1
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
2
|
Gustin P, Prasad A. EnduroBone: A 3D printed bioreactor for extended bone tissue culture. HARDWAREX 2024; 18:e00535. [PMID: 38690152 PMCID: PMC11059325 DOI: 10.1016/j.ohx.2024.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.
Collapse
Affiliation(s)
- Paula Gustin
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
- Biologcial Science Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Darshna, Kumar R, Srivastava P, Chandra P. Bioengineering of bone tissues using bioreactors for modulation of mechano-sensitivity in bone. Biotechnol Genet Eng Rev 2023:1-41. [PMID: 36596226 DOI: 10.1080/02648725.2022.2162249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Since the last decade, significant developments have been made in the area of bone tissue engineering associated with the emergence of novel biomaterials as well as techniques of scaffold fabrication. Despite all these developments, the translation from research findings to clinical applications is still very limited. Manufacturing the designed tissue constructs in a scalable manner remains the most challenging aspect. This bottleneck could be overcome by using bioreactors for the manufacture of these tissue constructs. In this review, a current scenario of bone injuries/defects and the cause of the translational gap between laboratory research and clinical use has been emphasized. Furthermore, various bioreactors being used in the area of bone tissue regeneration in recent studies have been highlighted along with their advantages and limitations. A vivid literature survey on the ideal attributes of bioreactors has been accounted, viz. dynamic, versatile, automated, reproducible and commercialization aspects. Additionally, the illustration of computational approaches that should be combined with bone tissue engineering experiments using bioreactors to simulate and optimize cellular growth in bone tissue constructs has also been done extensively.
Collapse
Affiliation(s)
- Darshna
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
4
|
Drapal V, Gamble JM, Robinson JL, Tamerler C, Arnold PM, Friis EA. Integration of clinical perspective into biomimetic bioreactor design for orthopedics. J Biomed Mater Res B Appl Biomater 2021; 110:321-337. [PMID: 34510706 PMCID: PMC9292211 DOI: 10.1002/jbm.b.34929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
The challenges to accommodate multiple tissue formation metrics in conventional bioreactors have resulted in an increased interest to explore novel bioreactor designs. Bioreactors allow researchers to isolate variables in controlled environments to quantify cell response. While current bioreactor designs can effectively provide either mechanical, electrical, or chemical stimuli to the controlled environment, these systems lack the ability to combine all these stimuli simultaneously to better recapitulate the physiological environment. Introducing a dynamic and systematic combination of biomimetic stimuli bioreactor systems could tremendously enhance its clinical relevance in research. Thus, cues from different tissue responses should be studied collectively and included in the design of a biomimetic bioreactor platform. This review begins by providing a summary on the progression of bioreactors from simple to complex designs, focusing on the major advances in bioreactor technology and the approaches employed to better simulate in vivo conditions. The current state of bioreactors in terms of their clinical relevance is also analyzed. Finally, this review provides a comprehensive overview of individual biophysical stimuli and their role in establishing a biomimetic microenvironment for tissue engineering. To date, the most advanced bioreactor designs only incorporate one or two stimuli. Thus, the cell response measured is likely unrelated to the actual clinical performance. Integrating clinically relevant stimuli in bioreactor designs to study cell response can further advance the understanding of physical phenomenon naturally occurring in the body. In the future, the clinically informed biomimetic bioreactor could yield more efficiently translatable results for improved patient care.
Collapse
Affiliation(s)
- Victoria Drapal
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA
| | - Jordan M Gamble
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L Robinson
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Candan Tamerler
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| | - Paul M Arnold
- Carle School of Medicine, University of Illinois-Champaign Urbana, Champaign, Illinois, USA
| | - Elizabeth A Friis
- Bioengineering Program, University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, USA.,Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Designing of an Advanced Compression Bioreactor with an Implementation of a Low-Cost Controlling System Connected to a Mobile Application. Processes (Basel) 2021. [DOI: 10.3390/pr9060915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Bioreactors mimic the natural environment of cells and tissues by providing a controlled micro-environment. However, their design is often expensive and complex. Herein, we have introduced the development of a low-cost compression bioreactor which enables the application of different mechanical stimulation regimes to in vitro tissue models and provides the information of applied stress and strain in real-time. (2) Methods: The compression bioreactor is designed using a mini-computer called Raspberry Pi, which is programmed to apply compressive deformation at various strains and frequencies, as well as to measure the force applied to the tissue constructs. Besides this, we have developed a mobile application connected to the bioreactor software to monitor, command, and control experiments via mobile devices. (3) Results: Cell viability results indicate that the newly designed compression bioreactor supports cell cultivation in a sterile environment without any contamination. The developed bioreactor software plots the experimental data of dynamic mechanical loading in a long-term manner, as well as stores them for further data processing. Following in vitro uniaxial compression conditioning of 3D in vitro cartilage models, chondrocyte cell migration was altered positively compared to static cultures. (4) Conclusion: The developed compression bioreactor can support the in vitro tissue model cultivation and monitor the experimental information with a low-cost controlling system and via mobile application. The highly customizable mold inside the cultivation chamber is a significant approach to solve the limited customization capability of the traditional bioreactors. Most importantly, the compression bioreactor prevents operator- and system-dependent variability between experiments by enabling a dynamic culture in a large volume for multiple numbers of in vitro tissue constructs.
Collapse
|
6
|
Dupard SJ, Bourgine PE. 3D Engineering of Human Hematopoietic Niches in Perfusion Bioreactor. Methods Mol Biol 2021; 2308:253-262. [PMID: 34057728 DOI: 10.1007/978-1-0716-1425-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hematopoietic microenvironment, also referred to as hematopoietic niche, is a functional three-dimensional (3D) unit of the bone marrow (BM) that planar culture systems cannot recapitulate. Existing limitations of 2D protocols are driving the development of advanced 3D methodologies, capable of superior modeling of the native organization and interactions between hematopoietic cells and their niche.Hereafter we describe the use of a 3D perfusion bioreactor for in vitro generation of human hematopoietic niches. The approach enables the recapitulation of the interactions between hematopoietic stem and progenitor cells (HSPCs), mesenchymal cells (MSCs), and their extracellular matrix in a 3D relevant setting. This was shown to support the functional maintenance of blood populations, self-distributing in the system compartments depending on their differentiation status. Such 3D niche modeling represents an advanced tool toward uncovering human hematopoiesis in relation to its host microenvironment , for both fundamental hematopoiesis and personalized medicine applications.
Collapse
Affiliation(s)
- Steven J Dupard
- Cell, Tissue & Organ engineering laboratory, BMC B11, 221 84, Department of Clinical Sciences Lund, Stem Cell Center, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Paul E Bourgine
- Cell, Tissue & Organ engineering laboratory, BMC B11, 221 84, Department of Clinical Sciences Lund, Stem Cell Center, Lund University, Lund, Sweden. .,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Hu X, Xu J, Li W, Li L, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. Therapeutic "Tool" in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 2019; 191:785-809. [PMID: 31863349 DOI: 10.1007/s12010-019-03214-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.,Key Laboratory of Biological Medicines, Universities of Shandong Province Weifang Key Laboratory of Antibody Medicines, School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China. .,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Birru B, Mekala NK, Parcha SR. Mechanistic role of perfusion culture on bone regeneration. J Biosci 2019; 44:23. [PMID: 30837374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bone tissue engineering (BTE) aims to develop engineered bone tissue to substitute conventional bone grafts. To achieve this, culturing the cells on the biocompatible three-dimensional (3D) scaffold is one alternative approach. The new functional bone tissue regeneration could be feasible by the synergetic combinations of cells, biomaterials and bioreactors. Although the field of biomaterial design/development for BTE applications attained reasonable success, development of suitable bioreactor remains still a major challenge. Tissue engineering bioreactors provide the microenvironment required for neo-tissue regeneration, and also can be used to study the physio-chemical cues effect on cell proliferation and differentiation in order to produce functional tissue. In this direction, various bioreactors have been developed and evaluated for the successful development of engineered bone tissue. Continues assessment of tissue development and limitations of the bioreactors lead to the progression of perfusion flow bioreactor system. Improvements in perfusion reactor system were able to yield multiple tissue engineered constructs with uniform cell distribution, easy to operate protocols and also effectively handled for the functional tissue development to meet the adequate supply of engineered graft for clinical application.
Collapse
Affiliation(s)
- Bhaskar Birru
- Department of Biotechnology, National Institute of Technology, Warangal 506 004, TS, India
| | | | | |
Collapse
|
9
|
|
10
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
11
|
Parrish J, Lim KS, Baer K, Hooper GJ, Woodfield TBF. A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models. LAB ON A CHIP 2018; 18:2757-2775. [PMID: 30117514 DOI: 10.1039/c8lc00485d] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Traditional 2D monolayer cell cultures and submillimeter 3D tissue construct cultures used widely in tissue engineering are limited in their ability to extrapolate experimental data to predict in vivo responses due to their simplistic organization and lack of stimuli. The rise of biofabrication and bioreactor technologies has sought to address this through the development of techniques to spatially organize components of a tissue construct, and devices to supply these tissue constructs with an increasingly in vivo-like environment. Current bioreactors supporting both parenchymal and barrier tissue constructs in interconnected systems for body-on-a-chip platforms have chosen to emphasize study throughput or system/tissue complexity. Here, we report a platform to address this disparity in throughput and both system complexity (by supporting multiple in situ assessment methods) and tissue complexity (by adopting a construct-agnostic format). We introduce an ANSI/SLAS-compliant microplate and docking station fabricated via stereolithography (SLA), or precision machining, to provide up to 96 samples (Ø6 × 10 mm) with two individually-addressable fluid circuits (192 total), loading access, and inspection window for imaging during perfusion. Biofabricated ovarian cancer models were developed to demonstrate the in situ assessment capabilities via microscopy and a perfused resazurin-based metabolic activity assay. In situ microscopy highlighted flexibility of the sample housing to accommodate a range of sample geometries. Utility for drug screening was demonstrated by exposing the ovarian cancer models to an anticancer drug (doxorubicin) and generating the dose-response curve in situ, while achieving an assay quality similar to static wellplate culture. The potential for quantitative analysis of temporal tissue development and screening studies was confirmed by imaging soft- (gelatin) and hard-tissue (calcium chloride) analogs inside the bioreactor via spectral computed tomography (CT) scanning. As a proof-of-concept for particle tracing studies, flowing microparticles were visualized to inform the design of hydrogel constructs. Finally, the ability for mechanistic yet high-throughput screening was demonstrated in a vascular coculture model adopting endothelial and mesenchymal stem cells (HUVEC-MSC), encapsulated in gelatin-norbornene (gel-NOR) hydrogel cast into SLA-printed well inserts. This study illustrates the potential of a scalable dual perfusion bioreactor platform for parenchymal and barrier tissue constructs to support a broad range of multi-organ-on-a-chip applications.
Collapse
Affiliation(s)
- J Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.
| | | | | | | | | |
Collapse
|
12
|
Scheinpflug J, Pfeiffenberger M, Damerau A, Schwarz F, Textor M, Lang A, Schulze F. Journey into Bone Models: A Review. Genes (Basel) 2018; 9:E247. [PMID: 29748516 PMCID: PMC5977187 DOI: 10.3390/genes9050247] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bone is a complex tissue with a variety of functions, such as providing mechanical stability for locomotion, protection of the inner organs, mineral homeostasis and haematopoiesis. To fulfil these diverse roles in the human body, bone consists of a multitude of different cells and an extracellular matrix that is mechanically stable, yet flexible at the same time. Unlike most tissues, bone is under constant renewal facilitated by a coordinated interaction of bone-forming and bone-resorbing cells. It is thus challenging to recreate bone in its complexity in vitro and most current models rather focus on certain aspects of bone biology that are of relevance for the research question addressed. In addition, animal models are still regarded as the gold-standard in the context of bone biology and pathology, especially for the development of novel treatment strategies. However, species-specific differences impede the translation of findings from animal models to humans. The current review summarizes and discusses the latest developments in bone tissue engineering and organoid culture including suitable cell sources, extracellular matrices and microfluidic bioreactor systems. With available technology in mind, a best possible bone model will be hypothesized. Furthermore, the future need and application of such a complex model will be discussed.
Collapse
Affiliation(s)
- Julia Scheinpflug
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| | - Moritz Pfeiffenberger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany.
| | - Alexandra Damerau
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany.
| | - Franziska Schwarz
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| | - Martin Textor
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| | - Annemarie Lang
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany.
| | - Frank Schulze
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R),10589 Berlin, Germany.
| |
Collapse
|
13
|
Ravichandran A, Wen F, Lim J, Chong MSK, Chan JK, Teoh S. Biomimetic fetal rotation bioreactor for engineering bone tissues—Effect of cyclic strains on upregulation of osteogenic gene expression. J Tissue Eng Regen Med 2018; 12:e2039-e2050. [DOI: 10.1002/term.2635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
| | - Feng Wen
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
| | - Jing Lim
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
| | - Mark Seow Khoon Chong
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
| | - Jerry K.Y. Chan
- Department of Reproductive MedicineKK Women's and Children's Hospital Singapore
- Cancer and Stem Cell Biology ProgramDuke‐NUS Graduate Medical School Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of Singapore Singapore
| | - Swee‐Hin Teoh
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
- Lee Kong Chian School of Medicine, Experimental Medicine BuildingNanyang Technological University Singapore
| |
Collapse
|
14
|
Peroglio M, Gaspar D, Zeugolis DI, Alini M. Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. J Orthop Res 2018; 36:10-21. [PMID: 28718947 DOI: 10.1002/jor.23655] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.
Collapse
Affiliation(s)
- Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| |
Collapse
|
15
|
Bunpetch V, Zhang ZY, Zhang X, Han S, Zongyou P, Wu H, Hong-Wei O. Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials 2017; 196:67-79. [PMID: 29602560 DOI: 10.1016/j.biomaterials.2017.11.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing attention as a potential approach for the treatment of bone injuries due to their multi-lineage differentiation potential and also their ability to recognize and home to damaged tissue sites, secreting bioactive factors that can modulate the immune system and enhance tissue repair. However, a wide gap between the number of MSCs obtainable from the donor site and the number required for implantation, as well as the lack of understanding of MSC functions under different in vitro and in vivo microenvironment, hinders the progression of MSCs toward clinical settings. The clinical translation of MSCs pre-requisites a scalable expansion process for the biomanufacturing of therapeutically qualified cells. This review briefly introduces the features of implanted MSCs to determine the best strategies to optimize their regenerative capacity, as well as the current MSC implantation for bone diseases. Current achievements for expansion of MSCs using various culturing methods, bioreactor technologies, biomaterial platforms, as well as microtissue-based expansion strategies are also discussed, providing new insights into future large-scale MSC expansion and clinical applications.
Collapse
Affiliation(s)
- Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| | - Xiaoan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Zongyou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ouyang Hong-Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, China; Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, China; Department of Sports Medicine, School of Medicine, Zhejiang University, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, China.
| |
Collapse
|
16
|
Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:399-411. [PMID: 28463576 DOI: 10.1089/ten.teb.2016.0427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
Collapse
Affiliation(s)
- Ke Li
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lulu Qiu
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lilan Gao
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Xizheng Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| |
Collapse
|
17
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
18
|
Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016; 5:610-618. [PMID: 27965220 PMCID: PMC5227059 DOI: 10.1302/2046-3758.512.bjr-2016-0102.r2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023] Open
Abstract
In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610-618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.
Collapse
Affiliation(s)
- A A Abubakar
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M M Noordin
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - T I Azmi
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - U Kaka
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| | - M Y Loqman
- Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia
| |
Collapse
|
19
|
Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices. Stem Cells Int 2016; 2016:9352598. [PMID: 26997959 PMCID: PMC4779529 DOI: 10.1155/2016/9352598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/11/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
Currently, autologous bone grafting represents the clinical gold standard in orthopaedic surgery. In certain cases, however, alternative techniques are required. The clinical utility of stem and stromal cells has been demonstrated for the repair and regeneration of craniomaxillofacial and long bone defects although clinical adoption of bone tissue engineering protocols has been very limited. Initial tissue engineering studies focused on the bone marrow as a source of cells for bone regeneration, and while a number of promising results continue to emerge, limitations to this technique have prompted the exploration of alternative cell sources, including adipose and muscle tissue. In this review paper we discuss the advantages and disadvantages of cell sources with a focus on adipose tissue and the bone marrow. Additionally, we highlight the relatively recent paradigm of developmental engineering, which promotes the recapitulation of naturally occurring developmental processes to allow the implant to optimally respond to endogenous cues. Finally we examine efforts to apply lessons from studies into different cell sources and developmental approaches to stimulate bone growth by use of decellularised hypertrophic cartilage templates.
Collapse
|