1
|
Ren Y, Sun Y, Javad HU, Wang R, Zhou Z, Huang Y, Shu X, Li C. Growth Performance of and Liver Function in Heat-Stressed Magang Geese Fed the Antioxidant Zinc Ascorbate and Its Potential Mechanism of Action. Biol Trace Elem Res 2024:10.1007/s12011-024-04220-6. [PMID: 38914726 DOI: 10.1007/s12011-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
The aim of this study was to investigate the in vitro antioxidant activity of zinc ascorbate (AsA-Zn), its effects on the growth performance of and liver function in Magang geese under heat stress, and its potential mechanism. At AsA-Zn concentrations of 7.5, 15, 30, and 60 µmol/L, the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+) radical scavenging rate increased significantly by 120.85%, 53.43%, 36.12%, and 0.99%, respectively, compared with that of ascorbic acid (AsA), indicating that AsA-Zn had better antioxidant performance in vitro. In this study, Magang geese were divided into a control group (basal diet, CON) and experimental groups, who received the basal diet supplemented with 400 mg/kg AsA or 30 (AsA-Zn30), 60 (AsA-Zn60), or 90 (AsA-Zn90) mg/kg AsA-Zn. AsA-Zn supplementation considerably reduced the feed-to-gain ratio, whereas both AsA and AsA-Zn significantly increased the thymus index. Moreover, AsA-Zn supplementation improved serum protein levels, lipid metabolism, liver function, and antioxidant capacity while reducing hepatocyte vacuolar degeneration. Furthermore, supplementation with AsA-Zn60 significantly increased the total antioxidant capacity, glutathione peroxidase activity, and superoxide dismutase activity and decreased the malondialdehyde content in the serum, liver, and hepatic mitochondria (P < 0.05), with more pronounced effects in the AsA-Zn60 group. Moreover, supplementation with ASA-Zn regulated the Nrf 2 signaling pathway and significantly increased the expression of genes encoding antioxidant-related factors in the liver. In conclusion, AsA-Zn has good antioxidant activity, and AsA-Zn supplementation may improve the antioxidant capacity of heat-stressed geese and promote their growth. Supplementation with 30 mg/kg AsA-Zn is recommended.
Collapse
Affiliation(s)
- Yanli Ren
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China
| | - Yunan Sun
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Hafiz Umer Javad
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Renkai Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhiqing Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, China.
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China.
| | - Cuijin Li
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China.
| |
Collapse
|
2
|
Yu Z, Cheng M, Luo S, Wei J, Song T, Gong Y, Zhou Z. Comparative Lipidomics and Metabolomics Reveal the Underlying Mechanisms of Taurine in the Alleviation of Nonalcoholic Fatty Liver Disease Using the Aged Laying Hen Model. Mol Nutr Food Res 2023; 67:e2200525. [PMID: 37909476 DOI: 10.1002/mnfr.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/18/2023] [Indexed: 11/03/2023]
Abstract
SCOPE Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.
Collapse
Affiliation(s)
- Zhengwang Yu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Yuanyao Agriculture and Animal Husbandry Technology Co., Ltd, Shanghai, 200000, China
| | - Manman Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tieping Song
- Yichang Tianyou Huamu Technology Co.,Ltd, Yichang, 443000, China
| | - Yanzhang Gong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Nam JH, Han GP, Kim DY, Kwon CH, Kil DY. Effect of dietary glycine supplementation on productive performance, egg quality, stress response, and fatty liver incidence in laying hens raised under heat stress conditions. Poult Sci 2023; 102:103101. [PMID: 37826904 PMCID: PMC10571020 DOI: 10.1016/j.psj.2023.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
The current experiment aimed to investigate the effect of dietary glycine (Gly) supplementation on productive performance, egg quality, stress response, and fatty liver incidence in laying hens raised under heat stress (HS) conditions. A total of two hundred eighty 24-wk-old Lohmann Brown-Lite laying hens were randomly allotted to 1 of 4 dietary treatments with 7 replicates. The negative control (NC) diet was prepared to meet or exceed the nutrient and energy requirement for Lohmann Brown laying hens, whereas the positive control (PC) diet was formulated to increase AMEn by 100 kcal/kg compared with the NC diet. Two additional diets were prepared by supplementing 0.341% and 0.683% Gly to the NC diet. All hens were exposed to cyclic HS at 31.4 ± 1.17°C for 8 h/d and 26.7 ± 1.10°C for the remaining time for a 12-wk trial. Results indicated that increasing supplementation of Gly in diets tended (linear, P = 0.088) to decrease the FCR of laying hens. Increasing supplementation of Gly in diets increased (linear, P < 0.05) eggshell lightness and decreased (linear, P < 0.05) egg yolk color. Moreover, a tendency for a quadratic association (P < 0.10) of serum aspartate aminotransferase and alanine aminotransferase concentrations with increasing supplementation of Gly was observed. Increasing supplementation of Gly in diets decreased (linear, P < 0.05) blood heterophil:lymphocyte ratio of laying hens. Hens fed the NC diet showed higher fatty liver incidence (P < 0.05) than those fed the PC diet, but increasing supplementation of Gly decreased (linear, P < 0.05) fatty liver incidence of laying hens. In conclusion, increasing supplementation of Gly up to 0.683% in diets decreases FCR, stress response, and fatty liver incidence in laying hens raised under HS conditions.
Collapse
Affiliation(s)
- Jeong Hun Nam
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Chan Ho Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
4
|
San J, Hu J, Pang H, Zuo W, Su N, Guo Z, Wu G, Yang J. Taurine Protects against the Fatty Liver Hemorrhagic Syndrome in Laying Hens through the Regulation of Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10360. [PMID: 37373507 DOI: 10.3390/ijms241210360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease caused by fat deposition in the liver of humans and mammals, while fatty liver hemorrhagic syndrome (FLHS) is a fatty liver disease in laying hens which can increase the mortality and cause severe economic losses to the laying industry. Increasing evidence has shown a close relationship between the occurrence of fatty liver disease and the disruption of mitochondrial homeostasis. Studies have proven that taurine can regulate hepatic fat metabolism, reduce hepatic fatty deposition, inhibit oxidative stress, and alleviate mitochondrial dysfunction. However, the mechanisms by which taurine regulates mitochondrial homeostasis in hepatocytes need to be further studied. In this study, we determined the effects and mechanisms of taurine on high-energy low-protein diet-induced FLHS in laying hens and in cultured hepatocytes in free fatty acid (FFA)-induced steatosis. The liver function, lipid metabolism, antioxidant capacity, mitochondrial function, mitochondrial dynamics, autophagy, and biosynthesis were detected. The results showed impaired liver structure and function, mitochondrial damage and dysfunction, lipid accumulation, and imbalance between mitochondrial fusion and fission, mitochondrial autophagy, and biosynthesis in both FLHS hens and steatosis hepatocytes. Taurine administration can significantly inhibit the occurrence of FLHS, protect mitochondria in hepatocytes from disease induced by lipid accumulation and FFA, up-regulate the expression levels of Mfn1, Mfn2, Opa1, LC3I, LC3II, PINK1, PGC-1α, Nrf1, Nrf2, and Tfam, and down-regulate the expression levels of Fis1, Drp1, and p62. In conclusion, taurine can protect laying hens from FLHS through the regulation of mitochondrial homeostasis, including the regulation of mitochondrial dynamics, autophagy, and biosynthesis.
Collapse
Affiliation(s)
- Jishuang San
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiping Pang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Zuo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Su
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zimeng Guo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Vakili R, Salahshour A, Zanganeh A. Egg quality and coccidiosis infestation in three production systems for laying hens. ACTA SCIENTIARUM: ANIMAL SCIENCES 2021. [DOI: 10.4025/actascianimsci.v43i1.53125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A total of 240 white Shaver laying hens from 22 to 34 weeks of age were assigned to 3 treatments and 5 replications. The treatments included: i) Conventional (hens were kept in experimental building without access to outdoor area and fed with the conventional diet), ii) Semi-organic (hens were kept in experimental building with access to outdoor area and fed with the organic diet plus amino acids and vitamin-minerals supplement), and iii) Organic (hens were kept in experimental building with access to outdoor and fed with the organic diet). The results showed statistically significant differences in the feed intake, egg production, egg mass, egg weight, and change body weight(g) means among the treatments (p < 0.05). The hens kept in the organic treatment had fecal highest contain of oocytes coccidia (p < 0.05). The yolk color index and shell strength in the organic treatment significantly increased in comparison with that of other treatments (p < 0.05). The highest HDL was in the semi-organic and organic treatments (p < 0.05). The lowest egg yolk cholesterol concentration was found in hens kept in the semi-organic and organic treatments (p < 0.05). It is concluded that organic production system is useful for improving egg quality.
Collapse
|
6
|
Kim JH, Park GH, Han GP, Kil DY. Effect of feeding corn distillers dried grains with solubles naturally contaminated with deoxynivalenol on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Poult Sci 2021; 100:101215. [PMID: 34171654 PMCID: PMC8240020 DOI: 10.1016/j.psj.2021.101215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
The objective of this experiment was to investigate the effect of feeding corn distillers dried grains with solubles (DDGS) naturally contaminated with deoxynivalenol (DON) on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Two trials (growth and metabolism trials) were conducted. In the growth trial, a total of four hundred 7-day-old Ross 308 broiler chicks were allotted to 1 of 5 dietary treatments with 8 replicates in a completely randomized design. The diets were formulated to contain 5 inclusion levels of 0, 5, 10, 15, or 20% DON-contaminated DDGS in diets and were fed to birds for 21 d. Results indicated that increasing inclusion levels of DON-contaminated DDGS decreased (linear, P < 0.01) BW gain and feed efficiency of broiler chickens. The relative organ weights of the liver and breast were decreased (linear and quadratic, P < 0.05) by increasing inclusion levels of DON-contaminated DDGS in diets. The transepithelial electrical resistance values as a measure of intestinal permeability were decreased (linear, P < 0.05) by increasing inclusion levels of DON-contaminated DDGS in diets. In the metabolism trial, a total of twenty four 22-day-old Ross 308 broiler chickens were allotted to 1 of 3 dietary treatments consisting of 0, 10, or 20% inclusion of DON-contaminated DDGS in diets. Each treatment had 8 replicates. Increasing inclusion levels of DON-contaminated DDGS in diets decreased (linear and quadratic, P < 0.05) MEn (AMEn and TMEn) and apparent total tract retention of nitrogen and acid-hydrolyzed ether extract in diets. In conclusion, feeding diets containing more than 10% DON-contaminated DDGS to broiler chickens has negative effects on growth performance, intestinal permeability, and utilization of energy and nutrients in diets. Therefore, it is suggested that if DDGS is contaminated with DON, inclusion level of DDGS should be limited, possibly at less than 5.0% in broiler diets.
Collapse
Affiliation(s)
- J H Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G H Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G P Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
7
|
Ying S, Dai Z, Xi Y, Li M, Yan J, Yu J, Chen Z, Shi Z. Metabolomic evaluation of serum metabolites of geese reared at different stocking densities. Br Poult Sci 2021; 62:304-309. [PMID: 33336589 DOI: 10.1080/00071668.2020.1849556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. Stocking density is an issue for poultry production. High stocking density can impact biochemical parameters, production, and reproductive performance; however, information regarding the effects of stocking density on serum metabolites in geese is limited.2. Twenty-day-old, Sanhua male geese (n = 240) were allocated to one of two experimental groups for 50 days. One group was housed under a low stocking density (LSD; two birds per m2) and one under a high stocking density (HSD; five birds per m2). Body weight and feed intake were recorded every 10 d. Eight serum samples per group were used for metabonomic analysis by liquid chromatography-mass spectrometry.3. Stocking density did not affect the spleen, liver, thymus, or bursa of Fabricius weights after 50 d. Feed intake and body weight was significantly lower in geese from the HSD group versus the LSD group (P < 0.05). Thirty-six differential serum metabolites were identified (P < 0.05), indicating altered amino acid, carbohydrate, lipid and vitamin cofactor metabolism.4. The results demonstrated that high-density stocking impacts geese, and provides insights into the mechanisms underlying the adverse health effects associated with HSD.
Collapse
Affiliation(s)
- S Ying
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Z Dai
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Y Xi
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - M Li
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - J Yan
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - J Yu
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Z Chen
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Z Shi
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| |
Collapse
|
8
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
9
|
Xu Q, Azzam MMM, Zou X, Dong X. Effects of chitooligosaccharide supplementation on laying performance, egg quality, blood biochemistry, antioxidant capacity and immunity of laying hens during the late laying period. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1827991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Qianqian Xu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mahmoud Mostafa Mohammed Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Poultry Production Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Xiaoting Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Xu Q, Li H, Zhou W, Zou X, Dong X. Age-Related Changes in Serum Lipid Levels, Hepatic Morphology, Antioxidant Status, Lipid Metabolism Related Gene Expression and Enzyme Activities of Domestic Pigeon Squabs ( Columba livia). Animals (Basel) 2020; 10:E1121. [PMID: 32630261 PMCID: PMC7401562 DOI: 10.3390/ani10071121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to evaluate the age-related changes in antioxidant status and the lipid metabolism of pigeon squabs (Columba livia), by determining the BW, antioxidant indices, serum lipid levels, lipid metabolism-related enzyme activities, lipid metabolism-related gene expression, and liver morphology in squabs. Ten squabs were randomly selected and sampled on the day of hatching (DOH), days 7 (D7), 14 (D14) and 21 (D21) post-hatch, respectively. The results showed that BW of squabs increased linearly from DOH to D21. The minimum fold of BW gain was observed in the phase from D14 to D21. Serum triglyceride and free fatty acid levels displayed linear and quadratic trends as age increased, with these maximum responses in D14. Serum low-density lipoprotein cholesterol level responded to age linearly and quadratically with the minimum in D14. Serum high-density lipoprotein cholesterol level and the ratio of high-density lipoprotein cholesterol to low-density lipoprotein cholesterol increased linearly with age, whereas the very low-density lipoprotein cholesterol level decreased linearly. The activities of glutathione peroxidase, catalase, and superoxide dismutase in liver displayed linear and quadratic trends as age increased, with these minimum responses in D14. Hepatic malondialdehyde concentration responded to age linearly and quadratically, with the maximum in D14. Activities of lipoprotein lipase, hepatic lipase, and 3-hydroxy-3-methyl glutaryl coenzyme A reductase in liver responded to age linearly and quadratically, with these minimum responses in D14. Hepatic hormone-sensitive lipase activity displayed linear and quadratic trends as age increased with the maximum in D14. Hepatic acetyl CoA carboxylase activity on D14 was significantly lower than squabs on DOH and D7. Hepatic carnitine palmitoyltransferase 1 mRNA expression responded to age linearly and quadratically, with minimum response in D14. Hepatic mRNA expression of acetyl CoA carboxylase and fatty acid synthetase increased linearly with age. Hepatic Oil-Red-O staining area displayed a quadratic trend as age increased, with the maximum response in D14. In conclusion, the phase from DOH to D14 was a crucial development stage for growth, antioxidant status and lipid metabolism in pigeon squabs. The results suggest it is better to take nutritional manipulation in squabs before D14.
Collapse
Affiliation(s)
| | | | | | | | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University (Zijingang Campus), Hangzhou 310058, China; (Q.X.); (H.L.); (W.Z.); (X.Z.)
| |
Collapse
|
11
|
Xu QQ, Ma XW, Dong XY, Tao ZR, Lu LZ, Zou XT. Effects of parental dietary linoleic acid on growth performance, antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Poult Sci 2020; 99:1471-1482. [PMID: 32111316 PMCID: PMC7587642 DOI: 10.1016/j.psj.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary linoleic acid (LA) on growth performance, antioxidant capacity, and lipid metabolism in pigeon squabs by supplementing LA in their parental diets. A completely randomized design that consisted of a control group, 1% dietary LA addition group (LA1%), 2% dietary LA addition group (LA2%), and 4% dietary LA addition group (LA4%) was used. Six squabs from each treatment were randomly sampled at the day of hatch and days 7, 14, and 21 after hatch. The results showed that parental dietary LA had no significant influence (P > 0.05) on body weight (BW) gain or relative organ weights (% of BW) in squabs. The activities of superoxide dismutase, catalase, and glutathione peroxidase in the LA1% were significantly increased (P < 0.05) compared with those in the control group. The malondialdehyde content in the LA1% was significantly lower (P < 0.05) than that in the control group. The levels of serum triglyceride in the LA1% and LA2% were significantly decreased (P < 0.05) compared with those in the control group, whereas the serum high-density lipoprotein cholesterol level in the LA1% and LA2% and the free fatty acid level in the LA4% were significantly higher (P < 0.05) than those of the control group. The activities of lipoprotein lipase, hepatic lipase, and hormone-sensitive lipase in the LA1% were significantly higher (P < 0.05) than those in the control group. The 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in the LA1% and the hormone-sensitive lipase activity in the LA4% were significantly decreased (P < 0.05) compared with those in the control group. The mRNA expression of carnitine palmitoyltransferase 1, acyl-CoA 1, and peroxisome proliferator-activated receptor α was significantly upregulated (P < 0.05) in the LA1% compared with that in the control group. The Oil Red O staining area in the LA1% and LA2% was significantly reduced compared with that in the control group. The results indicated that although supplemental LA had negligible effects on growth and development in pigeon squabs, parental dietary LA at a concentration of 1% could have beneficial effects on maintaining squabs healthy as reflected by improved antioxidant capacity and lipid metabolism.
Collapse
Affiliation(s)
- Q Q Xu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - X W Ma
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - X Y Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China
| | - Z R Tao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China
| | - L Z Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, China.
| | - X T Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, 310058, China.
| |
Collapse
|
12
|
|
13
|
Effects of the Methionine Hydroxyl Analogue Chelate Zinc on Antioxidant Capacity and Liver Metabolism Using 1H-NMR-Based Metabolomics in Aged Laying Hens. Animals (Basel) 2019; 9:ani9110898. [PMID: 31683848 PMCID: PMC6912617 DOI: 10.3390/ani9110898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Zinc, an essential trace element for laying hens, plays an important role in biological processes, such as growth, tissue growth and repairment, skeletal development, and immune competence, which also has better effects on growth performance, biochemical indexes, and antioxidant capacity. Our previous work has shown that methionine hydroxyl analogue chelated zinc (MHA-Zn) has better effects on eggshell quality, the apparent retention of minerals and nutrients, trace element deposit, and metallothionein (MT) mRNA expression. The objective of the current study was to investigate the effects of different levels of MHA-Zn on antioxidant capacity and liver metabolism of aged laying hens. The results suggest that dietary supplementation of MHA-Zn levels at 80 mg/kg has better effects on antioxidant capacity and liver metabolism, as well as homeostasis of the body. Abstract This study aimed to investigate the effects of different levels of methionine hydroxyl analogue chelated zinc (MHA-Zn) on antioxidant capacity and liver metabolism of aged laying hens. A total of 960 57-week-old layers were fed a basal diet (Zn: 35.08 mg/kg) without extra zinc for two weeks, and then allocated to four treatments consisting of eight replicates of 30 birds each for 14 weeks. Four levels of Zn (zinc sulfate (ZnSO4): 80 mg/kg; MHA-Zn: 20, 40, 80 mg/kg) were added to the diet. The results indicated that compared with inorganic zinc, organic zinc of 80 mg/kg has a significant advantage in improving the antioxidant capacity of aged hens, which increased the level of Cu/Zn-superoxide dismutase (SOD) and the total antioxidant capacity (T-AOC) in the serum and liver, and reduced the concentration of malondialdehyde (MDA) of laying hens. The serum albumen composition was significantly modified, meanwhile, the level of total protein, globulin, and urea increased remarkably, whereas serum glutamic-oxaloacetic transaminase decreased notably in 80 mg/kg MHA-Zn groups. Compared with the 20 mg/kg MHA-Zn group, the metabolic profile of 40 and 80 mg/kg MHA-Zn groups was higher than that of the inorganic zinc group. Furthermore, integrated key metabolic pathway analysis showed that 40 and 80 mg/kg MHA-Zn groups participated in the regulation of glutathione metabolism, glycine, serine, and threonine metabolism. Therefore, this study suggests that 40 and 80 mg/kg supplementation of MHA-Zn can increase the activity of Cu/Zn-SOD and T-AOC and decrease MDA; additionally the 80 mg/kg MHA-Zn group has better antioxidant capacity. Meanwhile, the enhanced MHA-Zn promoted methionine (Met) synthesis and protein metabolism.
Collapse
|
14
|
Lu Z, He X, Ma B, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Dietary taurine supplementation decreases fat synthesis by suppressing the liver X receptor α pathway and alleviates lipid accumulation in the liver of chronic heat-stressed broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5631-5637. [PMID: 31106428 DOI: 10.1002/jsfa.9817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic heat stress can enhance fat synthesis and result in lipid accumulation in the liver of broilers. To investigate the effects and molecular mechanisms of dietary taurine supplementation on fat synthesis and lipid accumulation in the liver of chronic heat-stressed broilers, 144 28 day-old chickens (Arbor Acres) were randomly distributed to normal control (NC, 22 °C, basal diet), heat stress (HS, consistent 32 °C, basal diet), or heat stress plus taurine (HS + T, consistent 32 °C, basal diet +5.00 g kg-1 taurine) groups for a 14-day feeding trial. RESULTS Compared with those of the HS group, dietary taurine supplementation significantly decreased the level of very-low-density lipoprotein and the activity of aspartate aminotransferase in plasma and the relative weight of liver in the HS + T group. In addition, dietary taurine supplementation also significantly decreased the levels of triglyceride, acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), and suppressed the mRNA expression levels of liver X receptor α (LXRα), sterol response element-binding protein 1c, ACC and FAS in the liver of chronic heat-stressed broilers. Meanwhile, dietary taurine supplementation effectively alleviated lipid accumulation in the liver of broilers exposed to chronic heat stress. CONCLUSION Chronic heat stress significantly increased fat synthesis and resulted in excess lipid deposition in the liver of broilers. Dietary taurine supplementation can effectively decrease fat synthesis by suppressing the LXRα pathway and alleviate lipid accumulation in the liver of chronic heat-stressed broilers. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
15
|
Dong XY, Yin ZZ, Ma YZ, Cao HY, Dong DJ. Effects of rearing systems on laying performance, egg quality, and serum biochemistry of Xianju chickens in summer. Poult Sci 2018; 96:3896-3900. [PMID: 29050438 DOI: 10.3382/ps/pex155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to compare the laying performance, egg quality, and serum biochemistry of hens maintained in conventional cage rearing system (CRS), flat net-rearing system (NRS), and free range system (FRS) under summer conditions. Indigenous Xianju chickens (n = 540) were randomly allocated into cages or pens of rearing system groups, within each system there were 5 replicates with 36 hens in each replicate. The experiment lasted between 21 and 29 wk of age. Hen-day egg production (P = 0.00) and egg mass (P = 0.00) were higher in the CRS but were similar in the NRS and FRS. Lowest egg weight (P = 0.02), yolk weight (P = 0.00) and yolk ratio (P = 0.01), and feed intake (P = 0.01) were observed from the FRS, whereas lowest feed conversion ratio (FCR) was recorded from the CRS (P = 0.01). Rearing systems had negligible effect on egg quality. Serum Ca (P = 0.04) and total protein (P = 0.03) levels were found to be higher in the CRS but were lower in the FRS. Serum levels of glucose (P = 0.01), cholesterol (P = 0.00), and triglyceride (P = 0.00) in the CRS increased compared with the NRS and FRS groups, whereas serum levels of high density lipoprotein cholesterol (HDL-C; P = 0.01) in the CRS decreased. It can be concluded that under summer conditions, Xianju chickens from CRS had an advantage in terms of productivity parameters, but exhibited higher levels of serum lipids and glucose.
Collapse
Affiliation(s)
- X Y Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Z Z Yin
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Y Z Ma
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - H Y Cao
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - D J Dong
- Animal Science College, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|