1
|
Dambroise E, Ktorza I, Brombin A, Abdessalem G, Edouard J, Luka M, Fiedler I, Binder O, Pelle O, Patton EE, Busse B, Menager M, Sohm F, Legeai-Mallet L. Fgfr3 Is a Positive Regulator of Osteoblast Expansion and Differentiation During Zebrafish Skull Vault Development. J Bone Miner Res 2020; 35:1782-1797. [PMID: 32379366 DOI: 10.1002/jbmr.4042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Gain or loss-of-function mutations in fibroblast growth factor receptor 3 (FGFR3) result in cranial vault defects highlighting the protein's role in membranous ossification. Zebrafish express high levels of fgfr3 during skull development; in order to study FGFR3's role in cranial vault development, we generated the first fgfr3 loss-of-function zebrafish (fgfr3lof/lof ). The mutant fish exhibited major changes in the craniofacial skeleton, with a lack of sutures, abnormal frontal and parietal bones, and the presence of ectopic bones. Integrated analyses (in vivo imaging and single-cell RNA sequencing of the osteoblast lineage) of zebrafish fgfr3lof/lof revealed a delay in osteoblast expansion and differentiation, together with changes in the extracellular matrix. These findings demonstrate that fgfr3 is a positive regulator of osteogenesis. We conclude that changes in the extracellular matrix within growing bone might impair cell-cell communication, mineralization, and new osteoblast recruitment. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Ivan Ktorza
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Alessandro Brombin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ghaith Abdessalem
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Joanne Edouard
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute for Integrative Biology of the Cell (I2BC)-CNRS, Gif-sur-Yvette, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivia Binder
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Olivier Pelle
- Flow Cytometry Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mickaël Menager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Frederic Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute for Integrative Biology of the Cell (I2BC)-CNRS, Gif-sur-Yvette, France.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Flow Cytometry Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France.,Functional Genomics Institute of Lyon, University of Lyon, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laurence Legeai-Mallet
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
2
|
Holmes G, O'Rourke C, Motch Perrine SM, Lu N, van Bakel H, Richtsmeier JT, Jabs EW. Midface and upper airway dysgenesis in FGFR2-related craniosynostosis involves multiple tissue-specific and cell cycle effects. Development 2018; 145:dev.166488. [PMID: 30228104 DOI: 10.1242/dev.166488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Courtney O'Rourke
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Motch Perrine SM, Stecko T, Neuberger T, Jabs EW, Ryan TM, Richtsmeier JT. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes. Front Hum Neurosci 2017; 11:369. [PMID: 28790902 PMCID: PMC5525342 DOI: 10.3389/fnhum.2017.00369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023] Open
Abstract
The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Tim Stecko
- Center for Quantitative Imaging, Penn State Institutes for Energy and the Environment, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Thomas Neuberger
- High Field MRI Facility, Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity Park, PA, United States.,Department of Bioengineering, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Ethylin W Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State UniversityUniversity Park, PA, United States.,Center for Quantitative Imaging, Penn State Institutes for Energy and the Environment, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State UniversityUniversity Park, PA, United States
| |
Collapse
|
4
|
Heuzé Y, Kawasaki K, Schwarz T, Schoenebeck JJ, Richtsmeier JT. Developmental and Evolutionary Significance of the Zygomatic Bone. Anat Rec (Hoboken) 2017; 299:1616-1630. [PMID: 27870340 PMCID: PMC5111587 DOI: 10.1002/ar.23449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/18/2023]
Abstract
The zygomatic bone is derived evolutionarily from the orbital series. In most modern mammals the zygomatic bone forms a large part of the face and usually serves as a bridge that connects the facial skeleton to the neurocranium. Our aim is to provide information on the contribution of the zygomatic bone to variation in midfacial protrusion using three samples; humans, domesticated dogs, and monkeys. In each case, variation in midface protrusion is a heritable trait produced by one of three classes of transmission: localized dysmorphology associated with single gene dysfunction, selective breeding, or long‐term evolution from a common ancestor. We hypothesize that the shape of the zygomatic bone reflects its role in stabilizing the connection between facial skeleton and neurocranium and consequently, changes in facial protrusion are more strongly reflected by the maxilla and premaxilla. Our geometric morphometric analyses support our hypothesis suggesting that the shape of the zygomatic bone has less to do with facial protrusion. By morphometrically dissecting the zygomatic bone we have determined a degree of modularity among parts of the midfacial skeleton suggesting that these components have the ability to vary independently and thus can evolve differentially. From these purely morphometric data, we propose that the neural crest cells that are fated to contribute to the zygomatic bone experience developmental cues that distinguish them from the maxilla and premaxilla. The spatiotemporal and molecular identity of the cues that impart zygoma progenitors with their identity remains an open question that will require alternative data sets. Anat Rec, 299:1616–1630, 2016. © 2016 The Authors The Anatomical Record Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yann Heuzé
- UMR5199 PACEA, Bordeaux Archaeological Sciences Cluster of Excellence, Université De Bordeaux
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Tobias Schwarz
- Department of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | - Jeffrey J Schoenebeck
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA
| |
Collapse
|
5
|
LEE CHANYOUNG, RICHTSMEIER JOANT, KRAFT REUBENH. A COMPUTATIONAL ANALYSIS OF BONE FORMATION IN THE CRANIAL VAULT USING A COUPLED REACTION-DIFFUSION-STRAIN MODEL. J MECH MED BIOL 2017; 17:1750073. [PMID: 29225392 PMCID: PMC5722272 DOI: 10.1142/s0219519417500737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bones of the murine cranial vault are formed by differentiation of mesenchymal cells into osteoblasts, a process that is primarily understood to be controlled by a cascade of reactions between extracellular molecules and cells. We assume that the process can be modeled using Turing's reaction-diffusion equations, a mathematical model describing the pattern formation controlled by two interacting molecules (activator and inhibitor). In addition to the processes modeled by reaction-diffusion equations, we hypothesize that mechanical stimuli of the cells due to growth of the underlying brain contribute significantly to the process of cell differentiation in cranial vault development. Structural analysis of the surface of the brain was conducted to explore the effects of the mechanical strain on bone formation. We propose a mechanobiological model for the formation of cranial vault bones by coupling the reaction-diffusion model with structural mechanics. The mathematical formulation was solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data that provide precise three dimensional (3D) measures of murine cranial geometry and cranial vault bone formation for specific embryonic time points. The results of this study suggest that mechanical strain contributes information to specific aspects of bone formation. Our mechanobiological model predicts some key features of cranial vault bone formation that were verified by experimental observations including the relative location of ossification centers of individual vault bones, the pattern of cranial vault bone growth over time, and the position of cranial vault sutures.
Collapse
Affiliation(s)
- CHANYOUNG LEE
- The Penn State Computational Biomechanics Group, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 341 Leonhard Building, University Park, PA 16802
| | - JOAN T. RICHTSMEIER
- Department of Anthropology, The Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802
| | - REUBEN H. KRAFT
- The Penn State Computational Biomechanics Group, Department of Mechanical and Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, 320 Leonhard Building, University Park, PA 16802
| |
Collapse
|
6
|
Maddin HC, Piekarski N, Sefton EM, Hanken J. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160356. [PMID: 27853617 PMCID: PMC5108967 DOI: 10.1098/rsos.160356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/12/2016] [Indexed: 05/24/2023]
Abstract
Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC-mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC-mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.
Collapse
|
7
|
Flat bones and sutures formation in the human cranial vault during prenatal development and infancy: A computational model. J Theor Biol 2016; 393:127-44. [DOI: 10.1016/j.jtbi.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022]
|