lipid peroxidation markers, lower level of protein oxidation marker, and elevated antioxidant enzyme activity in both muscles. Our findings have also potential implication showing that reaction to the long-term “psychological stress” may lead to free radical damage of muscle.
Collapse
|
12
|
Possenti CD, Secomandi S, Schiavon A, Caprioli M, Rubolini D, Romano A, Saino N, Parolini M. Independent and combined effects of egg pro- and anti-oxidants on gull chick phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.174300. [PMID: 29615528 DOI: 10.1242/jeb.174300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Oviparous mothers transfer to their eggs components that have both independent and combined effects on offspring phenotype. The functional interaction between egg components, such as antioxidants and hormones, suggests that a change in the concentration of one component will have effects on offspring traits that depend on the concentration of other interacting components. However, the combined effects of variation in different egg components are virtually unknown. Bird eggs contain vitamin E, a major antioxidant, and also maternal corticosterone. The independent consequences of variation in the egg concentrations of these compounds for offspring phenotype are largely unknown and no study has investigated their combined effects. We manipulated the concentration of vitamin E and corticosterone in the eggs of the yellow-legged gull (Larus michahellis) by administering a physiological (2 s.d.) dose both independently and in combination. We tested for an effect on chick post-natal growth, plasma antioxidant capacity (TAC) and oxidative compounds (TOS). Separate administration of vitamin E or corticosterone caused a reduction in body mass relative to controls, whereas the combined administration of the two compounds reversed their negative effects. These results suggest that maternal egg components, such as antioxidants and steroid hormones, interact and mothers must balance their concentrations in order to achieve optimal offspring phenotype. The functional relationship between vitamin E and corticosterone is corroborated by the observation of positive covariation between these compounds.
Collapse
Affiliation(s)
- Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Simona Secomandi
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Alfredo Schiavon
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
13
|
Jiao H, Zhou K, Zhao J, Wang X, Lin H. A high-caloric diet rich in soy oil alleviates oxidative damage of skeletal muscles induced by dexamethasone in chickens. Redox Rep 2017; 23:68-82. [PMID: 29157186 PMCID: PMC6748688 DOI: 10.1080/13510002.2017.1405494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: Glucocorticoids (GCs) can induce oxidative damage in
skeletal muscles. The purpose of this study was to demonstrate a high caloric
(HC) diet rich in soy oil would change the oxidative stress induced by a GC. Methods: The effect of dexamethasone (DEX) and HC diet on oxidative
stress in plasma, skeletal muscles (M. pectoralis major,
PM; M. biceps femoris, BF), and mitochondria were
determined. The biomarkers of oxidative damage and antioxidative enzyme activity
were determined. The fatty acid profile of muscles and the activities of complex
I and II in mitochondria were measured. Results: The results showed that DEX increased the concentrations of
oxidative damage markers in plasma, muscles, and mitochondria. The activity of
complex I was significantly suppressed by DEX. DEX-chickens had higher
proportions of polyunsaturated fatty acids and lower proportions of
monounsaturated fatty acids in the PM. A HC diet decreased the levels of
oxidative damage biomarkers in plasma, muscles, and mitochondria. The
interaction between DEX and diet suppressed the activities of complex I and II
in HC-chickens. Discussion: Oxidative damage in skeletal muscles and mitochondria
was the result of GC-induced suppression of the activity of mitochondrial
complex I. A HC diet improved the antioxidative capacity and reduced the
oxidative damage induced by the GC.
Collapse
Affiliation(s)
- Hongchao Jiao
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Kaifeng Zhou
- b Shandong Extension Station of Animal Husbandry , Jinan , Shandong , People's Republic of China
| | - Jingpeng Zhao
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Xiaojuan Wang
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| | - Hai Lin
- a Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , Taian , Shandong , People's Republic of China
| |
Collapse
|
14
|
Huang C, Jiao H, Song Z, Zhao J, Wang X, Lin H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J Anim Sci 2016; 93:2144-53. [PMID: 26020310 DOI: 10.2527/jas.2014-8739] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to explore the linkage of oxidative stress occurring in mitochondria, skeletal muscles, and plasma in heat stress-challenged broilers. At d 35, 24 broilers were randomly assigned to 2 treatments: rearing at high temperature (32 ± 1°C; heat stress group) or normal temperature (21 ± 1.2°C; control) for 7 d. The oxidative damage of lipid, DNA, and protein and the activities of antioxidative enzymes were measured, respectively, in plasma, skeletal muscles (breast and thigh muscles), and skeletal muscle mitochondria. The result showed that heat exposure increased (P < 0.01) plasma concentrations of thiobarbituric acid reacting substances (TBARS) and 8-hydroxydeoxyguanosine (8-OHdG) whereas it deceased total antioxidant capacity (P < 0.05) and ability to inhibit hydroxyl radicals (AIHR; P< 0.001). Protein carbonyl and TBARS levels were increased (P < 0.001) by heat stress in breast and thigh muscles. In skeletal muscle mitochondria, heat stress increased (P < 0.05) 8-OHdG and suppressed AIHR. Plasma activity of superoxide dismutase (SOD) was increased (P< 0.001) whereas glutathione peroxidase (GSH-Px) was suppressed by heat stress (P < 0.001). Heat exposure increased SOD and catalase activities in breast muscle (P < 0.01) but the reverse was true in thigh muscle (P < 0.05). Glutathione peroxidase was increased in thigh muscle (P < 0.001) but was not changed in breast muscle (P > 0.05). Heat stress increased SOD (P < 0.05) and decreased GSH-Px activities (P < 0.05) of mitochondria regardless of muscle types. Plasma allantoin level increased (P < 0.01) correspondingly with urate (P < 0.001) in heat-stressed broilers, indicating that urate could serve as an antioxidant to enhance the antioxidative capacity during stress in a concentration-dependent manner. The activities of respiratory chain complexes I and III were estimated in skeletal muscle mitochondria. Mitochondrial complex I activity was suppressed (P < 0.01) by heat exposure in breast and thigh muscles but complex III activity was elevated only in breast muscle (P < 0.01) of heat-stressed broiler. The fatty acid composition in skeletal muscle was not influenced by heat stress. In conclusion, suppressed mitochondrial complex I activity is associated with oxidative stress induced by heat exposure, which, in turn, is linked with the oxidative damages in muscle tissues and plasma.
Collapse
|
15
|
Bone response of broiler chickens (Gallus gallus domesticus) induced by corticosterone. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:410-6. [DOI: 10.1016/j.cbpa.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/28/2012] [Accepted: 12/01/2012] [Indexed: 11/22/2022]
|
16
|
Lensing M, van der Klis J, Yoon I, Moore D. Efficacy of Saccharomyces cerevisiae fermentation product on intestinal health and productivity of coccidian-challenged laying hens. Poult Sci 2012; 91:1590-7. [DOI: 10.3382/ps.2011-01508] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Haussmann MF, Longenecker AS, Marchetto NM, Juliano SA, Bowden RM. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. Proc Biol Sci 2012; 279:1447-56. [PMID: 22072607 PMCID: PMC3282378 DOI: 10.1098/rspb.2011.1913] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Early embryonic exposure to maternal glucocorticoids can broadly impact physiology and behaviour across phylogenetically diverse taxa. The transfer of maternal glucocorticoids to offspring may be an inevitable cost associated with poor environmental conditions, or serve as a maternal effect that alters offspring phenotype in preparation for a stressful environment. Regardless, maternal glucocorticoids are likely to have both costs and benefits that are paid and collected over different developmental time periods. We manipulated yolk corticosterone (cort) in domestic chickens (Gallus domesticus) to examine the potential impacts of embryonic exposure to maternal stress on the juvenile stress response and cellular ageing. Here, we report that juveniles exposed to experimentally increased cort in ovo had a protracted decline in cort during the recovery phase of the stress response. All birds, regardless of treatment group, shifted to oxidative stress during an acute stress response. In addition, embryonic exposure to cort resulted in higher levels of reactive oxygen metabolites and an over-representation of short telomeres compared with the control birds. In many species, individuals with higher levels of oxidative stress and shorter telomeres have the poorest survival prospects. Given this, long-term costs of glucocorticoid-induced phenotypes may include accelerated ageing and increased mortality.
Collapse
|
18
|
Keller KA, Guzman DSM, Muthuswamy A, Forrest LJ, Steinberg H, Sladky K, Petersen S. Hydrocephalus in a yellow-headed Amazon parrot (Amazona ochrocephala oratrix). J Avian Med Surg 2012; 25:216-24. [PMID: 22216723 DOI: 10.1647/2010-005.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A 37-year-old female yellow-headed Amazon parrot (Amazona ochrocephala oratrix) was presented after a 4-month-period behavior change and intermittent episodes of obtunded mentation. Clinical findings on physical examination included ataxia, a weak grasp, and reluctance to move. Results of magnetic resonance imaging were consistent with severe hydrocephalus without evidence of cerebrospinal fluid obstruction. The bird was treated with tapering dosages of prednisolone over a 4-month period, during which time the episodes did not occur. Discontinuation of treatment was attempted several times but resulted in relapse. After 3.5 years of maintenance treatment with prednisolone, the bird was presented subsequent to a 5-hour episode of obtunded mentation and worsening neurologic signs. Despite increasing the dose of prednisolone and providing additional supportive care, the bird's condition worsened, and euthanasia was elected. Necropsy findings included severe hydrocephalus with significant loss of right cerebral parenchyma and no evidence of cerebrospinal fluid obstruction. Histologic examination of the remaining cerebral parenchyma revealed a moderate, multifocal, cellular infiltrate; encephalomalacia; fibrosis; and hemosiderosis in tissue adjacent to the distended ventricles. Other findings included hepatic vacuolar degeneration. Diagnostic imaging and postmortem findings were consistent with a diagnosis of hydrocephalus ex vacuo. To our knowledge, this is the first report of hydrocephalus in an Amazon parrot as well as the first report of hydrocephalus in any avian species associated with long-term follow-up and prolonged corticosteroid treatment.
Collapse
Affiliation(s)
- Krista A Keller
- Ross University School of Veterinary Medicine, St Kitts, West Indies
| | | | | | | | | | | | | |
Collapse
|
19
|
Song Z, Zhao T, Liu L, Jiao H, Lin H. Effect of copper on antioxidant ability and nutrient metabolism in broiler chickens stimulated by lipopolysaccharides. Arch Anim Nutr 2012; 65:366-75. [PMID: 22164958 DOI: 10.1080/1745039x.2011.609753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of the experiment was to investigate the interaction between Cu intake, inflammatory challenge and oxidative stress in broiler chickens. Furthermore, it was tested whether plasma ceruloplasmin (Cp) could be a sensible parameter for dietary Cu. One hundred forty-four day old chickens were raised on a basal control diet without added copper (Group Cu-6.5, basal Cu content 6.5 mg/kg diet) or a diet supplemented with Cu at 8 or 50 mg/kg (Groups Cu-14.5 and Cu-56.5, respectively) with four replicates of 12 animals for each treatment. Starting on day 21, chickens were injected intraperitoneally with lipopolysaccharides (LPS) once a day for 3 days. Before this challenge, Group Cu-14.5 had the lowest gain and the feed to gain ratio was the highest. After injection of LPS, however, chickens of Group Cu-14.5 had the best zoo-technical performance. For chickens of Group Cu-6.5, LPS injection resulted in elevated rectal temperature, and lower erythrocyte superoxide dismutase (CuZn-SOD) activity, compared with the other groups. LPS injection increased plasma uric acid in Group Cu-6.5 significantly, but was without influence in Group Cu-56.5. At all Cu-levels, LPS injection increased erythrocyte CuZn-SOD activity and decreased thiobarbituric acid reacting substances. No significant difference in plasma Cp was found in chickens fed different dietary Cu. LPS injection significantly increased plasma Cp in Group Cu-56.5. The results suggest that varying dietary Cu levels seem to modulate the parameters involved in immunological responses and oxidant stress and that plasma Cp is not a reliable parameter for dietary Cu.
Collapse
Affiliation(s)
- Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong, P.R. China
| | | | | | | | | |
Collapse
|
20
|
Zhang WH, Gao F, Zhu QF, Li C, Jiang Y, Dai SF, Zhou GH. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 2011; 90:2592-9. [PMID: 22010246 DOI: 10.3382/ps.2011-01446] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.
Collapse
Affiliation(s)
- W H Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Soleimani AF, Zulkifli I, Omar AR, Raha AR. The relationship between adrenocortical function and Hsp70 expression in socially isolated Japanese quail. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:140-4. [PMID: 22036750 DOI: 10.1016/j.cbpa.2011.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 11/30/2022]
Abstract
Physiological responses to social isolation stress were compared in 56-day-old male Japanese quail. Birds were fed pretreated diets for 3 days as follows: (i) Basal diet (control); (ii) Basal diet+1500 mg/kg metyrapone (BM); (iii) Basal diet+30 mg/kg corticosterone (BCO); (iv) Basal diet+250 mg/kg ascorbic acid (BC); (v) Basal diet+250 mg/kg α-tocopherol (BE); (vi) Basal diet+250 mg/kg ascorbic acid and 250 mg/kg α-tocopherol (BCE). The birds were subsequently socially isolated in individual opaque brown paper box for 2 hours. Plasma corticosterone (CORT) concentration and heart and brain heat shock protein 70 (Hsp 70) expressions were determined before stress and immediately after stress. Two hours of isolation stress elevated CORT concentration significantly in the control and BE birds but not in the BC, BCE and BM birds. There was a significant reduction in CORT concentration after isolation stress in the BCO group. Isolation stress increased Hsp 70 expression in the brain and heart of control and BM birds. However, brain and heart Hsp 70 expressions were not significantly altered in the isolated BC, BCE and BE birds. Although, the CORT concentration of BM birds was not affected by isolation stress, Hsp70 expression in both brain and heart were significantly increased. Moreover, exogenous corticosterone supplementation did not result in elevation of Hsp 70 expression. It can be concluded that, although Hsp 70 induction had not been directly affected by CORT concentration, it may be modulated by the HPA axis function via activation of ACTH.
Collapse
Affiliation(s)
- A F Soleimani
- Department of Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
22
|
Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 2011; 181:447-56. [PMID: 21416253 DOI: 10.1007/s00360-011-0566-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 02/27/2011] [Accepted: 03/03/2011] [Indexed: 01/01/2023]
Abstract
Prolonged high secretion of glucocorticoids normally reflects a state of chronic stress, which has been associated with an increase in disease susceptibility and reduction in Darwinian fitness. Here, we hypothesize that an increase in oxidative stress accounts for the detrimental effects of prolonged high secretion of glucocorticoids. We performed a meta-analysis on studies where physiological stress was induced by administration of glucocorticoids to evaluate the magnitude of their effects on oxidative stress. Glucocorticoids have a significant effect on oxidative stress (Pearson r = 0.552), although this effect depends on the duration of treatment, and is larger in long-term experiments. Importantly, there was a significant effect on tissue, with brain and heart being the most and the least susceptible to GC-induced oxidative stress, respectively. Furthermore, effect size was larger (1) in studies using both sexes compared to males only, (2) when corticosterone rather than dexamethasone was administered and (3) in juveniles than in adults. These effects were not confounded by species, biochemical biomarker, or whether wild or laboratory animals were studied. In conclusion, our meta-analysis suggests that GC-induced oxidative stress could be a further mechanism underlying increases in disease susceptibility and decreases in Darwinian fitness observed under chronic stress.
Collapse
Affiliation(s)
- David Costantini
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | | | | |
Collapse
|
23
|
Mitochondrial respiratory and antioxidative enzyme activities in broiler meat in relation to age and gender of the animals. Animal 2011; 5:813-20. [DOI: 10.1017/s175173111000248x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
Gao J, Lin H, Wang X, Song Z, Jiao H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poult Sci 2010; 89:318-27. [DOI: 10.3382/ps.2009-00216] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|