1
|
Di Giulio T, Corsi M, Gagliani F, De Benedetto G, Malitesta C, Mazzei A, Barca A, Verri T, Barillaro G, Mazzotta E. Reconfigurable Optical Sensor for Metal-Ion-Mediated Label-Free Recognition of Different Biomolecular Targets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43752-43761. [PMID: 39106976 PMCID: PMC11345716 DOI: 10.1021/acsami.4c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.
Collapse
Affiliation(s)
- Tiziano Di Giulio
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Martina Corsi
- Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Francesco Gagliani
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe De Benedetto
- Laboratorio
di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di
Beni Culturali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Cosimino Malitesta
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Aurora Mazzei
- Laboratorio
di Fisiologia Applicata, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Amilcare Barca
- Laboratorio
di Fisiologia Applicata, Dipartimento di Medicina Sperimentale (Di.Me.S), Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Tiziano Verri
- Laboratorio
di Fisiologia Applicata, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Barillaro
- Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Elisabetta Mazzotta
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
2
|
Uyanga VA, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Dietary L-citrulline modulates the growth performance, amino acid profile, and the growth hormone/insulin-like growth factor axis in broilers exposed to high temperature. Front Physiol 2022; 13:937443. [PMID: 36003654 PMCID: PMC9393253 DOI: 10.3389/fphys.2022.937443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress adversely affects the growth performance, muscle development, and protein metabolism in poultry. l-Citrulline (L-Cit), is a non-essential amino acid that is known to stimulate muscle protein synthesis under stress conditions. This study investigated whether L-Cit could influence the growth performance, amino acid profile, and protein metabolism in broilers exposed to high ambient temperature. In a 2 × 2 factorial arrangement, Arbor acre broilers (288 chickens) were fed with basal diet (CON) or 1% L-Cit supplemented diet and later subjected to either thermoneutral (TNZ: 24°C, 24 h/d) or heat stress (HS: 35°C for 8 h/d) environment for 21 days. The results showed that L-Cit diet promoted the body weight and body weight gain of broilers higher than the CON diet, and it further alleviated HS suppression of body weight and feed intake at certain periods (p < 0.05). Plasma urea, uric acid, glucose, and total cholesterol were elevated during HS, whereas, the triglyceride content was decreased (p < 0.05). Serum amino acids including citrulline, alanine, aspartate, and taurine were decreased by HS. L-Cit supplementation restored the citrulline level and alleviated HS induction of 3-methylhistidine (p < 0.05). L-Cit supplementation increased the plasma growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentration, as well as the GH concentration in the breast muscle (p < 0.05). The mRNA expression showed that HS elicited tissue-specific responses by upregulating some growth factors in the breast muscle, but downregulated the GH receptor, GH binding protein, and IGF-1 expression in the hypothalamus. L-Cit supplementation upregulated the GHRH and IGFBP2 expression in the hypothalamus. L-Cit also upregulated the expression of IGF-1R and IGFBP2 in the breast muscle of HS broilers. The total mTOR protein level in the breast muscle of HS broilers was also increased by L-Cit diet (p < 0.05). Therefore, this study demonstrated that HS negatively affected the growth performance of broilers and dysregulated the expression of growth factors related to protein metabolism. Contrarily, L-Cit promoted the growth responses of broilers via its stimulation of circulating GH/IGF-1 concentration. To certain extents, L-Cit supplementation elicited protective effects on the growth performance of HS broilers by diminishing protein catabolism.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
3
|
Majdeddin M, Braun U, Lemme A, Golian A, Kermanshahi H, De Smet S, Michiels J. Guanidinoacetic acid supplementation improves feed conversion in broilers subjected to heat stress associated with muscle creatine loading and arginine sparing. Poult Sci 2020; 99:4442-4453. [PMID: 32867988 PMCID: PMC7598026 DOI: 10.1016/j.psj.2020.05.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
It was hypothesized that dietary guanidinoacetic acid (GAA), the precursor of creatine (Cr), would be beneficial to heat-stressed finisher broilers owing to improved cellular energy status and arginine sparing effects. A total of 720 one-day-old male Ross 308 broilers were allocated to 3 treatments, 0 (control), 0.6, or 1.2 g/kg of GAA added to complete corn–soybean meal diets, and were fed for 39 D, with 12 replicates (20 birds each) per treatment. A chronic cyclic heat stress model (at a temperature of 34°C and 50 to 60% relative humidity for 7 h daily) was applied in the finisher phase (day 25–39). Samples were taken on day 26 and 39 to determine thrombocyte, white blood cell, corticosterone, protein and amino acid levels in blood and Cr, phosphocreatine (PCr), and adenosine triphosphate levels in the breast muscle. Meat quality was assessed on day 40 after overnight fasting. Guanidinoacetic acid at a dose of 1.2 g/kg decreased feed-to-gain ratio compared with the control in the grower phase (1.32 vs. 1.35, respectively; P <0.05). In the finisher period, the supplementation of 1.2 g/kg of GAA reduced feed intake compared with the control (–3.3%, P <0.05), whereas both GAA supplementation levels improved feed efficiency markedly (1.76, 1.66, and 1.67 for 0 [control], 0.6, and 1.2 g/kg of GAA, respectively, P <0.05). Mortality outcomes highlight that GAA feeding improved survival during heat stress, supported by lower panting frequency (linear effect, P <0.05). Plasma arginine was higher with increase in dietary GAA concentration on day 26 (+18.3 and + 30.8% for 0.6 and 1.2 g/kg of GAA, respectively; P <0.05). This suggests enhanced availability of arginine for other metabolic purposes than de novo GAA formation. In the breast muscle, PCr (day 39, P <0.05), free Cr (day 39, P <0.05), total Cr (both days, P <0.05), and PCr-to-adenosine triphosphate ratio (day 39, P <0.05) levels were increased with higher GAA content in diet. Guanidinoacetic acid supplementation improved feed conversion and survival during chronic cyclic heat stress, which may be associated with enhanced breast muscle energy status and arginine sparing effect.
Collapse
Affiliation(s)
- M Majdeddin
- Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, Mashhad, Iran; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, 9000 Ghent, Belgium
| | - U Braun
- AlzChem Trostberg GmbH, 83308 Trostberg, Germany
| | - A Lemme
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - A Golian
- Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - H Kermanshahi
- Centre of Excellence in the Animal Science Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - S De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, 9000 Ghent, Belgium
| | - J Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Campus Coupure, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Kim HJ, Kim HJ, Jeon J, Nam KC, Shim KS, Jung JH, Kim KS, Choi Y, Kim SH, Jang A. Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poult Sci 2020; 99:1788-1796. [PMID: 32111339 PMCID: PMC7587666 DOI: 10.1016/j.psj.2019.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we aimed to investigate the meat quality characteristics, bioactive compound content, and antioxidant activity during refrigerated storage of breast meat of Arbor Acres broilers (carcass weight: 1.1 kg, raised for 35 D) obtained from a conventional farm (BCF, n = 30) and an animal welfare farm (BAF, n = 30) in Korea. The BCF and BAF did not differ in their proximate composition, color, water-holding capacity, creatine, creatinine, and carnosine contents. However, the shear force value was significantly higher in BAF than in BCF (P < 0.05). The 2-thiobarbituric acid reactive substance (TBARS) levels in BCF on days 7 and 9 were significantly higher than those in BAF (P < 0.001). During storage, the total volatile basic nitrogen (VBN) content of BAF was significantly lower, except on day 1. The fatty acid composition of samples was not affected by the storage period, however, saturated fatty acid and unsaturated fatty acid contents did differ among the types of farm systems (P < 0.05). Although the creatine, creatinine, and carnosine contents in BAF and BCF did not differ significantly, the carnosine and creatinine contents decreased with the increase in storage period (P < 0.05). The anserine content of BAF was significantly higher than that of BCF throughout storage. Superoxide dismutase activity was not affected by the type of farm system but was affected by storage period. Overall, BAF showed lower pH, microorganism, TBARS, and VBN values, and higher anserine contents than BCF. These findings can serve as reference data for the evaluation of chicken meat quality of broilers raised in animal welfare farm and conventional farm.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Hye-Jin Kim
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - JinJoo Jeon
- Poultry Research Institute, Rural Development Administration, National Institute of Animal Science, Pyeongchang 25342, Korea
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Kwan-Seob Shim
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | | | - Kyong Su Kim
- Department of Food Science and Nutrition, Chosun University, Gwangju 61452, Korea
| | - Yangil Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Ho Kim
- Poultry Research Institute, Rural Development Administration, National Institute of Animal Science, Pyeongchang 25342, Korea
| | - Aera Jang
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
5
|
Gao J, Yang P, Cui Y, Meng Q, Feng Y, Hao Y, Liu J, Piao X, Gu X. Identification of Metabonomics Changes in Longissimus Dorsi Muscle of Finishing Pigs Following Heat Stress through LC-MS/MS-Based Metabonomics Method. Animals (Basel) 2020; 10:ani10010129. [PMID: 31941143 PMCID: PMC7022765 DOI: 10.3390/ani10010129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Limited research exists on muscle metabolomics of finishing pigs under heat stress. In this study, nine different metabolites in the longissimus dorsi (LD) muscle of finishing pigs under heat stress were screened and identified. Through quantitative verification, it was concluded that the content of L-carnitine in the LD muscles of the finishing pigs could be significantly decreased due to heat stress, which might be a biomarker for monitoring the animal health status and muscle quality under heat stress. Abstract Heat stress (HS) negatively affects meat quality by affecting material and energy metabolism, and exploring the mechanism underlying the muscle response to chronic HS in finishing pigs is important for the global pork industry. This study investigated changes in the metabolic profiles of the longissimus dorsi (LD) muscle of finishing pigs under high temperature using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) and multivariate data analysis (MDA). Castrated male DLY pigs (Duroc × Landrance × Yorkshire pigs, n = 24) from 8 litters were divided into three treatment groups: constant optimal ambient temperature at 22 °C and ad libitum feeding (CR, n = 8); constant high ambient temperature at 30 °C and ad libitum feeding (HS, n = 8); and constant optimal ambient temperature 22 °C and pair-feeding to the control pigs (PF, n = 8). The metabolic profile data from LD muscle samples were analyzed by MDA and external search engines. Nine differential metabolites (L-carnosine, acetylcholine, inosinic acid, L-carnitine, L-anserine, L-α-glycerylphosphorylcholine, acetylcarnitine, thiamine triphosphate, and adenosine thiamine diphosphate) were involved in antioxidant function, lipid metabolism, and cell signal transduction, which may decrease post mortem meat quality and play important roles in anti-HS. Four metabolites (L-carnosine, acetylcholine, inosinic acid, and L-carnitine) were verified, and it was indicated that the muscle L-carnitine content was significantly lower in HS than in CR (p < 0.01). The results show that constant HS affects the metabolites in the LD muscle and leads to coordinated changes in the endogenous antioxidant defense and meat quality of finishing pigs. These metabonomics results provide a basis for researching nutritional strategies to reduce the negative effects of heat stress on livestock and present new insights for further research.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
| | - Peige Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
| | - Yanjun Cui
- Institute of Animal Nutrition, College of Animal Science and Technology, Zhejiang A & F University, Lin’an 311300, China;
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
| | - Yuejin Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
| | - Jiru Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (P.Y.); (Q.M.); (Y.F.); (Y.H.); (J.L.)
- Correspondence:
| |
Collapse
|
6
|
Barca A, Gatti F, Spagnolo D, Ippati S, Vetrugno C, Verri T. Responsiveness of Carnosine Homeostasis Genes in the Pancreas and Brain of Streptozotocin-Treated Mice Exposed to Dietary Carnosine. Int J Mol Sci 2018; 19:ijms19061713. [PMID: 29890740 PMCID: PMC6032234 DOI: 10.3390/ijms19061713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
In excitable tissues, the endogenous dipeptide carnosine (CAR, β-Ala-l-His) sustains homeostatic responses to various challenges. By eliciting hypoglycemic effects via actions on the autonomic nervous system and protection of pancreatic beta-cells, CAR is also relevant in diabetes. We investigated the expression of genes involved in CAR biosynthesis, degradation, and membrane transport pathways, in the pancreas and brains of mice treated with streptozotocin (STZ) and then exposed to dietary CAR. We induced hyperglycemia by STZ intraperitoneal injections; then, STZ-treated mice received drinking water with or without CAR for two weeks. We report that CAR administration elicits beneficial effects on blood glucose levels and weight loss in STZ-treated mice and, remarkably, on the insulin gene products in the pancreas, preserving gene expression from STZ challenge. Also, we describe mRNA downregulation of the Slc15a2/Pept2 (dipeptide transporter) and Cndp2 (intracellular dipeptidase) genes in the pancreas of hyperglycemic mice, and dysregulation of Carns1 (CAR synthase), Pept2 and Cndp2 in brains; interestingly, dietary CAR elicits counteracting effects. These expression patterns associate with variations of CAR content in tissues of mice. Overall, our report suggests a direct role of CAR in the diabetes-affected pancreas and in the diabetes-targeted CNS, proposing (dys)regulation of CAR’s homeostasis as a marker condition.
Collapse
Affiliation(s)
- Amilcare Barca
- General Physiology Laboratory, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Francesca Gatti
- K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway.
| | - Daniela Spagnolo
- General Physiology Laboratory, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Stefania Ippati
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Department of Neuroscience, 20156 Milan, Italy.
| | - Carla Vetrugno
- General Physiology Laboratory, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Tiziano Verri
- General Physiology Laboratory, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
7
|
Carnosine content in the porcine longissimus thoracis muscle and its association with meat quality attributes and carnosine-related gene expression. Meat Sci 2017; 124:84-94. [DOI: 10.1016/j.meatsci.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
|
8
|
Yang P, Hao Y, Feng J, Lin H, Feng Y, Wu X, Yang X, Gu X. The Expression of Carnosine and Its Effect on the Antioxidant Capacity of Longissimus dorsi Muscle in Finishing Pigs Exposed to Constant Heat Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1763-72. [PMID: 25358371 PMCID: PMC4213689 DOI: 10.5713/ajas.2014.14063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/12/2014] [Accepted: 06/23/2014] [Indexed: 01/24/2023]
Abstract
The objective of this study was to assess the effects of constant high ambient temperatures on meat quality, antioxidant capacity, and carnosine expression in longissimus dorsi muscle of finishing pigs. Castrated 24 male DLY (crossbreeds between Landrace×Yorkshire sows and Duroc boars) pigs were allocated to one of three treatments: constant ambient temperature at 22°C and ad libitum feeding (CON, n = 8); constant high ambient temperature at 30°C and ad libitum feeding (H30, n = 8); and constant ambient temperature at 22°C and pair-fed with H30 (PF, n = 8). Meat quality, malondialdehyde (MDA) content, antioxidant capacity, carnosine content, and carnosine synthetase (CARNS1) mRNA expression in longissimus dorsi muscle were measured after three weeks. The results revealed that H30 had lower pH24 h, redness at 45 min, and yellowness at 24 h post-mortem (p<0.05), and higher drip loss at 48 h and lightness at 24 h post-mortem (p<0.01). Constant heat stress disrupted the pro-oxidant/antioxidant balance in longissimus dorsi muscle with higher MDA content (p<0.01) and lower antioxidant capacity (p<0.01). Carnosine content and CARNS1 mRNA expression in longissimus dorsi muscle of H30 pigs were significantly decreased (p<0.01) after three weeks at 30°C. In conclusion, constant high ambient temperatures affect meat quality and antioxidant capacity negatively, and the reduction of muscle carnosine content is one of the probable reasons.
Collapse
Affiliation(s)
- Peige Yang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yue Hao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jinghai Feng
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuejin Feng
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xin Wu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xin Yang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xianhong Gu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
9
|
Baraniuk JN, El-Amin S, Corey R, Rayhan R, Timbol C. Carnosine treatment for gulf war illness: a randomized controlled trial. Glob J Health Sci 2013; 5:69-81. [PMID: 23618477 PMCID: PMC4209301 DOI: 10.5539/gjhs.v5n3p69] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
About 25% of 1990-1991 Persian Gulf War veterans experience disabling fatigue, widespread pain, and cognitive dysfunction termed Gulf War illness (GWI) or Chronic Multisymptom Illness (CMI). A leading theory proposes that wartime exposures initiated prolonged production of reactive oxygen species (ROS) and central nervous system injury. The endogenous antioxidant L-carnosine (β-alanyl-L-histidine) is a potential treatment since it is a free radical scavenger in nervous tissue. To determine if nutritional supplementation with L-carnosine would significantly improve pain, cognition and fatigue in GWI, a randomized double blind placebo controlled 12 week dose escalation study involving 25 GWI subjects was employed. L-carnosine was given as 500, 1000, and 1500 mg increasing at 4 week intervals. Outcomes included subjective fatigue, pain and psychosocial questionnaires, and instantaneous fatigue and activity levels recorded by ActiWatch Score devices. Cognitive function was evaluated by WAIS-R digit symbol substitution test. Carnosine had 2 potentially beneficial effects: WAIS-R scores increased significantly, and there was a decrease in diarrhea associated with irritable bowel syndrome. No other significant incremental changes were found. Therefore, 12 weeks of carnosine (1500 mg) may have beneficial cognitive effects in GWI. Fatigue, pain, hyperalgesia, activity and other outcomes were resistant to treatment.
Collapse
Affiliation(s)
- James Nicholas Baraniuk
- Division od Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC 20007-2197, USA.
| | | | | | | | | |
Collapse
|