1
|
Velot É, Guibert M, Koufany M, Bianchi A. Intra-articular injection of inorganic pyrophosphate improves IL-1β-induced cartilage damage in rat model of knee osteoarthritis in vivo. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100560. [PMID: 39816851 PMCID: PMC11733043 DOI: 10.1016/j.ocarto.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes. It also maintained the differentiated articular phenotype, mostly by down regulating wingless-related integration site (Wnt)-5a secretion. These observations suggest a PPi protective role for chondrocyte in vitro. Methods To address this hypothesis in vivo, we investigated the impact on knee joint of three intra-articular injection (IAI) of PPi in a rat model of cartilage damage induced by IAI of IL-1β, where cartilage degradation and synovial inflammation are similar to that observed in OA. Cartilage and synovial membrane were collected after 7 days of challenge by IL-1β. Results PPi was able to reduce the deleterious effect of IL-1β. This effect was observable on the expression of cartilage extracellular matrix metabolism markers and confirmed by histology with safranin O and hematoxylin-eosin-saffron (HES) staining. Inorganic pyrophosphate also repressed the Wnt5a expression induced by IL-1β. No effect was observed on the inflammatory response of the synovial membrane. Conclusion These results demonstrate that PPi improves IL-1β-induced cartilage damage in rat but not the associated inflammation of synovial membrane. Thus, PPi could become a molecule of interest to restrict the progression of this disorder.
Collapse
Affiliation(s)
- Émilie Velot
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| | - Mathilde Guibert
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| | - Meriem Koufany
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| |
Collapse
|
2
|
Salehi S. A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39460952 DOI: 10.1080/09205063.2024.2419715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.
Collapse
Affiliation(s)
- Sarah Salehi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
3
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
4
|
Engdahl K, Höglund O, Hedhammar Å, Hanson J, Bergström A. The epidemiology of osteochondrosis in an insured Swedish dog population. Prev Vet Med 2024; 228:106229. [PMID: 38795580 DOI: 10.1016/j.prevetmed.2024.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
Osteochondrosis (OC) is a focal disturbance of endochondral ossification due to a failure of blood supply to the epiphyseal growth cartilage. In dogs, OC most commonly affects the shoulder joint, followed by the elbow, tarsal, and stifle joints. The condition is associated with clinical signs such as lameness and pain and the prognosis varies depending on the affected joint. Most epidemiologic studies of OC in dogs were performed over 20 years ago, and updated estimates of disease incidence are lacking. Therefore, the objectives of this study were to provide population-based estimates of the incidence rate, cause-specific mortality rate, and age at diagnosis of appendicular OC (AOC, including OC of the shoulder, elbow, stifle, and tarsal joints) and stifle and tarsal OC separately, using data from Agria Djurförsäkring in Sweden (2011-2016). Further, the study aimed to evaluate the risk of OC in subgroups divided by breed and sex and describe previous, concurrent, and subsequent diagnoses of the affected joint in dogs with stifle or tarsal joint OC. The study population included just over 600,000 dogs, of which 685 were affected by AOC. Stifle joint OC (n = 113) was more common than tarsal joint OC (n = 80). The incidence rate of AOC was 3.77 (95% confidence interval (CI): 3.49-4.07) cases per 10,000 dog-years at risk, while the incidence rate of stifle and joint tarsal OC was 0.64 (95% CI: 0.53-0.77) and 0.43 (95% CI: 0.34-0.54) cases per 10,000 dog-years at risk, respectively. All breeds at increased risk of AOC were large or giant, and male dogs had an increased risk of AOC compared to female dogs (RR 1.76, 95% CI: 1.50-2.07, p < 0.001). The median age at first diagnosis during the study period was 0.74 (0.32-11.5) years for AOC, 2.62 (0.45-8.82) years for stifle joint OC, and 0.73 (0.35-7.35) years for tarsal joint OC. Of the dogs with stifle or tarsal joint OC, 30.2% and 15.0% had a previous diagnosis of stifle/tarsal joint pain or other unspecific clinical signs, respectively, and 13.8% of the dogs with stifle joint OC suffered subsequent cruciate ligament rupture. Osteochondrosis was the most common reason for euthanasia in the affected dogs. In total, 77 dogs were euthanised due to AOC during the study period.
Collapse
Affiliation(s)
- Karolina Engdahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala 75007, Sweden.
| | - Odd Höglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala 75007, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala 75007, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, Uppsala 75007, Sweden
| | - Annika Bergström
- AniCura Djursjukhuset Albano, Rinkebyvägen 21A, Danderyd 182 36, Sweden
| |
Collapse
|
5
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
7
|
Makar LE, Nady N, Shawky N, Kandil SH. Genipin versus Ferric Chloride cross-linked unmodified Gum Arabic/Chitosan/nano-Hydroxyapatite nanocomposite hydrogels as potential scaffolds for bone regeneration. Sci Rep 2023; 13:14402. [PMID: 37658123 PMCID: PMC10474277 DOI: 10.1038/s41598-023-41413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Ferric chloride (FeCl3) and Genipin were utilized as cross-linkers to create two types of nanocomposite hydrogels through physical and covalent cross-linking methods, respectively. The hydrogels were composed of unmodified Gum Arabic (GA), Chitosan (Ch), and natural nano-Hydroxyapatite (nHA) using an acrylic acid solvent. Both the natural nHA and the FeCl3 vs. genipin cross-linked GA/Ch/nHA nano-composite hydrogels were prepared and characterized using various in vitro and in vivo analysis techniques. The use of FeCl3 and genipin cross-linkers resulted in the formation of novel hydrogels with compressive strengths of (15.43-22.20 MPa), which are comparable to those of natural cortical bone. In vivo evaluation was conducted by creating calvarial defects (6 mm) in Sprague-Dawley male rats. The results showed the formation of new, full-thickness bone at the implantation sites in all groups, as evidenced by digital planar tomography and histological staining with Hematoxylin and Eosin stain (H & E). Additionally, the use of genipin as a cross-linker positively affected the hydrogel's hydrophilicity and porosity. These findings justify further investigation into the potential of these nanocomposite hydrogels for bone regeneration applications.
Collapse
Affiliation(s)
- Lara E Makar
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria, 21526, Egypt.
| | - Norhan Nady
- Polymeric Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt.
| | - Neivin Shawky
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Alexandria University, Champollion Street - Azarita, Alexandria, 21526, Egypt
| | - Sherif H Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria, 21526, Egypt
| |
Collapse
|
8
|
Zhang W, Zha K, Hu W, Xiong Y, Knoedler S, Obed D, Panayi AC, Lin Z, Cao F, Mi B, Liu G. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration. Biomater Res 2023; 27:76. [PMID: 37542353 PMCID: PMC10403923 DOI: 10.1186/s40824-023-00411-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023] Open
Abstract
Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Doha Obed
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Adriana C Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071, Ludwigshafen/Rhine, Germany
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
9
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
10
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
12
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
13
|
Lesage C, Lafont M, Guihard P, Weiss P, Guicheux J, Delplace V. Material-Assisted Strategies for Osteochondral Defect Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200050. [PMID: 35322596 PMCID: PMC9165504 DOI: 10.1002/advs.202200050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The osteochondral (OC) unit plays a pivotal role in joint lubrication and in the transmission of constraints to bones during movement. The OC unit does not spontaneously heal; therefore, OC defects are considered to be one of the major risk factors for developing long-term degenerative joint diseases such as osteoarthritis. Yet, there is currently no curative treatment for OC defects, and OC regeneration remains an unmet medical challenge. In this context, a plethora of tissue engineering strategies have been envisioned over the last two decades, such as combining cells, biological molecules, and/or biomaterials, yet with little evidence of successful clinical transfer to date. This striking observation must be put into perspective with the difficulty in comparing studies to identify overall key elements for success. This systematic review aims to provide a deeper insight into the field of material-assisted strategies for OC regeneration, with particular considerations for the therapeutic potential of the different approaches (with or without cells or biological molecules), and current OC regeneration evaluation methods. After a brief description of the biological complexity of the OC unit, the recent literature is thoroughly analyzed, and the major pitfalls, emerging key elements, and new paths to success are identified and discussed.
Collapse
Affiliation(s)
- Constance Lesage
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
- HTL Biotechnology7 Rue Alfred KastlerJavené35133France
| | - Marianne Lafont
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Guihard
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Pierre Weiss
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Jérôme Guicheux
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| | - Vianney Delplace
- Université de NantesOnirisCHU NantesINSERMRegenerative Medicine and SkeletonRMeSUMR 1229NantesF‐44000France
| |
Collapse
|
14
|
Zoetebier B, Schmitz T, Ito K, Karperien M, Tryfonidou MA, Paez J. Injectable hydrogels for articular cartilage and nucleus pulposus repair: Status quo and prospects. Tissue Eng Part A 2022; 28:478-499. [PMID: 35232245 DOI: 10.1089/ten.tea.2021.0226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) and chronic low back pain due to degenerative (intervertebral) disc disease (DDD) are two of the major causes of disabilities worldwide, affecting hundreds of millions of people and leading to a high socioeconomic burden. Although OA occurs in synovial joints and DDD occurs in cartilaginous joints, the similarities are striking, with both joints showing commonalities in the nature of the tissues and in the degenerative processes during disease. Consequently, repair strategies for articular cartilage (AC) and nucleus pulposus (NP), the core of the intervertebral disc, in the context of OA and DDD share common aspects. One of such tissue engineering approaches is the use of injectable hydrogels for AC and NP repair. In this review, the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches. The various biomaterial strategies exploited for repair of both tissues are compared, and the synergies that could be gained by translating experiences from one tissue to the other are identified.
Collapse
Affiliation(s)
- Bram Zoetebier
- University of Twente Faculty of Science and Technology, 207105, Developmental BioEngineering , Drienerlolaan 5, Enschede, Netherlands, 7500 AE;
| | - Tara Schmitz
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands;
| | - Keita Ito
- Eindhoven University of Technology, Department of Biomedical Engineering, P.O. Box 513, GEMZ 4.115, Eindhoven, Netherlands, 5600 MB;
| | | | - Marianna A Tryfonidou
- Utrecht University, Faculty of Veterinary Medicine, Clinical Sciences of Companion Animals, Yalelaan 108, Utrecht, Netherlands, 3584 CM;
| | - Julieta Paez
- University of Twente Faculty of Science and Technology, 207105, Developmental Bioengineering, University of Twente P.O. Box 217, Enschede The Netherlands, Enschede, Netherlands, 7500 AE;
| |
Collapse
|
15
|
Fu JN, Wang X, Yang M, Chen YR, Zhang JY, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair. Front Bioeng Biotechnol 2022; 9:812383. [PMID: 35087809 PMCID: PMC8787149 DOI: 10.3389/fbioe.2021.812383] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Over centuries, several advances have been made in osteochondral (OC) tissue engineering to regenerate more biomimetic tissue. As an essential component of tissue engineering, scaffolds provide structural and functional support for cell growth and differentiation. Numerous scaffold types, such as porous, hydrogel, fibrous, microsphere, metal, composite and decellularized matrix, have been reported and evaluated for OC tissue regeneration in vitro and in vivo, with respective advantages and disadvantages. Unfortunately, due to the inherent complexity of organizational structure and the objective limitations of manufacturing technologies and biomaterials, we have not yet achieved stable and satisfactory effects of OC defects repair. In this review, we summarize the complicated gradients of natural OC tissue and then discuss various osteochondral tissue engineering strategies, focusing on scaffold design with abundant cell resources, material types, fabrication techniques and functional properties.
Collapse
Affiliation(s)
- Jiang-Nan Fu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Yang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Ji-Ying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
16
|
Metformin and sodium dichloroacetate effects on proliferation, apoptosis, and metabolic activity tested alone and in combination in a canine prostate and a bladder cancer cell line. PLoS One 2021; 16:e0257403. [PMID: 34570803 PMCID: PMC8476037 DOI: 10.1371/journal.pone.0257403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/31/2021] [Indexed: 01/26/2023] Open
Abstract
An important approach in tumor therapy is combining substances with different action mechanisms aiming to enhance the antineoplastic effect, decrease the therapeutic dosage, and avoid resistance mechanisms. Moreover, evaluating compounds already approved for the treatment of non-neoplastic diseases is promising for new antineoplastic therapies. Sodium dichloroacetate (DCA) reactivates oxidative phosphorylation in the cancer cell mitochondria, reducing apoptosis resistance in cancer cells. Furthermore, metformin inhibits the proliferation of tumor cells and CD133+ cancer -stem-like cells. In the present study, we evaluated the independent and synergistic effect of metformin and DCA on the metabolic activity, cell proliferation, and apoptosis of a canine prostate adenocarcinoma (Adcarc1258) and a transitional cell carcinoma cell line (TCC1506) in comparison to a primary canine fibroblast culture. Determining metformin uptake in tumor cells was performed by quantitative HPLC. Depending on the dosage, metformin as a single agent inhibited the metabolic activity and cell proliferation of the tumor cells, showing only minor effects on the fibroblasts. Furthermore, 1 mM metformin increased apoptosis over 96 h in the tumor cell lines but not in fibroblasts. Additionally, metformin uptake into the tumor cells in vitro was measurable by quantitative HPLC. Synergistic effects for the combination therapy were observed in both neoplastic cell lines as well as in the fibroblasts. Based on these results, metformin might be a promising therapeutic agent for canine urogenital tumors. Further studies on kinetics, toxicology, bioavailability, and application of metformin in dogs are necessary.
Collapse
|
17
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
18
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
19
|
Réthoré G, Boyer C, Kouadio K, Toure A, Lesoeur J, Halgand B, Jordana F, Guicheux J, Weiss P. Silanization of Chitosan and Hydrogel Preparation for Skeletal Tissue Engineering. Polymers (Basel) 2020; 12:polym12122823. [PMID: 33261192 PMCID: PMC7761294 DOI: 10.3390/polym12122823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering is a multidisciplinary field that relies on the development of customized biomaterial to support cell growth, differentiation and matrix production. Toward that goal, we designed the grafting of silane groups onto the chitosan backbone (Si-chito) for the preparation of in situ setting hydrogels in association with silanized hydroxypropyl methylcellulose (Si-HPMC). Once functionalized, the chitosan was characterized, and the presence of silane groups and its ability to gel were demonstrated by rheology that strongly suggests the presence of silane groups. Throughout physicochemical investigations, the Si-HPMC hydrogels containing Si-chito were found to be stiffer with an injection force unmodified. The presence of chitosan within the hydrogel has demonstrated a higher adhesion of the hydrogel onto the surface of tissues. The results of cell viability assays indicated that there was no cytotoxicity of Si-chito hydrogels in 2D and 3D culture of human SW1353 cells and human adipose stromal cells, respectively. Moreover, Si-chito allows the transplantation of human nasal chondrocytes in the subcutis of nude mice while maintaining their viability and extracellular matrix secretory activity. To conclude, Si-chito mixed with Si-HPMC is an injectable, self-setting and cytocompatible hydrogel able to support the in vitro and in vivo viability and activity of hASC.
Collapse
Affiliation(s)
- Gildas Réthoré
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Cécile Boyer
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
| | - Kouakou Kouadio
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
| | - Amadou Toure
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- Department of Odontology, Faculty of Medicine, Pharmacy and Odontology, University Cheikh Anta DIOP, 12500 Dakar, Senegal
| | - Julie Lesoeur
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
| | - Boris Halgand
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Fabienne Jordana
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Jérôme Guicheux
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
| | - Pierre Weiss
- Dental Faculty, Université de Nantes, UMR 1229, RMeS, Regenerative Medicine and Skeleton, INSERM, ONIRIS, F-44042 Nantes, France; (G.R.); (C.B.); (K.K.); (A.T.); (J.L.); (B.H.); (F.J.); (J.G.)
- Institut National de la Santé et de la Recherche Médicale, Université de Nantes, UFR Odontologie, F-44042 Nantes, France
- CHU Nantes, PHU4 OTONN, F-44093 Nantes, France
- Correspondence:
| |
Collapse
|