1
|
Zhang M, Chen T, Hu J, Zhang W, Shen M, Yu Q, Chen Y, Xie J. Collagen (peptide) extracted from sturgeon swim bladder: Physicochemical characterization and protective effects on cyclophosphamide-induced premature ovarian failure in mice. Food Chem 2025; 466:142217. [PMID: 39615355 DOI: 10.1016/j.foodchem.2024.142217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder, with oxidative damage playing a significant role in its development. Studies had demonstrated the beneficial antioxidant, anti-aging, and other biological properties of swim bladder collagen (peptide). In this study, acid extraction, water extraction, and enzymatic hydrolysis methods were used to extract collagen (peptide) from sturgeon (Acipenser sinensis) swim bladder, all of which exhibited significant antioxidant activity. Moreover, the effects observed in POF mice were enhanced, including an increasing in the number of growing ovarian follicles, regulation of serum hormone levels, and alterations in signaling pathways, as evidenced by the up-regulation of Phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt) and B cell lymphoma-2/ Bcl-associated x protein (Bcl-2/Bax) pathways, alongside the down-regulation of the mitogen-activated protein kinases (MAPK) signaling pathway. Sturgeon swim bladder collagen (peptide) could protect against cyclophosphamide-induced POF in mice, which could be very beneficial in the future advancement of health products.
Collapse
Affiliation(s)
- Mingyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiaruo Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weidong Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
2
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
3
|
Terzi A, Gallo N, Sibillano T, Altamura D, Masi A, Lassandro R, Sannino A, Salvatore L, Bunk O, Giannini C, De Caro L. Travelling through the Natural Hierarchies of Type I Collagen with X-rays: From Tendons of Cattle, Horses, Sheep and Pigs. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4753. [PMID: 37445069 DOI: 10.3390/ma16134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.
Collapse
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Teresa Sibillano
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Rocco Lassandro
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 167, 73021 Calimera, Italy
| | - Oliver Bunk
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Liberato De Caro
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| |
Collapse
|
4
|
An Update on the Clinical Efficacy and Safety of Collagen Injectables for Aesthetic and Regenerative Medicine Applications. Polymers (Basel) 2023; 15:polym15041020. [PMID: 36850304 PMCID: PMC9963981 DOI: 10.3390/polym15041020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the "gold standard" and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus.
Collapse
|
5
|
Cadamuro F, Marongiu L, Marino M, Tamini N, Nespoli L, Zucchini N, Terzi A, Altamura D, Gao Z, Giannini C, Bindi G, Smith A, Magni F, Bertini S, Granucci F, Nicotra F, Russo L. 3D bioprinted colorectal cancer models based on hyaluronic acid and signalling glycans. Carbohydr Polym 2023; 302:120395. [PMID: 36604073 DOI: 10.1016/j.carbpol.2022.120395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In cancer microenvironment, aberrant glycosylation events of ECM proteins and cell surface receptors occur. We developed a protocol to generate 3D bioprinted models of colorectal cancer (CRC) crosslinking hyaluronic acid and gelatin functionalized with three signalling glycans characterized in CRC, 3'-Sialylgalactose, 6'-Sialylgalactose and 2'-Fucosylgalactose. The crosslinking, performed exploiting azide functionalized gelatin and hyaluronic acid and 4arm-PEG-dibenzocyclooctyne, resulted in biocompatible hydrogels that were 3D bioprinted with commercial CRC cells HT-29 and patient derived CRC tumoroids. The glycosylated hydrogels showed good 3D printability, biocompatibility and stability over the time. SEM and synchrotron radiation SAXS/WAXS analysis revealed the influence of glycosylation in the construct morphology, whereas MALDI-MS imaging showed that protein profiles of tumoroid cells vary with glycosylation, indicating that sialylation and fucosylation of ECM proteins induce diverse alterations to the proteome of the tumoroid and surrounding cells.
Collapse
Affiliation(s)
- Francesca Cadamuro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Michele Marino
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Nicolò Tamini
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; ASST San Gerardo Hospital, 20900 Monza, Italy
| | - Luca Nespoli
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; ASST San Gerardo Hospital, 20900 Monza, Italy.
| | | | - Alberta Terzi
- Institute of Crystallography, National Research Council, v. Amendola 122/O, 70126 Bari, Italy.
| | - Davide Altamura
- Institute of Crystallography, National Research Council, v. Amendola 122/O, 70126 Bari, Italy.
| | - Zirui Gao
- Paul Scherrer Institute, Villigen PSI 5232, Switzerland.
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, v. Amendola 122/O, 70126 Bari, Italy.
| | - Greta Bindi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy.
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy.
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy.
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, 20133 Milan, Italy.
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91TK33 Galway, Ireland.
| |
Collapse
|
6
|
Ren Y, Fan L, Alkildani S, Liu L, Emmert S, Najman S, Rimashevskiy D, Schnettler R, Jung O, Xiong X, Barbeck M. Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes. Int J Mol Sci 2022; 23:ijms232314987. [PMID: 36499315 PMCID: PMC9735671 DOI: 10.3390/ijms232314987] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Guided bone regeneration (GBR) has become a clinically standard modality for the treatment of localized jawbone defects. Barrier membranes play an important role in this process by preventing soft tissue invasion outgoing from the mucosa and creating an underlying space to support bone growth. Different membrane types provide different biological mechanisms due to their different origins, preparation methods and structures. Among them, collagen membranes have attracted great interest due to their excellent biological properties and desired bone regeneration results to non-absorbable membranes even without a second surgery for removal. This work provides a comparative summary of common barrier membranes used in GBR, focusing on recent advances in collagen membranes and their biological mechanisms. In conclusion, the review article highlights the biological and regenerative properties of currently available barrier membranes with a particular focus on bioresorbable collagen-based materials. In addition, the advantages and disadvantages of these biomaterials are highlighted, and possible improvements for future material developments are summarized.
Collapse
Affiliation(s)
- Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
| | - Lu Fan
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | | | - Luo Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Stevo Najman
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, China
- Correspondence: ; Tel.: +49-(0)-176-81022467
| |
Collapse
|
7
|
WAXS and SAXS Investigation of Collagen-Rich Diet Effect on Multiscale Arrangement of Type I Collagen in Tilapia Skin Fed in Aquaponics Plant. CRYSTALS 2022. [DOI: 10.3390/cryst12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type I collagen is the main component of the extracellular matrix that acts as the physical and biochemical support of tissues. Thanks to its characteristics, collagen is widely employed as a biomaterial for implantable device fabrication and as antiaging food supplementation. Because of the BSE transmission in the 1990s, aquatic animals have become a more suitable extraction source than warm-blooded animals. Moreover, as recently demonstrated, a supplementing diet with fish collagen can increase the body’s collagen biosynthesis. In this context, Tilapia feeding was supplemented with hydrolyzed collagen in order to enhance the yield of extracted collagen. Tilapia skin was investigated with wide and small angle scattering techniques, analyzing the collagen structure from the submolecular to the nanoscale and correlated with Differential Scanning Calorimetry (DSC) measurements. Our studies demonstrated that the supplementation appears to have an effect at the nanoscale in which fibrils appear more randomly oriented than in fish fed with no supplemented feed. Conversely, no effect of a collagen-rich diet was observed at the submolecular scale.
Collapse
|
8
|
Aquaponics-Derived Tilapia Skin Collagen for Biomaterials Development. Polymers (Basel) 2022; 14:polym14091865. [PMID: 35567034 PMCID: PMC9103308 DOI: 10.3390/polym14091865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
Collapse
|
9
|
Hermida-Merino C, Cabaleiro D, Lugo L, Valcarcel J, Vázquez JA, Bravo I, Longo A, Salloum-Abou-Jaoude G, Solano E, Gracia-Fernández C, Piñeiro MM, Hermida-Merino D. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022; 8:gels8040237. [PMID: 35448138 PMCID: PMC9026235 DOI: 10.3390/gels8040237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.
Collapse
Affiliation(s)
- Carolina Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Correspondence: (C.H.-M.); (D.H.-M.)
| | - David Cabaleiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Luis Lugo
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Ivan Bravo
- Departamento de Química Física, Facultad de Farmacia, UCLM, 02071 Albacete, Spain;
| | - Alessandro Longo
- ID20, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France;
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Georges Salloum-Abou-Jaoude
- Constellium C-TEC Technology Center, Parc Economique Centr’alp, 725 rue Aristide Bergès, 38341 Voreppe, France;
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Valles, Spain;
| | | | - Manuel M. Piñeiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Daniel Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Netherlands Organisation for Scientific Research (NWO), c/o ESRF BP 220, DUBBLE CRG/ESRF, CEDEX, 38043 Grenoble, France
- Correspondence: (C.H.-M.); (D.H.-M.)
| |
Collapse
|
10
|
Gallo N, Natali ML, Curci C, Picerno A, Gallone A, Vulpi M, Vitarelli A, Ditonno P, Cascione M, Sallustio F, Rinaldi R, Sannino A, Salvatore L. Analysis of the Physico-Chemical, Mechanical and Biological Properties of Crosslinked Type-I Collagen from Horse Tendon: Towards the Development of Ideal Scaffolding Material for Urethral Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7648. [PMID: 34947245 PMCID: PMC8707771 DOI: 10.3390/ma14247648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical-chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.
Collapse
Affiliation(s)
- Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
- Typeone Biomaterials, Via Vittorio Veneto 64/C, 73036 Muro Leccese, Italy
| | - Claudia Curci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.G.)
| | - Angela Picerno
- Nephrology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Anna Gallone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.G.)
| | - Marco Vulpi
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Antonio Vitarelli
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Pasquale Ditonno
- Urology and Andrology Unit, Department of Emergency and Organ Transplant, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.V.); (A.V.); (P.D.)
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; (M.C.); (R.R.)
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (M.L.N.); (A.S.); (L.S.)
- Typeone Biomaterials, Via Vittorio Veneto 64/C, 73036 Muro Leccese, Italy
| |
Collapse
|
11
|
Salvatore L, Gallo N, Natali ML, Terzi A, Sannino A, Madaghiele M. Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:644595. [PMID: 33987173 PMCID: PMC8112590 DOI: 10.3389/fbioe.2021.644595] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.
Collapse
Affiliation(s)
- Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Maria Lucia Natali
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Alberta Terzi
- Institute of Crystallography, National Research Council, Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
12
|
Gallo N, Natali ML, Sannino A, Salvatore L. An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications. J Funct Biomater 2020; 11:jfb11040079. [PMID: 33139660 PMCID: PMC7712325 DOI: 10.3390/jfb11040079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Type I collagen has always aroused great interest in the field of life-science and bioengineering, thanks to its favorable structural properties and bioactivity. For this reason, in the last five decades it has been widely studied and employed as biomaterial for the manufacture of implantable medical devices. Commonly used sources of collagen are represented by bovine and swine but their applications are limited because of the zoonosis transmission risks, the immune response and the religious constrains. Thus, type-I collagen isolated from horse tendon has recently gained increasing interest as an attractive alternative, so that, although bovine and porcine derived collagens still remain the most common ones, more and more companies started to bring to market a various range of equine collagen-based products. In this context, this work aims to overview the properties of equine collagen making it particularly appealing in medicine, cosmetics and pharmaceuticals, as well as its main biomedical applications and the currently approved equine collagen-based medical devices, focusing on experimental studies and clinical trials of the last 15 years. To the best of our knowledge, this is the first review focusing on the use of equine collagen, as well as on equine collagen-based marketed products for healthcare.
Collapse
|
13
|
Miele D, Catenacci L, Rossi S, Sandri G, Sorrenti M, Terzi A, Giannini C, Riva F, Ferrari F, Caramella C, Bonferoni MC. Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. MATERIALS 2020; 13:ma13214698. [PMID: 33105584 PMCID: PMC7659940 DOI: 10.3390/ma13214698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/09/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023]
Abstract
Collagen, thanks to its biocompatibility, biodegradability and weak antigenicity, is widely used in dressings and scaffolds, also as electrospun fibers. Its mechanical stability can be improved by adding polycaprolactone (PCL), a synthetic and biodegradable aliphatic polyester. While previously collagen/PCL combinations were electrospun in solvents such as hexafluoroisopropanol (HFIP) or trifluoroethanol (TFE), more recently literature describes collagen/PCL nanofibers obtained in acidic aqueous solutions. A good morphology of the fibers represents in this case still a challenge, especially for high collagen/PCL ratios. In this work, thanks to preliminary rheological and physicochemical characterization of the solutions and to a Design of Experiments (DOE) approach on process parameters, regular and dimensionally uniform fibers were obtained with collagen/PCL ratios up to 1:2 and 1:1 w/w. Collagen ratio appeared relevant for mechanical strength of dry and hydrated fibers. WAXS and FTIR analysis showed that collagen denaturation is related both to the medium and to the electrospinning process. After one week in aqueous environment, collagen release was complete and a concentration dependent stimulatory effect on fibroblast growth was observed, suggesting the fiber suitability for wound healing. The positive effect of collagen on mechanical properties and on fibroblast biocompatibility was confirmed by a direct comparison of nanofiber performance after collagen substitution with gelatin.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Alberta Terzi
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Cinzia Giannini
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy;
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
- Correspondence:
| |
Collapse
|
14
|
Senadheera TR, Dave D, Shahidi F. Sea Cucumber Derived Type I Collagen: A Comprehensive Review. Mar Drugs 2020; 18:E471. [PMID: 32961970 PMCID: PMC7551324 DOI: 10.3390/md18090471] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
Collagen is the major fibrillar protein in most living organisms. Among the different types of collagen, type I collagen is the most abundant one in tissues of marine invertebrates. Due to the health-related risk factors and religious constraints, use of mammalian derived collagen has been limited. This triggers the search for alternative sources of collagen for both food and non-food applications. In this regard, numerous studies have been conducted on maximizing the utilization of seafood processing by-products and address the need for collagen. However, less attention has been given to marine invertebrates and their by-products. The present review has focused on identifying sea cucumber as a potential source of collagen and discusses the general scope of collagen extraction, isolation, characterization, and physicochemical properties along with opportunities and challenges for utilizing marine-derived collagen.
Collapse
Affiliation(s)
- Tharindu R.L. Senadheera
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| |
Collapse
|
15
|
Abstract
Natural fibrillar-like macromolecules find applications in several fields, thanks to their peculiar features, and are considered perfect building blocks for natural and artificial functional materials. Indeed, fibrous proteins (such as collagen or fibroin) are commonly used in scaffold fabrication for biomedical applications, due to the high biophysical similarity with the extracellular matrix (ECM) which stimulates tissue regeneration. In the textile industry, cellulose-based fabrics are widely used in place of cotton and viscose, which both have sustainability issues related to their fabrication. With this in mind, the structural characterization of the materials at molecular scale plays a fundamental role in gaining insight into the fiber assembly process. In this work, we report on three fibers of research interest (i.e., type I collagen, silk fibroin extracted from Bombyx mori, and cellulose) to show the power of wide-angle X-ray scattering to characterize both intra- and intermolecular parameters of fibrous polymers. The latest possibilities offered in the X-ray scattering field allow one to study fibers at solid state or dispersed in solutions as well as to perform quantitative scanning X-ray microscopy of tissues entirely or partially made by fibers.
Collapse
|
16
|
Terzi A, Gallo N, Bettini S, Sibillano T, Altamura D, Madaghiele M, De Caro L, Valli L, Salvatore L, Sannino A, Giannini C. Sub‐ and Supramolecular X‐Ray Characterization of Engineered Tissues from Equine Tendon, Bovine Dermis, and Fish Skin Type‐I Collagen. Macromol Biosci 2020; 20:e2000017. [DOI: 10.1002/mabi.202000017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Nunzia Gallo
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Simona Bettini
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Davide Altamura
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Marta Madaghiele
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Liberato De Caro
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento Lecce 73100 Italy
| | - Luca Salvatore
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Alessandro Sannino
- Department of Engineering for InnovationUniversity of Salento Lecce 73100 Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC)National Research Council Bari 70126 Italy
| |
Collapse
|