1
|
Tomaszewska E, Świątkiewicz S, Arczewska-Włosek A, Wojtysiak D, Dobrowolski P, Domaradzki P, Puzio I, Rudyk H, Brezvyn O, Muszyński S. ß-Hydroxy-ß-methylbutyrate: A feed supplement influencing performance, bone metabolism, intestinal morphology, and muscle quality of laying hens: a preliminary one-point study. Poult Sci 2024; 103:103597. [PMID: 38471225 PMCID: PMC11067770 DOI: 10.1016/j.psj.2024.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Laying hens, selectively bred for high egg production, often suffer from bone fragility and fractures, impacting their welfare and causing economic losses. Additionally, gut health and muscle quality are crucial for overall health and productivity. This study aimed to evaluate the effects of ß-Hydroxy-ß-methylbutyrate (HMB) supplementation on performance, bone metabolism, intestinal morphology, and muscle quality in laying hens. Forty-eight Bovans Brown hens were divided into a control group and an HMB-supplemented group (0.02% HMB in diet). The study spanned from the 31st to the 60th wk of age. Assessments included bone mechanical testing, serum hormonal analysis, histological analysis of bone and intestine, and muscle quality analysis. The HMB supplementation led to decreased feed intake without affecting body weight or laying rate in laying hens. It caused an increase in both mean daily and total egg weight, indicating improved feed utilization, without influencing the feed intake to egg weight ratio. Enhanced bone formation markers and altered intestinal morphometric parameters were observed, along with improved trabecular bone structure. However, no changes in measured other bone quality indices, including geometric, densitometric, or mechanical properties were observed. Muscle analysis revealed no significant changes in overall meat quality, except for a decrease in cholesterol content and alterations in the fatty acid profile, notably a reduction in total n-3 polyunsaturated and total polyunsaturated fatty acids (PUFA). In conclusion, although not all effects of HMB supplementation were unequivocally beneficial, the positive changes in performance data and trabecular bone microarchitecture support further research into various doses and durations of supplementation. Such studies are necessary to fully understand and optimize the benefits of HMB for enhancing the health and productivity of laying hens.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Kraków, Cracow, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Piotr Domaradzki
- Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences in Lublin, Lublin, Poland
| | - Iwona Puzio
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Lviv, Ukraine
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
2
|
Kop Bozbay C, Yılmaz B, Ocak N. Beta-hydroxy-β-methyl butyrate-supplemented diet for broiler chickens is more conducive to dietary protein reduction than a leucine-supplemented diet until 21 days old. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1450-1457. [PMID: 37800278 DOI: 10.1002/jsfa.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Dietary l-leucine or its metabolite 𝛽-hydroxy-𝛽-methylbutyrate (HMB) has a crucial role in the muscle protein metabolism of broilers during the first few-week growing period. The present study aimed to evaluate the effects of l-leucine (LLPD) or HMB (HLPD) supplementation in a low-protein diet (20%, LPD) until 21 days old on performance, carcass weight, muscle yield and meat quality, as well as intestinal morphometry, in broiler chickens. RESULTS From days 1-42, LPD decreased body weight gain and feed intake (FI) and increased feed conversion ratio compared to a standard protein diet (22%, SPD). The LLPD and HLPD did not affect FI, but the LLPD decreased the body weight gain and increased the feed conversion ratio compared to the SPD. The LPD group had lower body and muscle weights than other groups. Compared to LPD, HLPD increased dressing percentage. The LPD decreased the serum insulin-like growth factor-1 content compared to the SPD and LLPD. The duodenal villus height of the LPD and LLPD broilers was smaller than those of the SPD and HLPD birds. The HLPD broilers had lower duodenal villus width than the SPD birds. The duodenal crypt depth and ileal mucosal thickness were higher in the HLPD group than in other groups. The HLPD and LLPD enhanced the ileal villus height compared to the SPD. The LLPD and HLPD treatments did not affect meat quality traits compared to the SPD treatment. CONCLUSION Dietary HMB could be a conducive approach to reducing dietary protein for broilers until 21 days old. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Canan Kop Bozbay
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Berkan Yılmaz
- Department of Animal Science, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nuh Ocak
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
3
|
Clarke AS, Faulk C, Shurson GC, Gallaher DD, Johnston LJ. Evaluation of Feeding Beta-Hydroxy-Beta-Methylbutyrate (HMB) to Mouse Dams during Gestation on Birth Weight and Growth Variation of Offspring. Animals (Basel) 2023; 13:3227. [PMID: 37893951 PMCID: PMC10603694 DOI: 10.3390/ani13203227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This study was designed to determine if feeding β-hydroxy-β-methylbutyrate (HMB) to pregnant mice would improve birth weight uniformity and growth performance of offspring. Dams (Agouti Avy) were assigned to one of four treatments: control (CON; n = 13), low-level HMB (LL; 3.5 mg/g; n = 14), high-level HMB (HL; 35 mg/g; n = 15), and low-level pulse dose fed from gestational days 6 to 10 (PUL; 3.5 mg/g; n = 14). Randomly selected dams (n = 27) were euthanized on gestational day 18 to collect placentae and pup weights. The remaining dams gave birth and lactated for 28 days. Dams only received HMB during gestation. Dietary HMB did not influence the performance of dams. Dietary treatment during gestation did not affect litter size or birth weight of pups. Variation was not different among treatments in terms of birth weight of offspring. Placental weights were not affected by treatments. Overall, growth performance of offspring after weaning was similar among all treatments. Body composition of offspring at 5 and 8 weeks of age was similar regardless of HMB treatment during gestation. In conclusion, dietary HMB supplementation in pregnant mice did not affect birth weight, variations in birth weight, or growth performance of offspring.
Collapse
Affiliation(s)
| | - Chris Faulk
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (C.F.); (G.C.S.)
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (C.F.); (G.C.S.)
| | - Daniel D. Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Lee J. Johnston
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (C.F.); (G.C.S.)
- West Central Research and Outreach Center, University of Minnesota, Morris, MN 56267, USA
| |
Collapse
|
4
|
Dajnowska A, Tomaszewska E, Świątkiewicz S, Arczewska-Włosek A, Dobrowolski P, Domaradzki P, Rudyk H, Brezvyn O, Muzyka V, Kotsyumbas I, Arciszewski MB, Muszyński S. Yolk Fatty Acid Profile and Amino Acid Composition in Eggs from Hens Supplemented with ß-Hydroxy-ß-Methylbutyrate. Foods 2023; 12:3733. [PMID: 37893625 PMCID: PMC10606627 DOI: 10.3390/foods12203733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, a supplementation of livestock animals, including poultry, with β-Hydroxy-β-methylbutyrate (HMB) has gained attention for its effects on protein and fat metabolism. This study investigates the effects of HMB in the laying hen diet on egg quality, focusing on amino acid and fatty acid composition. Laying hens were supplemented with 0.02% HMB, with performance parameters and egg components analyzed. HMB supplementation led to increased albumen weight, influencing egg weight while also reducing feed intake per egg without affecting laying rate, yolk indices, fat, or cholesterol content. Notably, the study revealed significant changes in egg amino acid and fatty acid profiles due to HMB supplementation. Various amino acids, including glycine, serine, and isoleucine, were altered in the yolk, impacting nutritional value and potential health benefits. Regarding fatty acids, the study observed changes in both saturated as well as n-6 and n-3 fatty acids, affecting the overall lipid profile of egg yolks. However, the shifts in fatty acid composition could have implications for cardiovascular health due to altered ratios of n-6/n-3 fatty acids. Further research is required to comprehensively understand the implications of these findings for consumer-oriented egg quality and health benefits.
Collapse
Affiliation(s)
- Aleksandra Dajnowska
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.D.); (M.B.A.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland; (S.Ś.); (A.A.-W.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Viktor Muzyka
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Ihor Kotsyumbas
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, 79000 Lviv, Ukraine; (H.R.); (O.B.); (V.M.); (I.K.)
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (A.D.); (M.B.A.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
5
|
Dietary β-hydroxy β-methyl butyrate supplementation of sows improves litter performance and colostrum production in a dose-dependent manner. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Fuller JC, Rathmacher JA, Castro FF, Chaves RF, Mohr M. Supplementing sows with the leucine metabolite beta-hydroxy-beta-methylbutyrate and vitamin D3 improves piglet birth weights that may lead to increased weaning weights. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.953854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous university studies demonstrated that supplementing sows with calcium beta-hydroxy-beta-methylbutyrate (CaHMB) in late gestation and/or lactation improved piglet weights through weaning. Two studies were conducted at commercial farrowing operations to test if the results would translate to commercial operations. Sows in both trials were randomized to receive either 3 g/day CaHMB plus 500 IU/day vitamin D3 (HMB/D) or a calcium carbonate containing control top-dressed to the feed from day 104 of gestation through weaning. Sows were randomly assigned to either HMB/D (n = 41 trial 1 and n = 26 trial 2) or control (n = 46 trial 1 and n = 26 trial 2). Data were analyzed using a general linear model with main effects of group, treatment, and group by treatment interaction. Treatment with HMB/D had no effect on sow weights, lactational weight loss, and stillborn or mummified piglets. In trial 1, the control group had an increased number of live born piglets, which at 24 h tended to be greater, and no difference in liveborn or 24-h piglet numbers was seen in trial 2. In trial 1, HMB/D increased piglet live birth (P < 0.03) and 24-h weights (1,490 ± 30.1 vs. 1,390 ± 28.8 g in HMB/D and control piglets, respectively, P < 0.02). Farm practices were to equalize piglet numbers across sows by cross-fostering. After cross-fostering, the 24-h average piglet weights were not different, and further advantages to supplementation were not observed (P = 0.21). In trial 2, birth and 24-h weights of the piglets from HMB/D-supplemented sows were increased (P < 0.0001). Piglets from sows supplemented with HMB/D were 9.7% heavier at birth and 9.2% heavier at 24 h (1,549 ± 22.0 and 1,419 ± 21.2 in HMB/D and control, respectively). A difference was observed in weaning age (P < 0.0001), and weaning weights were adjusted to 21-day weights (5,426 ± 103.5 and 5,205 ± 99.5 for HMB/D and control piglets, respectively, P = 0.12). Analysis by group showed that HMB/D tended to increase weaning weights in younger sows (second and third parity), 5,432 ± 150.7 and 5,074 ± 142.7 in HMB/D and control piglets, respectively (P < 0.09). In conclusion, these results agree with previous university studies demonstrating that CaHMB supplementation increased early piglet weights with a tendency to improve weaning weights.
Collapse
|
7
|
An evaluation of elevated branched-chain amino acid inclusions on the performance of broiler chickens offered reduced-crude protein, wheat-based diets from 7 to 28 days post-hatch. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Metabolism of Imidazole Dipeptides, Taurine, Branched-Chain Amino Acids, and Polyamines of the Breast Muscle Are Affected by Post-Hatch Development in Chickens. Metabolites 2022; 12:metabo12010086. [PMID: 35050208 PMCID: PMC8778354 DOI: 10.3390/metabo12010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
To explore metabolic characteristics during the post-hatch developmental period, metabolomic analyses of breast muscle and plasma were performed in chickens. The most significant growth-related changes in metabolite levels were observed between seven and 28 days of age. Some of these metabolites are essential nutrients or reported as growth-promoting metabolites. In the muscle, two imidazole dipeptides—carnosine and its methylated metabolite, anserine—increased with the development. These dipeptide levels may be, in part, regulated transcriptionally because in the muscle mRNA levels of carnosine synthase and carnosine methylation enzyme increased. In contrast, taurine levels in the muscle decreased. This would be substrate availability-dependent because some upstream metabolites decreased in the muscle or plasma. In branched-chain amino acid metabolism, valine, leucine, and isoleucine decreased in the muscle, while some of their downstream metabolites decreased in the plasma. The polyamines, putrescine and spermidine, decreased in the muscle. Furthermore, mRNA levels associated with insulin/insulin-like growth factor 1 signaling, which play important roles in muscle growth, increased in the muscle. These results indicate that some metabolic pathways would be important to clarify metabolic characteristics and/or growth of breast muscle during the post-hatch developmental period in chickens.
Collapse
|
9
|
Zhang S, Tang Z, Zheng C, Zhong Y, Zheng J, Duan G, Yin Y, Duan Y, Song Z. Dietary Beta-Hydroxy-Beta-Methyl Butyrate Supplementation Inhibits Hepatic Fat Deposition via Regulating Gut Microbiota in Broiler Chickens. Microorganisms 2022; 10:microorganisms10010169. [PMID: 35056618 PMCID: PMC8781658 DOI: 10.3390/microorganisms10010169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
The present study is aimed to explore the effects of different dietary beta-hydroxy-beta-methyl butyrate (HMB) levels (0, 0.05%, 0.10%, or 0.15%) on liver lipid metabolism on Wenshi broiler chickens. Results showed that HMB reduced the liver weight as well as liver concentrations of triacylglycerol (TG) and total cholesterol (TC) (quadratically, p < 0.05), and the lowest values were observed in the 0.10% HMB group. Meanwhile, HMB supplementation significantly altered the expression levels of key genes related to lipid metabolism in the liver of broiler chickens (p < 0.05). Furthermore, 16S rRNA gene sequencing revealed that HMB supplementation could greatly change the richness, diversity, and composition of the broiler gut microbiota, and the Bacteroidetes relative abundance at the phylum level and the Alistipes relative abundance at the genus level were affected (p < 0.05). Correlation analysis further suggested a strong association between Bacteroidetes relative abundance and lipid metabolism-related parameters (p < 0.05). Together, these data suggest that 0.10% HMB supplementation could inhibit hepatic fat deposition via regulating gut microbiota in broilers.
Collapse
Affiliation(s)
- Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhiyi Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Changbing Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.Z.); (C.Z.); (Y.Z.); (J.Z.); (G.D.); (Y.Y.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
- Correspondence: (Y.D.); (Z.S.)
| | - Zehe Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: (Y.D.); (Z.S.)
| |
Collapse
|
10
|
Davis H, Jagger S, Toplis P, Miller H. Feeding β-hydroxy β-methyl butyrate to sows in late gestation improves litter and piglet performance to weaning and colostrum immunoglobulin concentrations. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Tang Z, Song B, Zheng C, Zheng J, Yin Y, Chen J. Dietary Beta-Hydroxy-Beta-Methyl Butyrate Supplementation Affects Growth, Carcass Characteristics, Meat Quality, and Serum Metabolomics Profile in Broiler Chickens. Front Physiol 2021; 12:633964. [PMID: 33643073 PMCID: PMC7902712 DOI: 10.3389/fphys.2021.633964] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to explore the effects of beta-hydroxy-beta-methyl butyrate (HMB) on serum metabolic profiles and meat quality of muscles in Wenshi broiler chickens. Birds were fed a basal diet with an additional 0, 0.05, 0.10, or 0.15% HMB, respectively. Results showed that dietary HMB quadratically increased the average daily gain (P = 0.058) and decreased feed:gain (P < 0.05) mainly in the starter phase. At 51 days of age, birds receiving 0.10% HMB diet exhibited less abdominal fat and more breast yield than the control (P < 0.05). Moreover, dietary HMB quadratically decreased the L∗ value and drip loss in selected muscles (P < 0.05) and increased the a∗ value in breast muscle (P < 0.05). Serum metabolome profiling showed that the most differentially abundant metabolites are lipids and lipid-like molecules, including phosphatidylcholines. It was concluded that HMB improved growth performance and meat quality of muscle in broilers.
Collapse
Affiliation(s)
- Zhiyi Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bo Song
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Changbing Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jie Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
12
|
The influence of dietary supplementation with the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) on the chemotaxis, phagocytosis and respiratory burst of peripheral blood granulocytes and monocytes in calves. BMC Vet Res 2020; 16:171. [PMID: 32487098 PMCID: PMC7268378 DOI: 10.1186/s12917-020-02389-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/25/2020] [Indexed: 11/21/2022] Open
Abstract
Background A healthy immune system plays a particularly important role in newborns, including in calves that are far more susceptible to infections (viral, bacterial and other) than adult individuals. Therefore, the present study aimed to evaluate the influence of HMB on the chemotactic activity (MIGRATEST® kit), phagocytic activity (PHAGOTEST® kit) and oxidative burst (BURSTTEST® kit) of monocytes and granulocytes in the peripheral blood of calves by flow cytometry. Results An analysis of granulocyte and monocyte chemotactic activity and phagocytic activity revealed significantly higher levels of phagocytic activity in calves administered HMB than in the control group, expressed in terms of the percentage of phagocytising cells and mean fluorescence intensity (MFI). HMB also had a positive effect on the oxidative metabolism of monocytes and granulocytes stimulated with PMA (4-phorbol-12-β-myristate-13-acetate) and Escherichia coli bacteria, expressed as MFI values and the percentage of oxidative metabolism. Conclusion HMB stimulates non-specific cell-mediated immunity, which is a very important consideration in newborn calves that are exposed to adverse environmental factors in the first weeks of their life. The supplementation of animal diets with HMB for both preventive and therapeutic purposes can also reduce the use of antibiotics in animal production.
Collapse
|
13
|
Ma YB, Zhang FD, Wang J, Wu SG, Qi GH, Zhang HJ. Effect of in ovo feeding of β-hydroxy-β-methylbutyrate on hatchability, muscle growth and performance in prenatal and posthatch broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:755-763. [PMID: 31605375 DOI: 10.1002/jsfa.10080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 08/19/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND β-Hydroxy-β-methylbutyrate (HMB) is the metabolite of leucine that plays an important role in muscle protein metabolism. The objective of the present study was to determine the effects of in ovo feeding (IOF) of HMB at 7 days of incubation (DOI) via air cell or 18 DOI via amnion on hatchability, muscle growth and performance in prenatal and posthatch broilers. RESULTS IOF of HMB via air cell at 7 DOI increased hatchability by 4.34% compared with the control (89.67% versus 85.33%). Birds in IOF groups exhibited higher body weight, average daily body weight gain and pectoral muscle percentage. Furthermore, IOF of HMB significantly increased the level of plasma growth hormone, insulin and insulin-like growth factor-1. Chicks hatched from IOF treatment had larger diameters of muscle fiber and higher mitotic activity of satellite cells at early posthatch age. IOF of HMB activated satellite cells by upregulation of mRNA expression of myogenic transcription factors, myogenic differentiation one (MyoD) and myogenin. Chicks hatched from air cell injection group had higher pectoral muscle percentage at 5 d posthatch and greater satellite cell mitotic activity at 7 d posthatch than counterparts from amnion injection group. CONCLUSIONS IOF of HMB via amnion at 18 DOI or especially via air cell at 7 DOI could be used as an effective approach to enhance hatchability, productive performance and breast muscle yield in broilers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- You-Biao Ma
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Feng-Dong Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Jing Wang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Shu-Geng Wu
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Guang-Hai Qi
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| | - Hai-Jun Zhang
- Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Beijing, China
| |
Collapse
|
14
|
Suryawan A, Rudar M, Fiorotto ML, Davis TA. Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. J Appl Physiol (1985) 2020; 128:286-295. [PMID: 31944890 DOI: 10.1152/japplphysiol.00332.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leucine (Leu) and its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent protein synthesis in the skeletal muscle of neonatal pigs. This study aimed to determine whether HMB and Leu utilize common nutrient-sensing mechanisms to activate mTORC1. In study 1, neonatal pigs were fed one of five diets for 24 h: low protein (LP), high protein (HP), or LP supplemented with 4 (LP+HMB4), 40 (LP+HMB40), or 80 (LP+HMB80) μmol HMB·kg body wt-1·day-1. In study 2, neonatal pigs were fed for 24 h: LP, LP supplemented with Leu (LP+Leu), or HP diets delivering 9, 18, and 18 mmol Leu·kg body wt-1·day-1, respectively. The upstream signaling molecules that regulate mTORC1 activity were analyzed. mTOR phosphorylation on Ser2448 and Ser2481 was greater in LP+HMB40, LP+HMB80, and LP+Leu than in LP and greater in HP than in HMB-supplemented groups (P < 0.05), whereas HP and LP+Leu were similar. Rheb-mTOR complex formation was lower in LP than in HP (P < 0.05), with no enhancement by HMB or Leu supplementation. The Sestrin2-GATOR2 complex was more abundant in LP than in HP and was reduced by Leu (P < 0.05) but not HMB supplementation. RagA-mTOR and RagC-mTOR complexes were higher in LP+Leu and HP than in LP and HMB groups (P < 0.05). There were no treatment differences in RagB-SH3BP4, Vps34-LRS, and RagD-LRS complex abundances. Phosphorylation of Erk1/2 and TSC2, but not AMPK, was lower in LP than HP (P < 0.05) and unaffected by HMB or Leu supplementation. Our results demonstrate that HMB stimulates mTORC1 activation in neonatal muscle independent of the leucine-sensing pathway mediated by Sestrin2 and the Rag proteins.NEW & NOTEWORTHY Dietary supplementation with either leucine or its metabolite β-hydroxy-β-methylbutyrate (HMB) stimulates protein synthesis in skeletal muscle of the neonatal pig. Our results demonstrate that both leucine and HMB stimulate mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) phosphorylation in neonatal muscle. This leucine-stimulated process involves dissociation of the Sestrin2-GATOR2 complex and increased binding of Rag A/C to mTOR. However, HMB's activation of mTORC1 is independent of this leucine-sensing pathway.
Collapse
Affiliation(s)
- Agus Suryawan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marko Rudar
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Wójcik R, Ząbek K, Małaczewska J, Milewski S, Kaczorek-Łukowska E. The Effects of β-Hydroxy-β-Methylbutyrate (HMB) on Chemotaxis, Phagocytosis, and Oxidative Burst of Peripheral Blood Granulocytes and Monocytes in Goats. Animals (Basel) 2019; 9:ani9121031. [PMID: 31779122 PMCID: PMC6940930 DOI: 10.3390/ani9121031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The main focus of industrial livestock production is to maximise production output without compromising the well-being of animals, which is why animal diets are supplemented with various feed additives. Feed additives boost immunity and protect animals against pathogens. The list of potential feed additives includes β-hydroxy-β-methylbutyrate (HMB) which occurs naturally in small quantities in citrus fruit, avocado, asparagus, cauliflower, selected fish species, red wine, milk, and alfalfa. However, its mechanism of action and effects on immune system cells have not been thoroughly investigated in animals, including goats. In the present study, the experimental goats whose diets were supplemented with HMB over a period of 60 days were characterised by higher levels of chemotactic and phagocytic activity and a higher rate of oxidative metabolism of peripheral blood granulocytes and monocytes than control group animals whose diets were not supplemented. Granulocytes and monocytes constitute the first line of defence against pathogens and protect animals against disease. They play a particularly important role in young animals which are more susceptible to viral and bacterial infections. Feed additives can deliver numerous benefits by boosting immunity and preventing the spread of infectious diseases in goats. Abstract The objective of this study was to determine the effect of β-hydroxy-β-methylbutyrate (HMB) on the chemotactic activity, phagocytic activity, and oxidative metabolism of peripheral blood granulocytes and monocytes in goats. Goat kids aged 30 ± 3 days were divided into two groups of 12 animals each: I—control, and II—experimental. Experimental group animals were fed a diet supplemented with HMB in the amount of 50 mg/Kg BW; whereas the diets of control goats were not supplemented. At the beginning of the experiment (day 0) and on experimental days 15, 30, and 60, blood was sampled from the jugular vein to determine and compare chemotactic activity (MIGRATEST® kit), phagocytic activity (PHAGOTEST® kit), and oxidative metabolism (BURSTTEST® kit) of peripheral blood granulocytes and monocytes by flow cytometry. The analyses of the chemotactic and phagocytic activity of granulocytes and monocytes revealed statistically higher levels of phagocytic activity in the experimental group than in the control group, as expressed by the percentage of phagocytic cells and mean fluorescence intensity. HMB also enhanced the oxidative metabolism of both granulocytes and monocytes, expressed by the rate of oxidative metabolism and mean fluorescence intensity after stimulation with Escherichia coli bacteria and PMA (4-phorbol-12-β-myristate-13-acetate).
Collapse
Affiliation(s)
- Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (J.M.); (E.K.-Ł.)
- Correspondence: ; Tel.: +48-89-523-39-11
| | - Katarzyna Ząbek
- Department of Sheep and Goat Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-917 Olsztyn, Poland; (K.Z.); (S.M.)
| | - Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (J.M.); (E.K.-Ł.)
| | - Stanisław Milewski
- Department of Sheep and Goat Breeding, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 5, 10-917 Olsztyn, Poland; (K.Z.); (S.M.)
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (J.M.); (E.K.-Ł.)
| |
Collapse
|
16
|
Tomaszewska E, Muszyński S, Dobrowolski P, Wiącek D, Tomczyk-Warunek A, Świetlicka I, Pierzynowski SG. Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J Anim Physiol Anim Nutr (Berl) 2019; 103:626-643. [PMID: 30659706 DOI: 10.1111/jpn.13060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 01/14/2023]
Abstract
It has been demonstrated in animal studies that prenatal administration of β-hydroxy-β-methylbutyrate (HMB, metabolite of leucine) influences general growth and mechanical endurance of long bones in newborn offspring in sex-dependent manner. The present experiment was conducted to evaluate the effect of HMB treatment of pregnant sows on bone development in offspring at weaning. From 70th day until the 90th day of gestation, sows received either a basal diet (n = 12) or the same diet supplemented with HMB (n = 12) at the dose of 0.2 g/kg of body weight/day. Femora obtained from six males and females in each group weaned at the age of 35 days were examined. Maternal HMB treatment significantly enhanced body weight and changed bone morphology increasing femur mechanical strength in both sexes. Maternal HMB supplementation also elevated bone micro- and macroelement concentrations and enhanced content of proteoglycans in articular cartilage. Based on the obtained results, it can be concluded that maternal HMB supplementation in the mid-gestation period significantly accelerated bone development in both sexes by upregulation of a multifactorial system including leptin and osteoprotegerin. However, the sex (irrespective of the HMB treatment) was the factor which influenced the collagen structure in cartilages and trabecular bone, as demonstrated both by the Picrosirius red staining and performed analysis of thermal stability of collagenous tissues. The structural differences in collagen between males and females were presumably related to a different collagen maturity. No studies conducted so far provided a detailed morphological analysis of bone, articular cartilage, growth plate and the activities of the somatotropic and pituitary-gonadal axes, as well as leptin/osteoprotegerin system in weaned offspring prenatally treated with HMB. This study showed also the relationship between the maternal HMB treatment and bone osteometric and mechanical traits, hormones, and growth and bone turnover markers such as leptin, osteoprotegerin and insulin-like growth factor-1.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dariusz Wiącek
- Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, Lublin, Poland
| | - Agnieszka Tomczyk-Warunek
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Izabela Świetlicka
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | | |
Collapse
|
17
|
Xie S, Yang X, Gao Y, Jiao W, Li X, Li Y, Ning Z. Performance differences of Rhode Island Red, Bashang Long-tail Chicken, and their reciprocal crossbreds under natural cold stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1507-1514. [PMID: 28231696 PMCID: PMC5582338 DOI: 10.5713/ajas.16.0957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 12/02/2022]
Abstract
Objective The Bashang Long-tail chicken (BS), an indigenous Chinese breed, is considered cold tolerant. We selected BS, the Rhode Island Red (RIR), and their reciprocal crossbreds for the present study. The objectives were: i) to validate whether BS is cold tolerant and whether egg production and cold tolerance of crossbreds could be improved; and ii) to determine the physiological characteristics that underlie cold tolerance and favorable egg production performance in cold environments. Methods A total of 916 chickens were reared in warm and natural cold environments (daily mean ambient temperature varied from 7.4°C to 26.5°C in the warm environment and from −17.5°C to 27.0°C in the cold environment). To investigate their adaptability to the cold environment, the egg production performance and body weight were monitored and compared between breeds and environments. The cloacal temperature and serum biochemical parameters were monitored to reveal the physiological characteristics underlie cold tolerance and favorable egg production performance in the cold environment. Results The warm environment experiment showed that RIR had the highest egg production performance, and that the reciprocal crossbreds had a higher egg production performance than BS. While in the cold environment RIR had the lowest egg production performance, and the reciprocal crossbreds had a higher egg production performance than BS. In the cold environment BS and reciprocal crossbreds had higher triiodothyronine, tetraiodothyronine levels than RIR. At 35 and 39 wk of age, when the ambient temperature was extremely low (varied from −20°C to 0°C), serum glucose, follicle-stimulating hormone, luteinizing hormone, estradiol of BS and crossbreds were higher than RIR. Conclusion Bashang Long-tail chicken has a favorable cold tolerance ability. Crossbreeding with RIR and BS is an effective way to develop cold tolerant chickens with improved egg production performance.
Collapse
Affiliation(s)
- Shanshan Xie
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xukai Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yahui Gao
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjie Jiao
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinghua Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajie Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol 2016; 56 Suppl:S23-32. [PMID: 27345321 PMCID: PMC4926040 DOI: 10.1016/j.domaniend.2016.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress.
Collapse
Affiliation(s)
- T G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
19
|
Long L, Wu SG, Yuan F, Wang J, Zhang HJ, Qi GH. Effects of Dietary Octacosanol on Growth Performance, Carcass Characteristics and Meat Quality of Broiler Chicks. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1470-6. [PMID: 27189644 PMCID: PMC5003973 DOI: 10.5713/ajas.15.0879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/19/2016] [Accepted: 04/22/2016] [Indexed: 11/27/2022]
Abstract
Octacosanol, which has prominent physiological activities and functions, has been recognized as a potential growth promoter in animals. A total of 392 1-d-old male Arbor Acres broiler chicks with similar body weight were randomly distributed into four dietary groups of seven replicates with 14 birds each supplemented with 0, 12, 24, or 36 mg octacosanol (extracted from rice bran, purity >92%)/kg feed. The feeding trial lasted for six weeks and was divided into the starter (day 1 to 21) and the grower (day 22 to 42) phases. The results showed that the feed conversion ratio (FCR) was significantly improved in broilers fed a diet containing 24 mg/kg octacosanol compared with those fed the control diet in the overall phase (day 1 to 42, p = 0.042). The average daily gain and FCR both showed linear effects in response to dietary supplementation of octacosanol during the overall phase (p = 0.031 and 0.018, respectively). Broilers fed with 24 or 36 mg/kg octacosanol diet showed a higher eviscerated yield, which increased by 5.88% and 4.26% respectively, than those fed the control diet (p = 0.030). The breast muscle yield of broilers fed with 24 mg/kg octacosanol diet increased significantly by 12.15% compared with those fed the control diet (p = 0.047). Eviscerated and breast muscle yield increased linearly with the increase in dietary octacosanol supplementation (p = 0.013 and 0.021, respectively). Broilers fed with 24 or 36 mg/kg octacosanol diet had a greater (p = 0.021) pH45min value in the breast muscle, which was maintained linearly in response to dietary octacosanol supplementation (p = 0.003). There was a significant decrease (p = 0.007) in drip loss value between the octacosanol-added and the control groups. The drip loss showed linear (p = 0.004) and quadratic (p = 0.041) responses with dietary supplementation of octacosanol. These studies indicate that octacosanol is a potentially effective and safe feed additive which may improve feed efficiency and meat quality, and increase eviscerated and breast muscle yield, in broiler chicks. Dietary supplementation of octacosanol at 24 mg/kg diet is regarded as the recommended dosage in the broilers’ diet.
Collapse
Affiliation(s)
- L Long
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Tianjin Naer Biotechnology Co., Ltd., Tianjin 300457, China
| | - S G Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - F Yuan
- Tianjin Naer Biotechnology Co., Ltd., Tianjin 300457, China
| | - J Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H J Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - G H Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
20
|
Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fibre growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets. Br J Nutr 2016; 115:1360-9. [PMID: 26917333 DOI: 10.1017/s0007114516000465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intra-uterine growth restriction (IUGR) impairs postnatal growth and skeletal muscle development in neonatal infants. This study evaluated whether dietary β-hydroxy-β-methylbutyrate Ca (HMB-Ca) supplementation during the early postnatal period could improve muscle growth in IUGR neonates using piglets as a model. A total of twelve pairs of IUGR and normal-birth-weight (NBW) male piglets with average initial weights (1·85 (sem 0·36) and 2·51 (sem 0·39) kg, respectively) were randomly allotted to groups that received milk-based diets (CON) or milk-based diets supplemented with 800 mg/kg HMB-Ca (HMB) during days 7-28 after birth. Blood and longissimus dorsi (LD) samples were collected and analysed for plasma amino acid content, fibre morphology and the expression of genes related to muscle development. The results indicate that, regardless of diet, IUGR piglets had a significantly decreased average daily weight gain (ADG) compared with that of NBW piglets (P<0·05). However, IUGR piglets fed HMB-Ca had a net weight and ADG similar to that of NBW piglets fed the CON diet. Irrespective of body weight (BW), HMB-Ca supplementation markedly increased the type II fibre cross-sectional area and the mRNA expression of mammalian target of rapamycin (mTOR), insulin-like growth factor-1 and myosin heavy-chain isoform IIb in the LD of piglets (P<0·05). Moreover, there was a significant interaction between the effects of BW and HMB on mTOR expression in the LD (P<0·05). In conclusion, HMB-Ca supplementation during the early postnatal period could improve skeletal muscle growth and maturity by accelerating fast-twitch glycolytic fibre development in piglets.
Collapse
|
21
|
Bao Y, Gao C, Hao W, Ji C, Zhao L, Zhang J, Liu T, Ma Q. Effects of Dietary L-carnosine and Alpha-lipoic Acid on Growth Performance, Blood Thyroid Hormones and Lipid Profiles in Finishing Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1465-70. [PMID: 26194221 PMCID: PMC4554854 DOI: 10.5713/ajas.14.0604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/02/2014] [Accepted: 04/11/2015] [Indexed: 11/28/2022]
Abstract
The present study was conducted to determine the effects of L-carnosine (LC) and/or alpha-lipoic acid (ALA) supplementation on growth performance, blood thyroid hormones and lipid profiles in finishing pigs. A total of 40 (Landrace×Yorkshire) pigs with an initial body weight of 57.93±3.14 kg were randomly allocated to 4 experimental diets using a 2×2 factorial arrangement with 2 LC supplemental levels (0 or 0.1%) and 2 ALA supplemental levels (0 or 0.03%) in basal diets. The results showed that pigs fed LC-supplemented diets increased final live weight, average daily gain, and average daily feed intake compared to those of pigs fed without LC-supplemented diets (p<0.05). Dietary supplementation with ALA did not affect the growth performance and carcass traits of pigs (p>0.05). Additionally, LC supplementation increased serum triiodothyronine, thyroxine levels, and ALA supplementation increased serum triiodothyronine levels (p<0.05). Serum total cholesterol and triglycerides levels were significantly decreased in LC and ALA supplemented groups, respectively (p<0.05). Moreover, serum low density lipoprotein cholesterol levels were lower in the ALA-supplemented groups than those of pigs fed without ALA-supplemented diets (p<0.05). However, no significant LC×ALA interaction effect on growth performance, blood thyroid hormones and lipid profiles was found. This study suggested that dietary supplementation of LC resulted in better growth performance compared to that of ALA supplementation. L-carnosine and/or ALA supplementation positively modified blood lipid profiles, which may have the potential to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Yinghui Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunqi Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China ; College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbo Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tao Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Oberbauer AM. Developmental programming: the role of growth hormone. J Anim Sci Biotechnol 2015; 6:8. [PMID: 25774292 PMCID: PMC4358872 DOI: 10.1186/s40104-015-0001-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/20/2015] [Indexed: 12/30/2022] Open
Abstract
Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.
Collapse
Affiliation(s)
- Anita M Oberbauer
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|
23
|
Wang J, Zhang H, Samuel K, Long C, Wu S, Yue H, Sun L, Qi G. Effects of dietary pyrroloquinoline quinone disodium on growth, carcass characteristics, redox status, and mitochondria metabolism in broilers. Poult Sci 2015; 94:215-25. [DOI: 10.3382/ps/peu050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 11/20/2022] Open
|
24
|
Yonamine CY, Teixeira SS, Campello RS, Gerlinger-Romero F, Rodrigues CF, Guimarães-Ferreira L, Machado UF, Nunes MT. Beta hydroxy beta methylbutyrate supplementation impairs peripheral insulin sensitivity in healthy sedentary Wistar rats. Acta Physiol (Oxf) 2014; 212:62-74. [PMID: 24962220 DOI: 10.1111/apha.12336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/28/2014] [Accepted: 06/19/2014] [Indexed: 12/13/2022]
Abstract
AIM Investigate, in healthy sedentary rats, the potential mechanisms involved on the effects of beta hydroxy beta methylbutyrate (HMB) supplementation upon the glycaemic homeostasis, by evaluating the insulin sensitivity in liver, skeletal muscle, and white adipose tissue. METHODS Rats were supplemented with either beta hydroxy beta methylbutyrate (320 mg kg(-1) BW) or saline by gavage for 4 weeks. After the experimental period, the animals were subjected to the glucose tolerance test (GTT) and plasma non-esterified fatty acids (NEFA) concentration measurements. The soleus skeletal muscle, liver and white adipose tissue were removed for molecular (western blotting and RT-PCR) and histological analysis. RESULTS The beta hydroxy beta methylbutyrate supplemented rats presented: (i) higher ratio between the area under the curve (AUC) of insulinaemia and glycaemia during glucose tolerance test; (ii) impairment of insulin sensitivity on liver and soleus skeletal muscle after insulin overload; (iii) reduction of glucose transporter 4 (GLUT 4) total and plasma membrane content on soleus; (iv) increased hormone-sensitive lipase (HSL) mRNA and protein expression on white adipose tissue and plasma NEFA levels and (v) reduction of fibre cross-sectional area of soleus muscle. CONCLUSION The data altogether indicate that beta hydroxy beta methylbutyrate supplementation impairs insulin sensitivity in healthy sedentary rats, which, in the long-term, could lead to an increased risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- C. Y. Yonamine
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - S. S. Teixeira
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - R. S. Campello
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - F. Gerlinger-Romero
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - C. F. Rodrigues
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - L. Guimarães-Ferreira
- Department of Sports; Center of Physical Education and Sports; Federal University of Espírito Santo; Vitória Brazil
| | - U. F. Machado
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - M. T. Nunes
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
25
|
Szcześniak KA, Ostaszewski P, Fuller JC, Ciecierska A, Sadkowski T. Dietary supplementation of β-hydroxy-β-methylbutyrate in animals - a review. J Anim Physiol Anim Nutr (Berl) 2014; 99:405-17. [DOI: 10.1111/jpn.12234] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/06/2014] [Indexed: 01/10/2023]
Affiliation(s)
- K. A. Szcześniak
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - P. Ostaszewski
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - J. C. Fuller
- Metabolic Technologies, Inc.; Iowa State University Research Park; Ames IA USA
| | - A. Ciecierska
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| | - T. Sadkowski
- Department of Physiological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Science - SGGW; Warsaw Poland
| |
Collapse
|