1
|
Hao W, Luo Y, Tian J, Lu Y, Cui Y, Zhang Y, Jin X, Ye H, Lu M, Song J, Zhou W, Zhang W, He Z. Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408581. [PMID: 39804851 DOI: 10.1002/advs.202408581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Indexed: 01/16/2025]
Abstract
Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture. The results showed that the proliferation of hAECs is associated with epithelial-mesenchymal plasticity (EMP) during amniogenesis. Freshly isolated, full-term hAECs are identified as mature epithelial cells. Once cultured in vitro, they are observed to rapidly undergo epithelial-mesenchymal transition (EMT) and enter a partial epithelial-mesenchymal transition (pEMT) state to regain their EMP properties and proliferation capacities. With the continuous development of EMT, hAECs eventually enter a senescent state. The addition of SB431542 and microcarrier screening enabled the effective 3D expansion of hAECs by 50 fold while maintaining the EMP status in hAECs for further proliferation. This study not only elucidated the central proliferation mechanism of hAECs during development and expansion but also optimized the in vitro culture system so that it is sufficient to generate hAECs for 50 patients from a single donor amniotic membrane.
Collapse
Affiliation(s)
- Wangping Hao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
| | - Jia Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Yuefeng Lu
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Yangyang Cui
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Ying Zhang
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Xiao Jin
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
| | - Hongjuan Ye
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
| | - Mengqi Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, P. R. China
| | - Jinjia Song
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
| | - Weiqing Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China
- Shanghai iCELL Biotechnology Co., Ltd, Shanghai, 200335, P. R. China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, P. R. China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, P. R. China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, P. R. China
| |
Collapse
|
2
|
Chen Z, Luo Y, Liu J. Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications. Hum Cell 2025; 38:39. [PMID: 39753919 DOI: 10.1007/s13577-024-01171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/28/2024] [Indexed: 01/14/2025]
Abstract
The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications. Initially, we will discuss the characteristics, origin, and advantages of hAESCs in differentiating into insulin-secreting cells. Subsequently, we will focus on the potential applications of hAESCs in treating diabetes complications such as diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy, etc. We will scrutinize the progress of relevant clinical studies and trials involving hAESC therapy. In conclusion, as an emerging diabetes treatment method, hAESCs exhibit immense potential and application value. Despite numerous challenges in practical application, we are confident that with scientific advancement and technological progress, hAESCs will play a pivotal role in treating diabetes and its related complications.
Collapse
Affiliation(s)
- Zhenshuo Chen
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yunfei Luo
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Rayat Pisheh H, Darvishi A, Masoomkhah SS. Amniotic membrane, a novel bioscaffold in cardiac diseases: from mechanism to applications. Front Bioeng Biotechnol 2024; 12:1521462. [PMID: 39758951 PMCID: PMC11696288 DOI: 10.3389/fbioe.2024.1521462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases represent one of the leading causes of death worldwide. Despite significant advances in the diagnosis and treatment of these diseases, numerous challenges remain in managing them. One of these challenges is the need for replacements for damaged cardiac tissues that can restore the normal function of the heart. Amniotic membrane, as a biological scaffold with unique properties, has attracted the attention of many researchers in recent years. This membrane, extracted from the human placenta, contains growth factors, cytokines, and other biomolecules that play a crucial role in tissue repair. Its anti-inflammatory, antibacterial, and wound-healing properties have made amniotic membrane a promising option for the treatment of heart diseases. This review article examines the applications of amniotic membrane in cardiovascular diseases. By focusing on the mechanisms of action of this biological scaffold and the results of clinical studies, an attempt will be made to evaluate the potential of using amniotic membrane in the treatment of heart diseases. Additionally, the existing challenges and future prospects in this field will be discussed.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
4
|
Ge Z, Qiu C, Zhou J, Yang Z, Jiang T, Yuan W, Yu L, Li J. Proteomic analysis of human Wharton's jelly mesenchymal stem/stromal cells and human amniotic epithelial stem cells: a comparison of therapeutic potential. Sci Rep 2024; 14:28061. [PMID: 39543366 PMCID: PMC11564572 DOI: 10.1038/s41598-024-79063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Perinatal stem cells have prominent applications in cell therapy and regenerative medicine. Among them, human Wharton's jelly mesenchymal stem/stromal cells (hWJMSCs) and human amniotic epithelial stem cells (hAESCs) have been widely used. However, the distinction in the therapeutic potential of hWJMSCs and hAESCs is poorly understood. In this study, we reported the phenotypic differences between these two distinct cell types and provided the first systematic comparison of their therapeutic potential in terms of immunomodulation, extracellular matrix (ECM) remodelling, angiogenesis and antioxidative stress using proteomics. The results revealed that the two cell types presented different protein expression profiles and were both promising candidates for cell therapy. Both types of cells demonstrated angiogenic and antifibrotic potential, whereas hAESCs presented superior immunological tolerance and antioxidant properties, which were supported by a series of relevant in vitro assays. Our study provides clues for the selection of appropriate cell types for diverse indications in cell therapy, which contributes to the advancement of their clinical translation and application.
Collapse
Affiliation(s)
- Zhen Ge
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Chen Qiu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Jiayi Zhou
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Zhuoheng Yang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Tuoying Jiang
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Weixin Yuan
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Luyang Yu
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| | - Jinying Li
- Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine of Sir Run Run Shaw Hospital, Zhejiang University-Lishui Joint Innovation Center for Life and Health, Zhejiang University, Hangzhou, 310058, China.
- College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China.
| |
Collapse
|
5
|
Prencipe G, Cerveró-Varona A, Perugini M, Sulcanese L, Iannetta A, Haidar-Montes AA, Stöckl J, Canciello A, Berardinelli P, Russo V, Barboni B. Amphiregulin orchestrates the paracrine immune-suppressive function of amniotic-derived cells through its interplay with COX-2/PGE 2/EP4 axis. iScience 2024; 27:110508. [PMID: 39156643 PMCID: PMC11326934 DOI: 10.1016/j.isci.2024.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
The paracrine crosstalk between amniotic-derived membranes (AMs)/epithelial cells (AECs) and immune cells is pivotal in tissue healing following inflammation. Despite evidence collected to date, gaps in understanding the underlying molecular mechanisms have hindered clinical applications. The present study represents a significant step forward demonstrating that amphiregulin (AREG) orchestrates the native immunomodulatory functions of amniotic derivatives via the COX-2/PGE2/EP4 axis. The results highlight the immunosuppressive efficacy of PGE2-dependent AREG release, dampening PBMCs' activation, and NFAT pathway in Jurkat reporter cells via TGF-β signaling. Moreover, AREG emerges as a key protein mediator by attenuating acute inflammatory response in Tg(lysC:DsRed2) zebrafish larvae. Notably, the interplay of diverse COX-2/PGE2 pathway activators enables AM/AEC to adapt rapidly to external stimuli (LPS and/or stretching) through a responsive positive feedback loop on the AREG/EGFR axis. These findings offer valuable insights for developing innovative cell-free therapies leveraging the potential of amniotic derivatives in immune-mediated diseases and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Arlette Alina Haidar-Montes
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
6
|
Guo X, Zhang W, Lu J, Zhu Y, Sun H, Xu D, Xian S, Yao Y, Qian W, Lu B, Shi J, Ding X, Li Y, Tong X, Xiao S, Huang R, Ji S. Amniotic miracle: Investigating the unique development and applications of amniotic membrane in wound healing. Skin Res Technol 2024; 30:e13860. [PMID: 39073182 PMCID: PMC11283885 DOI: 10.1111/srt.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xinya Guo
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Wei Zhang
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Jianyu Lu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Yushu Zhu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Hanlin Sun
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Dayuan Xu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shuyuan Xian
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Yuntao Yao
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijin Qian
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaying Shi
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyi Ding
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixu Li
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Xirui Tong
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shichu Xiao
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shizhao Ji
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
7
|
Osteogenic Differentiation Effect of BMP-9 with Phenamil and Simvastatin on Intact Human Amniotic Epithelial Stem Cells. IRANIAN BIOMEDICAL JOURNAL 2022; 26:463-74. [PMID: 36437797 PMCID: PMC9841223 DOI: 10.52547/ibj.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Background: Bone tissue engineering has shown to be a promising strategy for repairing bone defects without causing harmful side effects to the patient. Three main building blocks of tissue engineering, including seeding cells, scaffold, and signaling molecules, are required for adequate bone regeneration. The human amniotic membrane (hAM) is the innermost of the placental membranes. In addition to providing a source of stem cells and growth factors, hAM has several features that make it an appropriate scaffold containing stem cells for use in tissue engineering purposes. The present investigation aimed to assess the effect of bone morphogenetic protein-9 (BMP-9) combined with phenamil and simvastatin on osteogenic induction of hAM with its human amniotic membrane epithelial cells (hAECs). Method Methods: Using six different osteogenic medium (OMs), we cultured hAM for 14 days. The basic OMs were chosen as the first group and other media were made by adding BMP-9, phenamil, simvastatin, BMP-9 alongside phenamil, and BMP-9 alongside simvastatin to the basic OMs. Finally, viability assay, tissue mineralization, calcium and phosphate content determination, and measurement of lactic acid dehydrogenase (LDH), and alkaline phosphatase (ALP) activity were performed. Results Results: Among all study groups, groups containing simvastatin showed a significantly lower level of viability. Although all media could induce osteogenic features, the hAECs cultured in media containing BMP-9 and phenamil demonstrated a wider area of mineralization and a significantly higher level of calcium and phosphate content, LDH, and ALP activity. Conclusion Conclusion: Our findings indicated that the use of phenamil together with BMP-9 could synergistically show in situ osteogenic induction in hAECs, which could be a new insight into translational medicine.
Collapse
|
8
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Naeem A, Gupta N, Arzoo N, Naeem U, Khan MJ, Choudhry MU, Cui W, Albanese C. A Survey and Critical Evaluation of Isolation, Culture, and Cryopreservation Methods of Human Amniotic Epithelial Cells. Cell Cycle 2022; 21:655-673. [PMID: 35289707 PMCID: PMC8973348 DOI: 10.1080/15384101.2021.2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human amniotic epithelial cells (hAECs), derived from an epithelial cell layer of the human amniotic membrane, possess embryonic stem-like properties and are known to maintain multilineage differentiation potential. Unfortunately, an inability to expand hAECs without significantly compromising their stem cell potency has precluded their widespread use for regenerative therapies. This article critically evaluates the methods used for isolation, expansion, and cryopreservation of hAECs. We assessed the impact of these methods on ex-vivo expansion and stem cell phenotype of hAECs. Moreover, the progress and challenges to optimize clinically suitable culture conditions for an efficient ex-vivo expansion and storage of these cells are highlighted. Additionally, we also reviewed the currently used hAECs isolation and characterization methods employed in clinical trials. Despite the developments made in the last decade, significant challenges still exist to overcome limitations of ex-vivo expansion and retention of stemness of hAECs in both xenogeneic and xenofree culture conditions. Therefore, optimization and standardization of culture conditions for robust ex-vivo maintenance of hAECs without affecting tissue regenerative properties is an absolute requirement for their successful therapeutic manipulation. This review may help the researchers to optimize the methods that support ex-vivo survival, proliferation, and self-renewal properties of the hAECs.Abbreviations: AM: Human amniotic membrane; CM-HBSS: Ca++ and Mg++ free HBSS; DMEM: Dulbecco's Modified Eagle Medium; DMEM-HG: DMEM-high glucose; EMEM: Eagle's Modified Essential Medium; EMT: Epithelial-to-mesenchymal transition; EpM: Epi-life complete media; ESC: Embryonic stem cells; ESCM: Epithelial cell surface markers; hAECs: Human amniotic epithelial cells; HLA: Human leukocyte antigen; IM: Immunogenicity markers; iPSC: Induced pluripotent stem cells; KOSR; KSR: Knockout serum replacement; KSI: Key success indicators; CHM: Cell heterogeneity markers; Nanog: NANOG homeobox; Oct-4: Octamer binding transcription factor 4; OR: Operation room; P: Passage; PM: Pluripotency markers; SCM: Stem cell markers for non-differentiated cells; Sox-2: Sry-related HMG box gene 2; SSEA-4: Stage-specific embryonic antigen; TRA: Tumor rejection antigen; UC: Ultra-culture; XF: Xenogeneic free.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.,Health Research Governance Department, Ministry of Public Health, Qatar
| | - Nikita Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Natasha Arzoo
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Usra Naeem
- Department of Health Professional Technology, University of Lahore, Pakistan
| | | | - Muhammad Umer Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Wanxing Cui
- Cell Therapy Manufacturing Facility, MedStar Georgetown University Hospital, Washington, District of Columbia, USA.,Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Radiology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Department of Oncology, Center for Translational Imaging, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Babajani A, Moeinabadi-Bidgoli K, Niknejad F, Rismanchi H, Shafiee S, Shariatzadeh S, Jamshidi E, Farjoo MH, Niknejad H. Human placenta-derived amniotic epithelial cells as a new therapeutic hope for COVID-19-associated acute respiratory distress syndrome (ARDS) and systemic inflammation. Stem Cell Res Ther 2022; 13:126. [PMID: 35337387 PMCID: PMC8949831 DOI: 10.1186/s13287-022-02794-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become in the spotlight regarding the serious early and late complications, including acute respiratory distress syndrome (ARDS), systemic inflammation, multi-organ failure and death. Although many preventive and therapeutic approaches have been suggested for ameliorating complications of COVID-19, emerging new resistant viral variants has called the efficacy of current therapeutic approaches into question. Besides, recent reports on the late and chronic complications of COVID-19, including organ fibrosis, emphasize a need for a multi-aspect therapeutic method that could control various COVID-19 consequences. Human amniotic epithelial cells (hAECs), a group of placenta-derived amniotic membrane resident stem cells, possess considerable therapeutic features that bring them up as a proposed therapeutic option for COVID-19. These cells display immunomodulatory effects in different organs that could reduce the adverse consequences of immune system hyper-reaction against SARS-CoV-2. Besides, hAECs would participate in alveolar fluid clearance, renin–angiotensin–aldosterone system regulation, and regeneration of damaged organs. hAECs could also prevent thrombotic events, which is a serious complication of COVID-19. This review focuses on the proposed early and late therapeutic mechanisms of hAECs and their exosomes to the injured organs. It also discusses the possible application of preconditioned and genetically modified hAECs as well as their promising role as a drug delivery system in COVID-19. Moreover, the recent advances in the pre-clinical and clinical application of hAECs and their exosomes as an optimistic therapeutic hope in COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farnaz Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Rismanchi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Huang J, Zhang W, Yu J, Gou Y, Liu N, Wang T, Sun C, Wu B, Li C, Chen X, Mao Y, Zhang Y, Wang J. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration. Stem Cell Res Ther 2022; 13:17. [PMID: 35022063 PMCID: PMC8756707 DOI: 10.1186/s13287-021-02682-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium. METHODS hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague-Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests. RESULTS hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group. CONCLUSIONS PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.
Collapse
Affiliation(s)
- Jiayue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jie Yu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yating Gou
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Nizhou Liu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Tingting Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Benyuan Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Xinpei Chen
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yanhua Mao
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, No. 55, Daxuecheng Middle Road, Chongqing, 401331, China.
| |
Collapse
|
12
|
Nazerian Y, Vakili K, Ebrahimi A, Niknejad H. Developing Cytokine Storm-Sensitive Therapeutic Strategy in COVID-19 Using 8P9R Chimeric Peptide and Soluble ACE2. Front Cell Dev Biol 2021; 9:717587. [PMID: 34540833 PMCID: PMC8446510 DOI: 10.3389/fcell.2021.717587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Currently, the COVID-19 pandemic is an international challenge, largely due to lack of effective therapies. Pharmacotherapy has not yet been able to find a definitive treatment for COVID-19. Since SARS-CoV-2 affects several organs, treatment strategies that target the virus in a wider range are expected to be ultimately more successful. To this end, a two-step treatment strategy has been presented. In the first phase of the disease, when the patient is newly infected with the virus and the cytokine storm has not yet been developed, a chimeric peptide is used to inhibit virus entry into the host cell cytosol (by inhibiting endosomal pH acidification) and viral replication. After the virus entry and decrease of angiotensin converting enzyme 2 (ACE2) level, some people are unable to properly compensate for the ACE2 pathway and progress toward the cytokine storm. In the beginning of the cytokine storm, sACE2 protein is very effective in regulating the immune system toward the anti-inflammatory pathway, including M2 macrophages. Hence, the genes of 8P9R chimeric peptide and sACE2 would be inserted in an episomal vector with a separate promoter for each gene: the chimeric peptide gene promoter is a CMV promoter, while the sACE2 gene promoter is a NF-κB-sensitive promoter. The NF-κB-sensitive promoter induces the expression of sACE2 gene soon after elevation of NF-κB which is the main transcription factor of inflammatory genes. Thus, as the expression of inflammatory cytokines increases, the expression of sACE2 increases simultaneously. In this condition, sACE2 can prevent the cytokine storm by inhibiting the pro-inflammatory pathways. To deliver the designed vector to the target cells, mesenchymal stem cell-derived (MSC-derived) exosome-liposome hybrids are used. Herein, the strategy can be considered as a personalized clinical therapy for COVID-19, that can prevent morbidity and mortality in the future.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ebrahimi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Optimized Manufacture of Lyophilized Dermal Fibroblasts for Next-Generation Off-the-Shelf Progenitor Biological Bandages in Topical Post-Burn Regenerative Medicine. Biomedicines 2021; 9:biomedicines9081072. [PMID: 34440276 PMCID: PMC8394413 DOI: 10.3390/biomedicines9081072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cultured fibroblast progenitor cells (FPC) have been studied in Swiss translational regenerative medicine for over two decades, wherein clinical experience was gathered for safely managing burns and refractory cutaneous ulcers. Inherent FPC advantages include high robustness, optimal adaptability to industrial manufacture, and potential for effective repair stimulation of wounded tissues. Major technical bottlenecks in cell therapy development comprise sustainability, stability, and logistics of biological material sources. Herein, we report stringently optimized and up-scaled processing (i.e., cell biobanking and stabilization by lyophilization) of dermal FPCs, with the objective of addressing potential cell source sustainability and stability issues with regard to active substance manufacturing in cutaneous regenerative medicine. Firstly, multi-tiered FPC banking was optimized in terms of overall quality and efficiency by benchmarking key reagents (e.g., medium supplement source, dissociation reagent), consumables (e.g., culture vessels), and technical specifications. Therein, fetal bovine serum batch identity and culture vessel surface were confirmed, among other parameters, to largely impact harvest cell yields. Secondly, FPC stabilization by lyophilization was undertaken and shown to maintain critical functions for devitalized cells in vitro, potentially enabling high logistical gains. Overall, this study provides the technical basis for the elaboration of next-generation off-the-shelf topical regenerative medicine therapeutic products for wound healing and post-burn care.
Collapse
|
14
|
A New Predictive Technology for Perinatal Stem Cell Isolation Suited for Cell Therapy Approaches. MICROMACHINES 2021; 12:mi12070782. [PMID: 34209410 PMCID: PMC8305015 DOI: 10.3390/mi12070782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022]
Abstract
The use of stem cells for regenerative applications and immunomodulatory effect is increasing. Amniotic epithelial cells (AECs) possess embryonic-like proliferation ability and multipotent differentiation potential. Despite the simple isolation procedure, inter-individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investigated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label-free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the fractogram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications.
Collapse
|
15
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
16
|
Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells Int 2021; 2021:9978837. [PMID: 34012469 PMCID: PMC8105090 DOI: 10.1155/2021/9978837] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cells can be used to replace damaged cells or regenerate organs and have broadened our knowledge of the development and progression of certain diseases. Despite significant advances in understanding stem cell biology, several problems limit their use. These problems are related not only to the growth of tumors in animal models and their rejection in transplant cases but also to ethical and social issues about the use of embryonic cells. The ethical-scientific debate on this type of cells has taken on great interest both for their application in regenerative medicine and for the potential possibilities in the field of cell and gene therapy. Different points of view often have the expression of a perception that depends on scientific goals or opportunities or on religious traditions and beliefs. Therefore, as the questions and doubts about when life begins, so do the answers for the use of these cells as therapy or otherwise. So, in addition to the origin of stem cells, there are currently some social bioethical (such as political and legislative issues) and religious dilemmas. The purpose of the study is aimed at being a narrative on the history of stem cells and the evolution of their use to date, as well as to clarify the bioethical position of the various religions today in comparison with the social ones regarding the research and use of embryonic and adult ones. Hence, their biological hypostasis regarding the concepts of “conception” and “fertilization” and their development and therapeutic use compared to those of the main theological doctrines.
Collapse
|
17
|
Zhang L, Xiong N, Liu Y, Gan L. Biomimetic cell-adhesive ligand-functionalized peptide composite hydrogels maintain stemness of human amniotic mesenchymal stem cells. Regen Biomater 2021; 8:rbaa057. [PMID: 33738111 PMCID: PMC7953499 DOI: 10.1093/rb/rbaa057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
In vivo, stem cells reside in a three-dimensional (3D) extracellular microenvironment in which complicated biophysical and biochemical factors regulate their behaviors. Biomimicking of the stem cell-matrix interactions is an ideal approach for controlling the stem cell fate. This study investigates the effects of the incorporation of cell-adhesive ligands in 3D self-assembling peptide hydrogels to modulate stem cell survival, proliferation, maintenance of stemness, and osteogenic differentiation. The results show that the composite hydrogels were non-cytotoxic and effective for maintaining human amniotic mesenchymal stem cell (hAMSC) survival, proliferation and phenotypic characterization. The expression levels of pluripotent markers were also upregulated in the composite hydrogels. Under inductive media conditions, mineral deposition and mRNA expression levels of osteogenic genes of hAMSCs were enhanced. The increasing expression of integrin α- and β-subunits for hAMSCs indicates that the ligand-integrin interactions may modulate the cell fate for hAMSCs in composite hydrogels.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Na Xiong
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
18
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
19
|
Kirsch M, Rach J, Handke W, Seltsam A, Pepelanova I, Strauß S, Vogt P, Scheper T, Lavrentieva A. Comparative Analysis of Mesenchymal Stem Cell Cultivation in Fetal Calf Serum, Human Serum, and Platelet Lysate in 2D and 3D Systems. Front Bioeng Biotechnol 2021; 8:598389. [PMID: 33520956 PMCID: PMC7844400 DOI: 10.3389/fbioe.2020.598389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro two-dimensional (2D) and three-dimensional (3D) cultivation of mammalian cells requires supplementation with serum. Mesenchymal stem cells (MSCs) are widely used in clinical trials for bioregenerative medicine and in most cases, in vitro expansion and differentiation of these cells are required before application. Optimized expansion and differentiation protocols play a key role in the treatment outcome. 3D cell cultivation systems are more comparable to in vivo conditions and can provide both, more physiological MSC expansion and a better understanding of intercellular and cell-matrix interactions. Xeno-free cultivation conditions minimize risks of immune response after implantation. Human platelet lysate (hPL) appears to be a valuable alternative to widely used fetal calf serum (FCS) since no ethical issues are associated with its harvest, it contains a high concentration of growth factors and cytokines and it can be produced from expired platelet concentrate. In this study, we analyzed and compared proliferation, as well as osteogenic and chondrogenic differentiation of human adipose tissue-derived MSCs (hAD-MSC) using three different supplements: FCS, human serum (HS), and hPL in 2D. Furthermore, online monitoring of osteogenic differentiation under the influence of different supplements was performed in 2D. hPL-cultivated MSCs exhibited a higher proliferation and differentiation rate compared to HS- or FCS-cultivated cells. We demonstrated a fast and successful chondrogenic differentiation in the 2D system with the addition of hPL. Additionally, FCS, HS, and hPL were used to formulate Gelatin-methacryloyl (GelMA) hydrogels in order to evaluate the influence of the different supplements on the cell spreading and proliferation of cells growing in 3D culture. In addition, the hydrogel constructs were cultivated in media supplemented with three different supplements. In comparison to FCS and HS, the addition of hPL to GelMA hydrogels during the encapsulation of hAD-MSCs resulted in enhanced cell spreading and proliferation. This effect was promoted even further by cultivating the hydrogel constructs in hPL-supplemented media.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Peter Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | | |
Collapse
|
20
|
Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, Tan GC, Wong YP. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:615508. [PMID: 33791258 PMCID: PMC8006350 DOI: 10.3389/fped.2021.615508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
22
|
Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 2020; 11:439. [PMID: 33059766 PMCID: PMC7559178 DOI: 10.1186/s13287-020-01951-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissues have gained considerable attention in the field of regenerative medicine. hAECs possess embryonic stem cell-like proliferation and differentiation capabilities, and adult stem cell-like immunomodulatory properties. Compared with other types of stem cell, hAECs have special advantages, including easy isolation, plentiful numbers, the obviation of ethical debates, and non-immunogenic and non-tumorigenic properties. During the past two decades, the therapeutic potential of hAECs for treatment of various diseases has been extensively investigated. Accumulating evidence has demonstrated that hAEC transplantation helps to repair and rebuild the function of damaged tissues and organs by different molecular mechanisms. This systematic review focused on summarizing the biological characteristics of hAECs, therapeutic applications, and recent advances in treating various tissue injuries and disorders. Relevant studies published in English from 2000 to 2020 describing the role of hAECs in diseases and phenotypes were comprehensively sought out using PubMed, MEDLINE, and Google Scholar. According to the research content, we described the major hAEC characteristics, including induced differentiation plasticity, homing and differentiation, paracrine function, and immunomodulatory properties. We also summarized the current status of clinical research and discussed the prospects of hAEC-based transplantation therapies. In this review, we provide a comprehensive understanding of the therapeutic potential of hAECs, including their use for cell replacement therapy as well as secreted cytokine and exosome biotherapy. Moreover, we showed that the powerful immune-regulatory function of hAECs reveals even more possibilities for their application in the treatment of immune-related diseases. In the future, establishing the optimal culture procedure, achieving precise and accurate treatment, and enhancing the therapeutic potential by utilizing appropriate preconditioning and/or biomaterials would be new challenges for further investigation.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
23
|
Aonuma K, Ferdousi F, Xu D, Tominaga K, Isoda H. Effects of Isorhamnetin in Human Amniotic Epithelial Stem Cells in vitro and Its Cardioprotective Effects in vivo. Front Cell Dev Biol 2020; 8:578197. [PMID: 33117805 PMCID: PMC7552739 DOI: 10.3389/fcell.2020.578197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy and fibrosis are major pathophysiologic disorders that lead to serious cardiovascular diseases (CVDs), such as heart failure and arrhythmia. It is well known that transforming growth factor β (TGFβ) signaling pathways play a major role in the proliferation of cardiac hypertrophy and fibrosis, which is mainly stimulated by angiotensin II (AgII). This study aimed to investigate the cardioprotective potential of isorhamnetin (ISO) in human amniotic epithelial stem cells (hAESCs) through global gene expression analysis and to confirm its beneficial effects on cardiac hypertrophy and fibrosis in the AgII-induced in vivo model. In vitro, biological processes including TGFβ, collagen-related functions, and inflammatory processes were significantly suppressed in ISO pretreated hAESCs. In vivo, continuous AgII infusion using an osmotic pump induced significant pathological fibrosis and myocardial hypertrophy, which were remarkably suppressed by ISO pretreatment. ISO was found to reverse the enhanced TGFβ and Collagen type I alpha 1 mRNA expression induced by AgII exposure, which causes cardiovascular remodeling in ventricular tissue. These findings indicate that ISO could be a potential agent against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Kazuhiro Aonuma
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - DongZhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
24
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|