1
|
Lencioni T, Meloni M, Bowman T, Carpinella I, Gower V, Mezzarobba S, Cosentino C, Bonassi G, Putzolu M, Ferrarin M, Avanzino L, Pelosin E. Emotional auditory stimuli influence step initiation in Parkinson's disease with freezing of gait. Sci Rep 2024; 14:29176. [PMID: 39587184 PMCID: PMC11589677 DOI: 10.1038/s41598-024-80251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Freezing of gait (FOG) in Parkinson's disease (PD) can be triggered by sensomotor, cognitive or limbic factors. The limbic system's impact on FOG is attributed to elevated limbic load, characterized by aversive stimuli, potentially depleting cognitive resources for movement control, resulting in FOG episodes. However, to date, PD patients with and without FOG have not shown alterations of anticipatory postural adjustments during gait initiation after exposure to emotional images, possibly because visual stimuli are less immediately disruptive than auditory stimuli, which can more directly affect attention and the limbic system. This study aims to determine if step initiation is influenced by ecological auditory stimuli with emotional content in patients with FOG compared to those without. Forty-five participants, divided into 3 groups (15 PD with FOG, 15 PD without FOG in ON state, and 15 healthy subjects), stood on a force platform and were asked to step forward in response to neutral, pleasant, or unpleasant ecological auditory stimuli. Anticipatory postural adjustments were investigated in imbalance and unloading phases, while spatio-temporal parameters, including center of pressure (CoP) displacements, were computed for step initiation. PD with FOG showed a reduction of CoP displacements after listening to unpleasant stimuli. Conversely, pleasant stimuli facilitated CoP displacements in these subjects. No influence of affective stimuli on CoP displacements was found in the other two groups. Multiple regression analysis revealed that the behavioral pattern in PD with FOG, modulated by stimuli with affective valence, was mainly associated with the limbic area (i.e., depression). The findings showed that the emotional network plays a crucial role in the pathophysiology of freezing, generating probably interference with attentional reserves that trigger FOG.
Collapse
Affiliation(s)
| | - Mario Meloni
- Neurology Unit, Azienda Ospedaliero-Universitaria, Cagliari, Italy
| | | | | | | | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
| | - Martina Putzolu
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | | | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Pellegrini F, Pozzi NG, Palmisano C, Marotta G, Buck A, Haufe S, Isaias IU. Cortical networks of parkinsonian gait: a metabolic and functional connectivity study. Ann Clin Transl Neurol 2024; 11:2597-2608. [PMID: 39186320 PMCID: PMC11514930 DOI: 10.1002/acn3.52173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Locomotion is an automated voluntary movement sustained by coordinated neural synchronization across a distributed brain network. The cerebral cortex is central for adapting the locomotion pattern to the environment and alterations of cortical network dynamics can lead to gait impairments. Gait problems are a common symptom with a still unclear pathophysiology and represent an unmet therapeutical need in Parkinson's disease. Little is known about the cortical network dynamics of locomotor control in these patients. METHODS We studied the cortical basis of parkinsonian gait by combining metabolic brain imaging with high-density EEG recordings and kinematic measurements performed at rest and during unperturbed overground walking. RESULTS We found significant changes in functional connectivity between frontal, sensorimotor, and visuomotor cortical areas during walking as compared to resting. Specifically, hypokinetic gait was associated with poor information flow from the supplementary motor area (SMA) to precuneus and from calcarine to lingual gyrus, as well as high information flow from calcarine to cuneus. INTERPRETATION Our findings support a role for visuomotor integration processes in PD-related hypokinetic gait and suggest that reinforcing visual information may act as a compensatory strategy to allow SMA-mediated feedforward locomotor control in PD.
Collapse
Affiliation(s)
- Franziska Pellegrini
- Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlin Center for Advanced Neuroimaging (BCAN)BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Nicoló G. Pozzi
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
| | - Chiara Palmisano
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
- Parkinson Institute of MilanASST G. Pini‐CTOMilanoItaly
| | - Giorgio Marotta
- Department of Nuclear MedicineFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Andreas Buck
- Department of Nuclear MedicineUniversity Hospital of WürzburgWürzburgGermany
| | - Stefan Haufe
- Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlin Center for Advanced Neuroimaging (BCAN)BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
- Uncertainty, Inverse Modeling and Machine Learning Group, Faculty IV Electrical Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany
- Physikalisch‐Technische Bundesanstalt Braunschweig und BerlinBerlinGermany
| | - Ioannis U. Isaias
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
- Parkinson Institute of MilanASST G. Pini‐CTOMilanoItaly
| |
Collapse
|
3
|
Isaias IU, Caffi L, Borellini L, Ampollini AM, Locatelli M, Pezzoli G, Mazzoni A, Palmisano C. Case report: Improvement of gait with adaptive deep brain stimulation in a patient with Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1428189. [PMID: 39323762 PMCID: PMC11423205 DOI: 10.3389/fbioe.2024.1428189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Gait disturbance is a common and severe symptom of Parkinson's disease that severely impairs quality of life. Current treatments provide only partial benefits with wide variability in outcomes. Also, deep brain stimulation of the subthalamic nucleus (STN-DBS), a mainstay treatment for bradykinetic-rigid symptoms and parkinsonian tremor, is poorly effective on gait. We applied a novel DBS paradigm, adjusting the current amplitude linearly with respect to subthalamic beta power (adaptive DBS), in one parkinsonian patient with gait impairment and chronically stimulated with conventional DBS. We studied the kinematics of gait and gait initiation (anticipatory postural adjustments) as well as subthalamic beta oscillations with both conventional and adaptive DBS. With adaptive DBS, the patient showed a consistent and long-lasting improvement in walking while retaining benefits on other disease-related symptoms. We suggest that adaptive DBS can benefit gait in Parkinson's disease possibly by avoiding overstimulation and dysfunctional entrainment of the supraspinal locomotor network.
Collapse
Affiliation(s)
- Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Laura Caffi
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Linda Borellini
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Marco Locatelli
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
- Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Chiara Palmisano
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Farokhniaee A, Palmisano C, Del Vecchio Del Vecchio J, Pezzoli G, Volkmann J, Isaias IU. Gait-related beta-gamma phase amplitude coupling in the subthalamic nucleus of parkinsonian patients. Sci Rep 2024; 14:6674. [PMID: 38509158 PMCID: PMC10954750 DOI: 10.1038/s41598-024-57252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.
Collapse
Affiliation(s)
- AmirAli Farokhniaee
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy.
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Jasmin Del Vecchio Del Vecchio
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Gianni Pezzoli
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Ioannis U Isaias
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
5
|
Palmisano C, Farinelli V, Camuncoli F, Favata A, Pezzoli G, Frigo CA, Isaias IU. Dynamic evaluation of spine kinematics in individuals with Parkinson's disease and freezing of gait. Gait Posture 2024; 108:199-207. [PMID: 37993298 DOI: 10.1016/j.gaitpost.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Freezing of gait (FoG) is an episodic failure of gait exposing people with Parkinson's disease (PD) to a high risk of falling. Despite growing evidence of the interconnection between impaired trunk control and FoG, a detailed description of spinal kinematics during walking is still lacking in this population. RESEARCH QUESTION Do spinal alterations impact gait performance in individuals with PD and FoG? METHODS We analyzed kinematic data of 47 PD participants suffering (PD-FOG, N = 24) or not suffering from FoG (PD-NFOG, N = 23) and 15 healthy controls (HCO) during quiet standing and unperturbed walking. We estimated the main spinal variables (i.e., spinal length, lordosis and kyphosis angles, trunk inclination), the pelvis angles, and the shoulder-pelvis angles during gait and standing. We studied differences across conditions and groups and the relationships between postural and gait parameters using linear regression methods. RESULTS During standing and walking, both PD groups showed increased trunk inclination and decreased lordosis angle with respect to HCO, as well as a decreased range in variation of kyphosis angle, pelvic obliquity, and shoulder-pelvis angles. Only PD-FOG participants showed reduced range of lordosis angle and spinal length compared to HCO. PD-FOG individuals were also not able to straighten their spine during walking compared to standing. Stride length and velocity were decreased in both patient groups compared to HCO, while swing duration was reduced only in the PD-FOG group. In individuals with FoG, trunk inclination and lordosis angle showed moderate but significant positive correlations with all gait alterations. SIGNIFICANCE Spine alterations impacted gait performance in individuals with PD suffering from FoG. Excessive trunk inclination and poor mastering of the lordosis spinal region may create an unfavourable postural precondition for forward walking. Physical therapy should target combined spinal and stepping alterations in these individuals.
Collapse
Affiliation(s)
- C Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany.
| | - V Farinelli
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milano, Italy
| | - F Camuncoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - A Favata
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - G Pezzoli
- Parkinson Institute Milan, ASST G. Pini-CTO, Milano, Italy
| | - C A Frigo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - I U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, Milano, Italy
| |
Collapse
|
6
|
Dominik T, Mele A, Schurger A, Maoz U. Libet's legacy: A primer to the neuroscience of volition. Neurosci Biobehav Rev 2024; 157:105503. [PMID: 38072144 DOI: 10.1016/j.neubiorev.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The neuroscience of volition is an emerging subfield of the brain sciences, with hundreds of papers on the role of consciousness in action formation published each year. This makes the state-of-the-art in the discipline poorly accessible to newcomers and difficult to follow even for experts in the field. Here we provide a comprehensive summary of research in this field since its inception that will be useful to both groups. We also discuss important ideas that have received little coverage in the literature so far. We systematically reviewed a set of 2220 publications, with detailed consideration of almost 500 of the most relevant papers. We provide a thorough introduction to the seminal work of Benjamin Libet from the 1960s to 1980s. We also discuss common criticisms of Libet's method, including temporal introspection, the interpretation of the assumed physiological correlates of volition, and various conceptual issues. We conclude with recent advances and potential future directions in the field, highlighting modern methodological approaches to volition, as well as important recent findings.
Collapse
Affiliation(s)
| | - Alfred Mele
- Department of Philosophy, Florida State University, FL, USA
| | | | - Uri Maoz
- Brain Institute, Chapman University, CA, USA
| |
Collapse
|
7
|
An EJ, Sim WS, Kim SM, Kim JY. Suitability of visual cues for freezing of gait in patients with idiopathic Parkinson's disease: a case-control pilot study. J Neuroeng Rehabil 2023; 20:91. [PMID: 37464390 PMCID: PMC10354967 DOI: 10.1186/s12984-023-01214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Freezing of gait (FOG) is one of the most debilitating symptoms in patients with idiopathic Parkinson's disease (IPD). Visual cues can relieve FOG symptoms. However, there is no consensus on patient characteristics that can benefit from visual cues. Therefore, we examined the differences in IPD patient characteristics according to the effectiveness of visual cueing. METHODS Through gait experiments, we investigated the number of FOG occurrences, average FOG period per episode, proportion of FOG duration in the total gait cycles, and FOG-free period gait spatiotemporal parameters in ten participants diagnosed with FOG due to IPD. Subsequently, the differences between their clinical characteristics and striatal dopamine active transporter availability from six subregions of the striatum were compared by dividing them into two groups based on the three reduction rates: occurrence numbers, mean durations per episode, and proportion of FOG duration in the total gait cycles improved by visual cueing using laser shoes. The relationships among these three reduction rates and other FOG-related parameters were also investigated using Spearman correlation analyses. RESULTS According to the three FOG-related reduction rates, the group assignments were the same, which was also related to the baseline self-reported FOG severity score (New Freezing of Gait Questionnaire): the more severe the FOG, the poorer the response to the visual cueing. By visual cueing, the better response group demonstrated the characteristics of lower new FOG questionnaire total scores, higher dopamine active transporter availability of the anterior and posterior putamen, and shorter mean duration of FOG per episode in the absence of cueing. These results were replicated using Spearman correlation analyses. CONCLUSIONS For FOG symptoms following IPD, gait assistance by visual cueing may be more effective when the total NFOGQ score is lower and the DAT of putamen is higher. Through this study, we demonstrated clinical and striatal dopaminergic conditions to select patients who may be more likely to benefit from visual cueing with laser shoes, and these findings lead to the need for early diagnosis of FOG in patients with IPD. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05080413. Registered on September 14, 2021.
Collapse
Affiliation(s)
- Eui Jin An
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Woo-Sob Sim
- Department of Prosthetics and Orthotics Center, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Seung Min Kim
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Jun Yup Kim
- Department of Physical Medicine and Rehabilitation, Hanyang University Medical Center, Seoul, Republic of Korea.
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea.
- Mailing address:, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Yan S, Yeomans MA, Hondzinski JM. Vertical-horizontal illusory effects with gaze restrictions do not change length estimations using the lower limb. Exp Brain Res 2023; 241:67-80. [PMID: 36355211 DOI: 10.1007/s00221-022-06504-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Gaze direction and use of visual feedback can affect illusory influences over perceptions and manual length size estimates of the vertical-horizontal (V-H) illusion, in which the vertical, bisecting segment of an inverted T (IT) appears longer than the horizontal, bisected segment. We questioned whether V-H illusory influences would also exist for the lower limb. Participants stepped forward in an attempt to make the toe-to-toe distance of their dominant foot equal to a short or long bisecting segment length of a vertically projected IT. Performances under three gaze conditions included: maintaining gaze on the IT intersection throughout a trial for target fixation (TF); viewing the intersection for 4 s then looking down and performing the step for movement fixation (MF); and viewing the intersection for 4 s then maintaining gaze on the remembered location of the intersection and performing the step for remembered target fixation (RTF). Variables included step displacement, peak velocity (PV), and normalized ground reaction force amplitude (GRFampN), as well as time to peak and peak amplitude of the center of pressure (COPtime and COPamp, respectively). Main effects of gaze on PV, GRFampN, COPtime, and COPamp revealed lower values for MF compared to TF and RTF, which did not exist for step displacement. No significant correlations existed between step displacement and other variables across participants. Together, we found evidence to suggest differences between movement planning and movement completion. Exploitation of deceptive visual cues can guide step planning and early step execution, but do not guide final step estimations.
Collapse
Affiliation(s)
- Shijun Yan
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA.,Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Matthew A Yeomans
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA.,Department of Health and Human Performance, University of Tennessee at Martin, Martin, TN, USA
| | - Jan M Hondzinski
- School of Kinesiology, Louisiana State University, 1246 Pleasant Hall, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Leroy T, Baggen RJ, Lefeber N, Herssens N, Santens P, De Letter M, Maes L, Bouche K, Van Bladel A. Effects of Oral Levodopa on Balance in People with Idiopathic Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:3-23. [PMID: 36617752 PMCID: PMC9912739 DOI: 10.3233/jpd-223536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Balance impairment is a frequent cause of morbidity and mortality in people with Parkinson's disease (PD). As opposed to the effects of appendicular motor symptoms, the effects of Levodopa on balance impairment in idiopathic PD are less clear. OBJECTIVE To review the literature on the effects of oral Levodopa on clinical balance test performance, posturography, step initiation, and responses to perturbation in people with idiopathic PD (PwPD). METHODS A systematic search of three scientific databases (Pubmed, Embase, and Web of Science) was conducted in accordance with PRISMA guidelines. For the pilot meta-analysis, standardized mean differences with 95% confidence intervals were calculated using an inverse variance random effects model. Data not suitable for implementation in the meta-analysis (missing means or standard deviations, and non-independent outcomes) were analyzed narratively. RESULTS A total of 2772 unique studies were retrieved, of which 18 met the eligibility criteria and were analyzed, including data of 710 idiopathic PwPD. Levodopa had a significant positive effect on the Berg Balance Scale, the Push and Release test, and jerk and frequency parameters during posturography. In contrast, some significant negative effects on velocity-based sway parameters were found during posturography and step initiation. However, Levodopa had no significant effect on most step initiation- and all perturbation parameters. CONCLUSION The effects of Levodopa on balance in PwPD vary depending on the outcome parameters and patient inclusion criteria. A systematic approach with well-defined outcome parameters, and prespecified, sensitive and reliable tests is needed in future studies to unravel the effects of oral Levodopa on balance.
Collapse
Affiliation(s)
- Tim Leroy
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Remco J. Baggen
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Nina Lefeber
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nolan Herssens
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
- Research Group BrainComm, Ghent University, Ghent, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Research Group BrainComm, Ghent University, Ghent, Belgium
| | - Leen Maes
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Katie Bouche
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anke Van Bladel
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
10
|
Palmisano C, Beccaria L, Haufe S, Volkmann J, Pezzoli G, Isaias IU. Gait Initiation Impairment in Patients with Parkinson's Disease and Freezing of Gait. Bioengineering (Basel) 2022; 9:639. [PMID: 36354550 PMCID: PMC9687939 DOI: 10.3390/bioengineering9110639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 08/03/2023] Open
Abstract
Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Laura Beccaria
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Stefan Haufe
- Uncertainty, Inverse Modeling and Machine Learning Group, Faculty IV Electrical Engineering and Computer Science, Technical University of Berlin, 10623 Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
| | - Gianni Pezzoli
- Centro Parkinson, ASST Gaetano Pini-CTO, 20122 Milano, Italy
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital and Julius-Maximilian-University, 97080 Würzburg, Germany
- Centro Parkinson, ASST Gaetano Pini-CTO, 20122 Milano, Italy
| |
Collapse
|
11
|
Pozzi NG, Palmisano C, Reich MM, Capetian P, Pacchetti C, Volkmann J, Isaias IU. Troubleshooting Gait Disturbances in Parkinson's Disease With Deep Brain Stimulation. Front Hum Neurosci 2022; 16:806513. [PMID: 35652005 PMCID: PMC9148971 DOI: 10.3389/fnhum.2022.806513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.
Collapse
Affiliation(s)
- Nicoló G. Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Philip Capetian
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Gaetano Pini-CTO, Milan, Italy
| |
Collapse
|
12
|
Delafontaine A, Vialleron T, Diakhaté DG, Fourcade P, Yiou E. Effects of experimentally induced cervical spine mobility alteration on the postural organisation of gait initiation. Sci Rep 2022; 12:6055. [PMID: 35410364 PMCID: PMC9001680 DOI: 10.1038/s41598-022-10101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractGait initiation (GI), the transient period between quiet standing and locomotion, is a functional task classically used in the literature to investigate postural control. This study aimed to investigate the influence of an experimentally-induced alteration of cervical spine mobility (CSM) on GI postural organisation. Fifteen healthy young adults initiated gait on a force-plate in (1) two test conditions, where participants wore a neck orthosis that passively simulated low and high levels of CSM alteration; (2) one control condition, where participants wore no orthosis; and (3) one placebo condition, where participants wore a cervical bandage that did not limit CSM. Centre-of-pressure and centre-of-mass kinematics were computed based on force-plate recordings according to Newton’s second law. Main results showed that anticipatory postural adjustments amplitude (peak backward centre-of-pressure shift and forward centre-of-mass velocity at toe-off) and motor performance (step length and forward centre-of-mass velocity at foot-contact) were altered under the condition of high CSM restriction. These effects of CSM restriction may reflect the implementation of a more cautious strategy directed to attenuate head-in-space destabilisation and ease postural control. It follows that clinicians should be aware that the prescription of a rigid neck orthosis to posturo-deficient patients could exacerbate pre-existing GI deficits.
Collapse
|
13
|
Palmisano C, Kullmann P, Hanafi I, Verrecchia M, Latoschik ME, Canessa A, Fischbach M, Isaias IU. A Fully-Immersive Virtual Reality Setup to Study Gait Modulation. Front Hum Neurosci 2022; 16:783452. [PMID: 35399359 PMCID: PMC8983870 DOI: 10.3389/fnhum.2022.783452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Objective: Gait adaptation to environmental challenges is fundamental for independent and safe community ambulation. The possibility of precisely studying gait modulation using standardized protocols of gait analysis closely resembling everyday life scenarios is still an unmet need. Methods: We have developed a fully-immersive virtual reality (VR) environment where subjects have to adjust their walking pattern to avoid collision with a virtual agent (VA) crossing their gait trajectory. We collected kinematic data of 12 healthy young subjects walking in real world (RW) and in the VR environment, both with (VR/A+) and without (VR/A-) the VA perturbation. The VR environment closely resembled the RW scenario of the gait laboratory. To ensure standardization of the obstacle presentation the starting time speed and trajectory of the VA were defined using the kinematics of the participant as detected online during each walking trial. Results: We did not observe kinematic differences between walking in RW and VR/A-, suggesting that our VR environment per se might not induce significant changes in the locomotor pattern. When facing the VA all subjects consistently reduced stride length and velocity while increasing stride duration. Trunk inclination and mediolateral trajectory deviation also facilitated avoidance of the obstacle. Conclusions: This proof-of-concept study shows that our VR/A+ paradigm effectively induced a timely gait modulation in a standardized immersive and realistic scenario. This protocol could be a powerful research tool to study gait modulation and its derangements in relation to aging and clinical conditions.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- *Correspondence: Chiara Palmisano
| | - Peter Kullmann
- Human-Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Marta Verrecchia
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Marc Erich Latoschik
- Human-Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Andrea Canessa
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genova, Italy
| | - Martin Fischbach
- Human-Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ioannis Ugo Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- Parkinson Institute Milan, ASST Pini-CTO, Milano, Italy
| |
Collapse
|
14
|
Student J, Engel D, Timmermann L, Bremmer F, Waldthaler J. Visual Perturbation Suggests Increased Effort to Maintain Balance in Early Stages of Parkinson’s to be an Effect of Age Rather Than Disease. Front Hum Neurosci 2022; 16:762380. [PMID: 35308620 PMCID: PMC8924037 DOI: 10.3389/fnhum.2022.762380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022] Open
Abstract
Postural instability marks a prevalent symptom of Parkinson’s disease (PD). It often manifests in increased body sway, which is commonly assessed by tracking the Center of Pressure (CoP). Yet, in terms of postural control, the body’s Center of Mass (CoM), and not CoP is what is regulated in a gravitational field. The aim of this study was to explore the effect of early- to mid-stage PD on these measures of postural control in response to unpredictable visual perturbations. We investigated three cohorts: (i) 18 patients with early to mid-stage PD [Hoehn & Yahr stage (1–3); 1.94 ± 0.70]; (ii) a group of 15 age-matched controls (ECT); and (iii) a group of 12 young healthy adults (YCT). Participants stood on a force plate to track their CoP, while the movement of their entire body was recorded with a video-based motion tracking system to monitor their CoM. A moving room paradigm was applied through a head-mounted virtual reality headset. The stimulus consisted of a virtual tunnel that stretched in the anterior-posterior direction which either remained static or moved back and forth in an unpredictable fashion.We found differences in mean sway amplitude (MSA) and mean velocities of CoP and CoM between the groups under both conditions, with higher MSA of CoP and CoM for PD and higher mean velocities of both variables for PD and ECT when compared with YCT. Visual perturbation increased mean CoP velocity in all groups but did not have effects on mean CoM velocity or MSA. While being significantly lower for the young adults, the net effect of visual perturbation on mean CoP velocity was similar between patients with PD and age-matched controls. There was no effect of the visual perturbation on mean CoM velocity for any of the groups.Our simultaneous assessment of CoP and CoM revealed that postural control is reflected differently in CoM and CoP. As the motion of CoM remained mostly unaffected, all groups successfully counteracted the perturbation and maintained their balance. Higher CoP velocity for PD and ECT revealed increased corrective motion needed to achieve this, which however was similar in both groups. Thus, our results suggest increased effort, expressed in CoP velocity, to be an effect of age rather than disease in earlier stages of PD.
Collapse
Affiliation(s)
- Justus Student
- Department of Neurophysics, University of Marburg, Marburg, Germany
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
- *Correspondence: Justus Student
| | - David Engel
- Department of Neurophysics, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University of Gießen, Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University of Gießen, Marburg, Germany
| | - Frank Bremmer
- Department of Neurophysics, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University of Gießen, Marburg, Germany
| | - Josefine Waldthaler
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University of Gießen, Marburg, Germany
| |
Collapse
|
15
|
Pozzi NG, Isaias IU. Adaptive deep brain stimulation: Retuning Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:273-284. [PMID: 35034741 DOI: 10.1016/b978-0-12-819410-2.00015-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A brain-machine interface represents a promising therapeutic avenue for the treatment of many neurologic conditions. Deep brain stimulation (DBS) is an invasive, neuro-modulatory tool that can improve different neurologic disorders by delivering electric stimulation to selected brain areas. DBS is particularly successful in advanced Parkinson's disease (PD), where it allows sustained improvement of motor symptoms. However, this approach is still poorly standardized, with variable clinical outcomes. To achieve an optimal therapeutic effect, novel adaptive DBS (aDBS) systems are being developed. These devices operate by adapting stimulation parameters in response to an input signal that can represent symptoms, motor activity, or other behavioral features. Emerging evidence suggests greater efficacy with fewer adverse effects during aDBS compared with conventional DBS. We address this topic by discussing the basics principles of aDBS, reviewing current evidence, and tackling the many challenges posed by aDBS for PD.
Collapse
Affiliation(s)
- Nicoló G Pozzi
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and Julius Maximilian University Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
Bohnen NI, Costa RM, Dauer WT, Factor SA, Giladi N, Hallett M, Lewis SJ, Nieuwboer A, Nutt JG, Takakusaki K, Kang UJ, Przedborski S, Papa SM. Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Mov Disord 2021; 37:253-263. [PMID: 34939221 PMCID: PMC10122497 DOI: 10.1002/mds.28883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Departments of Radiology and Neurology University of Michigan and VA Ann Arbor Healthcare System Ann Arbor Michigan USA
| | - Rui M. Costa
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute Columbia University New York New York USA
| | - William T. Dauer
- Departments of Neurology and Neuroscience The Peter O'Donnell Jr. Brain Institute, UT Southwestern Dallas Texas USA
| | - Stewart A. Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program Emory University School of Medicine Atlanta Georgia USA
| | - Nir Giladi
- Movement Disorders Unit, Department of Neurology, Tel‐Aviv Sourasky Medical Center, Sackler School of Medicine and Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Mark Hallett
- Human Motor Control Section National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda Maryland USA
| | - Simon J.G. Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences University of Sydney Sydney New South Wales Australia
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences KU Leuven Leuven Belgium
| | - John G. Nutt
- Movement Disorder Section, Department of Neurology Oregon Health & Science University Portland Oregon USA
| | - Kaoru Takakusaki
- Department of Physiology, Section of Neuroscience Asahikawa Medical University Asahikawa Japan
| | - Un Jung Kang
- Departments of Neurology, Neuroscience, and Physiology Neuroscience Institute, The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, The Parekh Center for Interdisciplinary Neurology, New York University Grossman School of Medicine New York New York USA
| | - Serge Przedborski
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience Columbia University New York New York USA
| | - Stella M. Papa
- Department of Neurology, School of Medicine, and Yerkes National Primate Research Center Emory University Atlanta Georgia USA
| | | |
Collapse
|
17
|
Thenaisie Y, Palmisano C, Canessa A, Keulen BJ, Capetian P, Jiménez MC, Bally JF, Manferlotti E, Beccaria L, Zutt R, Courtine G, Bloch J, van der Gaag NA, Hoffmann CF, Moraud EM, Isaias IU, Contarino MF. Towards adaptive deep brain stimulation: clinical and technical notes on a novel commercial device for chronic brain sensing. J Neural Eng 2021; 18. [PMID: 34388744 DOI: 10.1088/1741-2552/ac1d5b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Objective. Technical advances in deep brain stimulation (DBS) are crucial to improve therapeutic efficacy and battery life. We report the potentialities and pitfalls of one of the first commercially available devices capable of recording brain local field potentials (LFPs) from the implanted DBS leads, chronically and during stimulation. The aim was to provide clinicians with well-grounded tips on how to maximize the capabilities of this novel device, both in everyday practice and for research purposes.Approach. We collected clinical and neurophysiological data of the first 20 patients (14 with Parkinson's disease (PD), five with dystonia, one with chronic pain) that received the Percept™ PC in our centres. We also performed tests in a saline bath to validate the recordings quality.Main results. The Percept PC reliably recorded the LFP of the implanted site, wirelessly and in real time. We recorded the most promising clinically useful biomarkers for PD and dystonia (beta and theta oscillations) with and without stimulation. Furthermore, we provide an open-source code to facilitate export and analysis of data. Critical aspects of the system are presently related to contact selection, artefact detection, data loss, and synchronization with other devices.Significance. New technologies will soon allow closed-loop neuromodulation therapies, capable of adapting stimulation based on real-time symptom-specific and task-dependent input signals. However, technical aspects need to be considered to ensure reliable recordings. The critical use by a growing number of DBS experts will alert new users about the currently observed shortcomings and inform on how to overcome them.
Collapse
Affiliation(s)
- Yohann Thenaisie
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne and Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Chiara Palmisano
- Department of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea Canessa
- Department of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany.,Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Bart J Keulen
- Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands.,Educational Programme, Technical Medicine, Delft University of Technology, Delft; Leiden University Medical Center, Leiden; Erasmus Medical Center, Rotterdam, The Netherlands
| | - Philipp Capetian
- Department of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany
| | - Mayte Castro Jiménez
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Elena Manferlotti
- Department of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany.,The BioRobotics Institute and Department of Excellence of Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Laura Beccaria
- Department of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany
| | - Rodi Zutt
- Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne and Ecole Polytechnique Fédérale de Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland.,Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jocelyne Bloch
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne and Ecole Polytechnique Fédérale de Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Niels A van der Gaag
- Department of Neurosurgery, Haga Teaching Hospital, The Hague, The Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Carel F Hoffmann
- Department of Neurosurgery, Haga Teaching Hospital, The Hague, The Netherlands
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne and Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Ioannis U Isaias
- Department of Neurology, University Hospital and Julius Maximilian University, Würzburg, Germany
| | - M Fiorella Contarino
- Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Dijkstra BW, Gilat M, Cofré Lizama LE, Mancini M, Bergmans B, Verschueren SMP, Nieuwboer A. Impaired Weight-Shift Amplitude in People with Parkinson's Disease with Freezing of Gait. JOURNAL OF PARKINSONS DISEASE 2021; 11:1367-1380. [PMID: 33749618 DOI: 10.3233/jpd-202370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND People with Parkinson's disease and freezing of gait (FOG; freezers) suffer from pronounced postural instability. However, the relationship between these phenomena remains unclear and has mostly been tested in paradigms requiring step generation. OBJECTIVE To determine if freezing-related dynamic balance deficits are present during a task without stepping and determine the influence of dopaminergic medication on dynamic balance control. METHODS Twenty-two freezers, 16 non-freezers, and 20 healthy age-matched controls performed mediolateral weight-shifts at increasing frequencies when following a visual target projected on a screen (MELBA task). The amplitude and phase shift differences between center of mass and target motion were measured. Balance scores (Mini-BESTest), 360° turning speed and the freezing ratio were also measured. Subjects with Parkinson's disease were tested ON and partial OFF (overnight withdrawal) dopaminergic medication. RESULTS Freezers had comparable turning speed and balance scores to non-freezers and took more levodopa. Freezers produced hypokinetic weight-shift amplitudes throughout the MELBA task compared to non-freezers (p = 0.002), which were already present at task onset (p < 0.001). Freezers also displayed an earlier weight-shift breakdown than controls when OFF-medication (p = 0.008). Medication improved mediolateral weight-shifting in freezers and non-freezers. Freezers decreased their freezing ratio in response to medication. CONCLUSION Hypokinetic weight-shifting proved a marked postural control deficit in freezers, while balance scores and turning speed were similar to non-freezers. Both weight-shift amplitudes and the freezing ratio were responsive to medication in freezers, suggesting axial motor vigor is levodopa-responsive. Future work needs to test whether weight-shifting and freezing severity can be further ameliorated through training.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - L Eduardo Cofré Lizama
- School of Allied Health, Human Services and Sports, La Trobe University, Victoria, Australia
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Bruno Bergmans
- Department of Neurology, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Delafontaine A, Fourcade P, Zemouri A, Diakhaté DG, Saiydoun G, Yiou E. In Patients With Parkinson's Disease in an OFF-Medication State, Does Bilateral Electrostimulation of Tibialis Anterior Improve Anticipatory Postural Adjustments During Gait Initiation? Front Hum Neurosci 2021; 15:692651. [PMID: 34366815 PMCID: PMC8337069 DOI: 10.3389/fnhum.2021.692651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
A complete lack of bilateral activation of tibialis anterior (TA) during gait initiation (GI), along with bradykinetic anticipatory postural adjustments (APAs), often occurs in patients with Parkinson's disease (PD) in their OFF-medication state. Functional electrical stimulation (FES) is a non-pharmacological method frequently used in neurorehabilitation to optimize the effect of L-DOPA on locomotor function in this population. The present study tested the potential of bilateral application of FES on TA to improve GI in PD patients. Fourteen PD patients (OFF-medication state, Hoehn and Yahr state 2-3) participated in this study. They performed series of 10 GI trials on a force-plate under the following experimental conditions: (1) GI without FES (control group), (2) GI with 2Hz-FES (considered as a very low FES frequency condition without biomechanical effect; placebo group) and (3) GI with 40Hz-FES (test group). In (2) and (3), FES was applied bilaterally to the TA during APAs (300 mA intensity/300 μs pulse width). Main results showed that the peak of anticipatory backward center of pressure shift, the forward center of mass (COM) velocity and shift at foot off were significantly larger in the 40 Hz FES condition than in the control condition, while the duration of step execution was significantly shorter. In contrast, the capacity of participants to brake the fall of their COM remained unchanged across conditions. Globally taken, these results suggest that acute application of 40-Hz FES to the TA may improve the capacity of PD patients to generate APAs during GI, without altering their balance capacity. Future studies are required before considering that TA FES application might be a valuable tool to improve GI in PD patients and be relevant to optimize the effects of L-DOPA medication on locomotor function.
Collapse
Affiliation(s)
- Arnaud Delafontaine
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,Unisurg, Paris, France
| | - Paul Fourcade
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Ahmed Zemouri
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - D G Diakhaté
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,UFR Sciences de l'Education de la Formation et du Sport, Gaston Berger University, Saint-Louis, Senegal
| | - Gabriel Saiydoun
- Unisurg, Paris, France.,Department of Cardiac Surgery, Henri Mondor University Hospital, APHP, Créteil, France.,University of Paris-Est Creteil, UFR Médecine-Pharmacie, Créteil, France.,Institut Mondor de Recherche Biomedicale, IMRB, Inserm U955, Faculté de Santé de Créteil, Creteil, France
| | - Eric Yiou
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| |
Collapse
|
20
|
Seuthe J, D'Cruz N, Ginis P, Blöbaum R, Weisser B, Deuschl G, Nieuwboer A, Schlenstedt C. How many gait initiation trials are necessary to reliably detect anticipatory postural adjustments and first step characteristics in healthy elderly and people with Parkinson's disease? Gait Posture 2021; 88:126-131. [PMID: 34034024 DOI: 10.1016/j.gaitpost.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The gait initiation (GI) process can be characterized by anticipatory postural adjustments (APAs) and first step characteristics. However, even within a constrained environment, it is unclear how many trials are necessary to obtain a reliable measurement of the GI process within one assessment. RESEARCH QUESTION How many gait initiation trials are necessary to reliably detect APAs and first step characteristics in healthy elderly (HC) and people with Parkinson's disease with Freezing of Gait (PD + FOG) under single (ST) and dual task (DT) conditions and are there any potential systematic errors? METHODS Thirty-eight PD + FOG (ON-medication) and 30 HC performed 5 trials of GI under ST and DT (auditory stroop test). APAs and first-step-outcomes were captured with IMUs placed on the lower back and on each foot. Intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM) were computed to investigate reliability and mixed model analysis to find potential systematic errors. Additionally, we computed an estimation for the number of necessary trials to reach acceptable reliability (ICC = 0.75) for each outcome. RESULTS ICCs varied from low reliability to excellent reliability across outcomes in PD + FOG and HC. ICCs were comparable under ST and DT for most outcomes. SEM results confirmed the ICC results. A systematic error was found for the first trial in first step ROM. Number of necessary trials varied largely across outcomes. SIGNIFICANCE Within-session reliability varied across outcomes but was similar for PD + FOG and HC, and ST and DT. ML size of APA and first step ROM were most reliable, whereas APA duration and latency were least reliable. Depending on the outcome of interest, future studies should conduct multiple trials of GI to increase reliability.
Collapse
Affiliation(s)
- Jana Seuthe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany; Department of Sports Science, Christian-Albrechts-University, Kiel, Germany.
| | - Nicholas D'Cruz
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Ginis
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rebecca Blöbaum
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Burkhard Weisser
- Department of Sports Science, Christian-Albrechts-University, Kiel, Germany
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Christian Schlenstedt
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
21
|
Todisco M, Zangaglia R, Minafra B, Pisano P, Trifirò G, Bossert I, Pozzi NG, Brumberg J, Ceravolo R, Isaias IU, Fasano A, Pacchetti C. Clinical Outcome and Striatal Dopaminergic Function After Shunt Surgery in Patients With Idiopathic Normal Pressure Hydrocephalus. Neurology 2021; 96:e2861-e2873. [PMID: 33893195 DOI: 10.1212/wnl.0000000000012064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine changes in clinical features and striatal dopamine reuptake transporter (DAT) density after shunt surgery in patients with idiopathic normal pressure hydrocephalus (iNPH). METHODS Participants with probable iNPH were assessed at baseline by means of clinical rating scales, brain MRI, and SPECT with [123I]-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT). Levodopa responsiveness was also evaluated. Patients who did or did not undergo lumboperitoneal shunt were clinically followed up and repeated SPECT after 2 years. RESULTS We enrolled 115 patients with iNPH. Of 102 patients without significant levodopa response and no signs of atypical parkinsonism, 92 underwent FP-CIT SPECT (58 also at follow-up) and 59 underwent surgery. We identified a disequilibrium subtype (phenotype 1) and a locomotor subtype (phenotype 2) of higher-level gait disorder. Gait impairment correlated with caudate DAT density in both phenotypes, whereas parkinsonian signs correlated with putamen and caudate DAT binding in patients with phenotype 2, who showed more severe symptoms and lower striatal DAT density. Gait and caudate DAT binding improved in both phenotypes after surgery (p < 0.01). Parkinsonism and putamen DAT density improved in shunted patients with phenotype 2 (p < 0.001). Conversely, gait, parkinsonian signs, and striatal DAT binding worsened in patients who declined surgery (p < 0.01). CONCLUSIONS This prospective interventional study highlights the pathophysiologic relevance of striatal dopaminergic dysfunction in the motor phenotypic expression of iNPH. Absence of levodopa responsiveness, shunt-responsive parkinsonism, and postsurgery improvement of striatal DAT density are findings that corroborate the notion of a reversible striatal dysfunction in a subset of patients with iNPH.
Collapse
Affiliation(s)
- Massimiliano Todisco
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Roberta Zangaglia
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Brigida Minafra
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Patrizia Pisano
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Giuseppe Trifirò
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Irene Bossert
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Nicoló Gabriele Pozzi
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Joachim Brumberg
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Roberto Ceravolo
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Ioannis Ugo Isaias
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Alfonso Fasano
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Claudio Pacchetti
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada.
| |
Collapse
|
22
|
Wu Z, Xu H, Zhu S, Gu R, Zhong M, Jiang X, Shen B, Zhu J, Pan Y, Dong J, Yan J, Zhang W, Zhang L. Gait Analysis of Old Individuals with Mild Parkinsonian Signs and Those Individuals' Gait Performance Benefits Little from Levodopa. Risk Manag Healthc Policy 2021; 14:1109-1118. [PMID: 33758563 PMCID: PMC7979347 DOI: 10.2147/rmhp.s291669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose Gait analysis and the effects of levodopa on the gait characteristics in Mild parkinsonian signs (MPS) are rarely published. The present research aimed to (1) analyze the gait characteristics in MPS; (2) explore the effects of levodopa on the gait performance of MPS. Methods We enrolled 22 inpatients with MPS and 20 healthy control subjects (HC) from Nanjing Brain Hospital. The Unified Parkinson’s Disease Rating Scale was used to evaluate motor symptoms. Acute levodopa challenge test was performed to explore the effects of levodopa on the gait performance of MPS. The instrumented stand and walk test was conducted for each participant and the JiBuEn gait analysis system was used to collect gait data. Results For spatiotemporal parameters: Compared with HC, the state before taking levodopa/benserazide in MPS group (meds-off) demonstrated a decrease in stride length (SL) (p≤0.001), an increase in SL variability (p≤0.001), and swing phase time variability (p=0.016). Compared with meds-off, the state after 1 hour of taking levodopa/benserazide in MPS group (meds-on) exhibited an increase in SL (p≤0.001), a decrease in SL variability (p≤0.001). For kinematic parameters: Compared with HC, meds-off demonstrated a decrease in heel strike angle (p=0.008), range of motion (ROM) of knee joint (p=0.011) and ROM of hip joint (p=0.007). Compared with meds-off, meds-on exhibited an increase in HS (p≤0.001). Bradykinesia and rigidity scores were significantly correlated with gait parameters. Conclusion Although the clinical symptoms of the MPS group are mild, their gait damage is obvious and they exhibited a decreased SL and joints movement, and a more variable gait pattern. Levodopa had little effect on the gait performance of those individuals.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hang Xu
- Department of Neurology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, People's Republic of China
| | - Sha Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ruxin Gu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Zhong
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xu Jiang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bo Shen
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Zhu
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Pan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingde Dong
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Yan
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Li Zhang
- Department of Geriatric Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Liman J, Wolff von Gudenberg A, Baehr M, Paulus W, Neef NE, Sommer M. Enlarged Area of Mesencephalic Iron Deposits in Adults Who Stutter. Front Hum Neurosci 2021; 15:639269. [PMID: 33643015 PMCID: PMC7904683 DOI: 10.3389/fnhum.2021.639269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Childhood onset speech fluency disorder (stuttering) is possibly related to dopaminergic dysfunction. Mesencephalic hyperechogenicity (ME) detected by transcranial ultrasound (TCS) might be seen as an indirect marker of dopaminergic dysfunction. We here determined whether adults who stutter since childhood (AWS) show ME. METHODS We performed TCS in ten AWS and ten matched adults who never stuttered. We also assessed motor performance in finger tapping and in the 25 Foot Walking test. RESULTS Compared to controls, AWS showed enlarged ME on either side. Finger tapping was slower in AWS. Walking cadence, i.e., the ratio of number of steps by time, tended to be higher in AWS than in control participants. DISCUSSION The results demonstrate a motor deficit in AWS linked to dopaminergic dysfunction and extending beyond speech. Since iron deposits evolve in childhood and shrink thereafter, ME might serve as an easily quantifiable biomarker helping to predict the risk of persistency in children who stutter.
Collapse
Affiliation(s)
- Jan Liman
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mathias Baehr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nicole E. Neef
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Bayot M, Delval A, Moreau C, Defebvre L, Hansen C, Maetzler W, Schlenstedt C. Initial center of pressure position prior to anticipatory postural adjustments during gait initiation in people with Parkinson's disease with freezing of gait. Parkinsonism Relat Disord 2021; 84:8-14. [PMID: 33517030 DOI: 10.1016/j.parkreldis.2021.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Freezing of gait (FOG) in Parkinson's disease (PD) is associated with an altered posture during quiet stance as well as an impaired preparation and execution of the gait initiation process. We aimed to investigate whether an altered initial posture impacts anticipatory postural adjustments (APAs) and first-step execution during gait initiation in people with PD with FOG (PD + FOG). METHODS Twenty-seven PD+FOG, 30 PD patients without FOG and 27 age-matched healthy controls performed self-generated gait initiation. Initial mean center of pressure (COP) position prior to APA onset, characteristics of APAs and features of first-step execution were investigated. RESULTS Contrarily to controls, PD patients showed a COP that was initially positioned more towards the stance leg (p = 0.007). Moreover, significantly smaller backward COP shift, longer duration of swing-foot unloading phase, and lower first-step length and velocity characterized PD+FOG compared to controls. While size and duration of backward COP shift during APA and lateral COP shift during the unloading phase were main predictors of first-step length and velocity in all groups, the medio-lateral shift of the initial COP position in PD+FOG was a main predictor of first-step execution (β = -0.191, p = 0.001 for velocity). CONCLUSION In PD+FOG, the more the COP was initially positioned towards the stance foot, the slower and shorter the first step. The initial medio-lateral COP position may be a compensatory strategy to address postural instability of PD+FOG. A specific training regarding postural control prior to gait preparation and execution could improve functional mobility in PD+FOG.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Caroline Moreau
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Christian Schlenstedt
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
25
|
Esfandiari E, Sanjari MA, Jamshidi AA, Kamyab M, Yazdi HR. Gait initiation and lateral wedge insole for individuals with early knee osteoarthritis. Clin Biomech (Bristol, Avon) 2020; 80:105163. [PMID: 33010701 DOI: 10.1016/j.clinbiomech.2020.105163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND People with knee osteoarthritis are at higher risk of postural deficits and locomotor adaptations which could be manifested in transient tasks like gait initiation. To better understand the effect of early knee osteoarthritis on gait initiation, we measured the gait initiation in two groups of early knee osteoarthritis and healthy age-matched controls and assessed the effect of lateral wedge insole in knee osteoarthritis group. METHODS Twenty-one individuals with early knee osteoarthritis, mean (SD) age = 53.1 (7.4, years), and 19 age- and sex-matched asymptomatic healthy individuals, mean (SD) age = 47.5 (11.2, years), participated. Centre of pressure trajectories were used to quantify the two phases of gait initiation in barefoot condition: anticipatory postural adjustment, and locomotor phase. The immediate and four-week effect of lateral wedge insole and shod condition were also compared for individuals in knee osteoarthritis group. FINDINGS Longer duration of anticipatory postural adjustment phase (P = 0.046), locomotor phase (P = 0.049), and total duration of gait initiation (P = 0.035) with lower length and velocity of the center of pressure trajectories in anticipatory postural adjustment phase (P = 0.002, and 0.008, respectively) were observed in knee osteoarthritis group compared to controls. Lateral wedge insole could increase the length and velocity of the centre of pressure in locomotor phase compared to barefoot condition (P = 0.001, and 0.002, respectively). INTERPRETATION Our study outlined that people with early knee osteoarthritis adopt different gait initiation strategies mainly in postural preparation phase. The potential effect of lateral wedge insole was shown with better performance of the locomotor phase. CLINICAL TRIAL REGISTRY NUMBER IRCT2016060628310N1.
Collapse
Affiliation(s)
- Elham Esfandiari
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sanjari
- Department of Basic Rehabilitation Sciences, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Ashraf Jamshidi
- Department of Physical Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamyab
- Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Yazdi
- Department of Orthopedic Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Gait-related frequency modulation of beta oscillatory activity in the subthalamic nucleus of parkinsonian patients. Brain Stimul 2020; 13:1743-1752. [DOI: 10.1016/j.brs.2020.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023] Open
|
27
|
Palmisano C, Todisco M, Marotta G, Volkmann J, Pacchetti C, Frigo CA, Pezzoli G, Isaias IU. Gait initiation in progressive supranuclear palsy: brain metabolic correlates. NEUROIMAGE-CLINICAL 2020; 28:102408. [PMID: 33353609 PMCID: PMC7689404 DOI: 10.1016/j.nicl.2020.102408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/29/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Dysfunctional gait initiation in progressive supranuclear palsy relates to poor feedforward motor control. Hypometabolism of the caudate nucleus impairs programming of anticipatory postural adjustments. Thalamic hypometabolism correlates with the center of mass kinematic resultants of anticipatory postural adjustments.
The initiation of gait is a highly challenging task for the balance control system, and can be used to investigate the neural control of upright posture maintenance during whole-body movement. Gait initiation is a centrally-mediated motion achieved in a principled, controlled manner, including predictive mechanisms (anticipatory postural adjustments, APA) that destabilize the antigravitary postural set of body segments for the execution of functionally-optimized stepping. Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by early impairment of balance and frequent falls. The neural correlates of postural imbalance and falls in PSP are largely unknown. We biomechanically assessed the APA at gait initiation (imbalance, unloading, and stepping phases) of 26 patients with PSP and 14 age-matched healthy controls. Fourteen of 26 enrolled patients were able to perform valid gait initiation trials. The influence of anthropometric and base-of-support measurements on the biomechanical outcome variables was assessed and removed. Biomechanical data were correlated with clinical findings and, in 11 patients, with brain metabolic abnormalities measured using positron emission tomography and 2-deoxy-2-[18F]fluoro-D-glucose. Patients with PSP showed impaired modulation of the center of pressure displacement for a proper setting of the center of mass momentum and subsequent efficient stepping. Biomechanical measurements correlated with “Limb motor” and “Gait and midline” subscores of the Progressive Supranuclear Palsy Rating Scale. Decreased regional glucose uptake in the caudate nucleus correlated with impaired APA programming. Hypometabolism of the caudate nucleus, supplementary motor area, cingulate cortex, thalamus, and midbrain was associated with specific biomechanical resultants of APA. Our findings show that postural instability at gait initiation in patients with PSP correlates with deficient APA production, and is associated with multiple and distinctive dysfunctioning of different areas of the supraspinal locomotor network. Objective biomechanical measures can help to understand fall-related pathophysiological mechanisms and to better monitor disease progression and new interventions.
Collapse
Affiliation(s)
- Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany; MBMC Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Massimiliano Todisco
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Carlo A Frigo
- MBMC Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Ioannis U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
28
|
Brognara L, Cauli O. Mechanical Plantar Foot Stimulation in Parkinson's Disease: A Scoping Review. Diseases 2020; 8:E12. [PMID: 32397588 PMCID: PMC7349899 DOI: 10.3390/diseases8020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in older individuals. Neurorehabilitation-based interventions such as those improving gait are crucial for a holistic approach and to limit falls. Several studies have recently shown that mechanical plantar foot stimulation is a beneficial intervention for improving gait impairment in PD patients. The objective of this scoping review is to evaluate the beneficial effects of this stimulation on gait parameters, and to analyse protocols of foot stimulation and other effects in non-motor symptoms. Relevant articles were searched in the Medline database using Pubmed and Scopus, using the primary search terms 'foot stimulation' OR 'plantar stimulation' AND 'Parkinson's disease*'. Several protocols have been used for mechanical plantar foot stimulation (ranging from medical devices to textured insoles). The gait parameters that have been shown to be improved are stride length and walking speed. The beneficial effects are achieved after both acute and repeated plantar foot stimulation. Beneficial effects are observed in other organs and systems, such as muscle activation, brain connectivity, cardiovascular control in the central nervous system, and the release of brain-derived neurotrophic factor and cortisol in blood added evidence about this intervention's impact on brain function. Mechanical plantar foot stimulation is a safe and effective add-on treatment able for improving gait impairments in PD patients during the L-dopa off state. Randomized and controlled clinical trials to study its eventual potentiating effect with different pharmacotherapy regimens are warranted.
Collapse
Affiliation(s)
- Lorenzo Brognara
- Department of Biomedical and Neuromotor Science, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy;
| | - Omar Cauli
- Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
- Department of Nursing, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain
| |
Collapse
|