1
|
Fang Y, Wu D, Gao N, Lv M, Zhou M, Ma C, Sun Y, Cui B. Whole-genome sequencing and comparative genomic analyses of the medicinal fungus Sanguinoderma infundibulare in Ganodermataceae. G3 (BETHESDA, MD.) 2024; 14:jkae005. [PMID: 38366555 PMCID: PMC10989896 DOI: 10.1093/g3journal/jkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Sanguinoderma infundibulare is a newly discovered species of Ganodermataceae known to have high medicinal and ecological values. In this study, the whole-genome sequencing and comparative genomic analyses were conducted to further understand Ganodermataceae's genomic structural and functional characteristics. Using the Illumina NovaSeq and PacBio Sequel platforms, 88 scaffolds were assembled to obtain a 48.99-Mb high-quality genome of S. infundibulare. A total of 14,146 protein-coding genes were annotated in the whole genome, with 98.6% of complete benchmarking universal single-copy orthologs (BUSCO) scores. Comparative genomic analyses were conducted among S. infundibulare, Sanguinoderma rugosum, Ganoderma lucidum, and Ganoderma sinense to determine their intergeneric differences. The 4 species were found to share 4,011 orthogroups, and 24 specific gene families were detected in the genus Sanguinoderma. The gene families associated with carbohydrate esterase in S. infundibulare were significantly abundant, which was reported to be involved in hemicellulose degradation. One specific gene family in Sanguinoderma was annotated with siroheme synthase, which may be related to the typical characteristics of fresh pore surface changing to blood red when bruised. This study enriched the available genome data for the genus Sanguinoderma, elucidated the differences between Ganoderma and Sanguinoderma, and provided insights into the characteristics of the genome structure and function of S. infundibulare.
Collapse
Affiliation(s)
- Yuxuan Fang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dongmei Wu
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China
| | - Neng Gao
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China
| | - Mengxue Lv
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Miao Zhou
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Chuangui Ma
- Beijing Jingcheng Biotechnology Co., Ltd, Beijing 100083, China
| | - Yifei Sun
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Baokai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Li X, Liu J, Tian J, Pan Z, Chen Y, Ming F, Wang R, Wang L, Zhou H, Li J, Tan Z. Co-cultivation of microalgae-activated sludge for municipal wastewater treatment: Exploring the performance, microbial co-occurrence patterns, microbiota dynamics and function during the startup stage. BIORESOURCE TECHNOLOGY 2023; 374:128733. [PMID: 36774984 DOI: 10.1016/j.biortech.2023.128733] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian Liu
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Jiansong Tian
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Zhicheng Pan
- Haitian Water Group Co., LTD., Chengdu 610203, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Ming
- Institute of Resources and Environmental Engineering, Mianyang Teacher's College, Mianyang 621000, China
| | - Rui Wang
- Haitian Water Group Co., LTD., Chengdu 610203, China
| | - Lin Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junjie Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
3
|
Gelation of konjac glucomannan by acetylmannan esterases from Aspergillus oryzae. Enzyme Microb Technol 2022; 160:110075. [PMID: 35691189 DOI: 10.1016/j.enzmictec.2022.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/05/2022] [Indexed: 11/23/2022]
Abstract
Konjac glucomannan (KGM) is a principal component of the gelatinous food Konjac. Konjac production through alkali treatment releases an undesirable amine-odor. Two acetylesterases (AME1 and AME2) active against konjac glucomannan (polymer or oligomer) were purified from the supernatant of Aspergillus oryzae RIB40 culture. We cloned the genes encoding AME1 and AME2 based on the genomic information of A. oryzae, constructed their expression systems in A. oryzae, and obtained the recombinant enzymes (rAME1 and rAME2). rAME1 did not act on the KGM polymer but only on the KGM oligomer, releasing approximately 60% of the acetic acid in the substrate. However, rAME2 was active against both KGM substrates, releasing approximately 80% and 100% of acetic acid from the polymer and oligomer, respectively. Both enzymes were active against xylan and exhibited a trace activity on ethyl ferulate. The acetyl group position specificities of both enzymes were analyzed via heteronuclear single quantum correlation NMR using oligosaccharides of glucomannan prepared from Aloe vera (AGM), which has a higher acetyl group content than KGM. rAME1 acted specifically on single-substituted acetyl groups and not on double-substituted ones. In contrast, rAME2 appeared to act on all the acetyl groups in AGM. Treatment of 3% KGM with rAME2 followed by heating to 90 °C resulted in gel formation under weakly acidic conditions. This is the first study to induce gelation of KGM under these conditions. A comparison of the breaking and brittleness properties of gels formed by alkaline and enzymatic treatments revealed similar texture of the two gels. Furthermore, scanning electron microscopy of the surface structure of both gels revealed that both formed a fine mesh structure. Our findings on enzymatic gelation of KGM should lead to the development of new applications in food manufacturing industry.
Collapse
|
4
|
Li X, Kouzounis D, Kabel MA, de Vries RP. GH10 and GH11 endoxylanases in Penicillium subrubescens: comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus. N Biotechnol 2022; 70:84-92. [PMID: 35597447 DOI: 10.1016/j.nbt.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Penicillium subrubescens has an expanded set of genes encoding putative endoxylanases (PsXLNs) compared to most other Penicillia and other fungi. In this study, all GH10 and GH11 PsXLNs were produced heterologously in Pichia pastoris and characterized. They were active towards beech wood xylan (BWX) and wheat flour arabinoxylan (WAX), and showed stability over a wide pH range. Additionally, PsXLNs released distinct oligosaccharides from WAX, and showed significant cooperative action with P. subrubescens α-L-arabinofuranosidases (PsABFs) from GH51 or GH54 for WAX degradation, giving insight into a more diverse XLN and ABF system for the efficient degradation of complex hemicelluloses. Homology modelling analysis pointed out differences in the catalytic center of PsXLNs, which are discussed in view of the different modes of action observed. These findings facilitate understanding of structural requirements for substrate recognition to contribute to recombinant XLN engineering for biotechnological applications.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
5
|
Madubuike H, Ferry N. Characterisation of a Novel Acetyl Xylan Esterase (BaAXE) Screened from the Gut Microbiota of the Common Black Slug ( Arion ater). Molecules 2022; 27:2999. [PMID: 35566348 PMCID: PMC9104356 DOI: 10.3390/molecules27092999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Acetyl xylan esterases (AXEs) are enzymes capable of hydrolysing the acetyl bonds in acetylated xylan, allowing for enhanced activity of backbone-depolymerizing enzymes. Bioprospecting novel AXE is essential in designing enzyme cocktails with desired characteristics targeting the complete breakdown of lignocellulose. In this article, we report the characterisation of a novel AXE identified as Gene_id_40363 in the metagenomic library analysed from the gut microbiota of the common black slug. The conserved domain description was identified with an NCBI BLASTp search using the translated nucleotide sequence as a query. The activity of the recombinant enzyme was tested on various synthetic substrates and acetylated substrates. The protein sequence matched the conserved domain described as putative hydrolase and aligned closely to an uncharacterized esterase from Buttiauxella agrestis, hence the designation as BaAXE. BaAXE showed low sequence similarity among characterized CE family proteins with an available 3D structure. BaAXE was active on 4-nitrophenyl acetate, reporting a specific activity of 78.12 U/mg and a Km value of 0.43 mM. The enzyme showed optimal activity at 40 °C and pH 8 and showed high thermal stability, retaining over 40% activity after 2 h of incubation from 40 °C to 100 °C. BaAXE hydrolysed acetyl bonds, releasing acetic acid from acetylated xylan and β-D-glucose pentaacetate. BaAXE has great potential for biotechnological applications harnessing its unique characteristics. In addition, this proves the possibility of bioprospecting novel enzymes from understudied environments.
Collapse
Affiliation(s)
- Henry Madubuike
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
6
|
Carrillo-Díaz MI, Miranda-Romero LA, Chávez-Aguilar G, Zepeda-Batista JL, González-Reyes M, García-Casillas AC, Tirado-González DN, Tirado-Estrada G. Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi. Animals (Basel) 2022; 12:843. [PMID: 35405833 PMCID: PMC8997131 DOI: 10.3390/ani12070843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The present review examines the factors and variables that should be considered to obtain, design, and evaluate EFEs that might enhance ruminal NDF degradability. Different combinations of words were introduced in Google Scholar, then scientific articles were examined and included if the reported factors and variables addressed the objective of this review. One-hundred-and-sixteen articles were included. The fungal strains and culture media used to grow white-rot fungi induced the production of specific isoforms of cellulases and xylanases; therefore, EFE products for ruminant feed applications should be obtained in cultures that include the high-fibrous forages used in the diets of those animals. Additionally, the temperature, pH, osmolarity conditions, and EFE synergisms and interactions with ruminal microbiota and endogenous fibrolytic enzymes should be considered. More consistent results have been observed in studies that correlate the cellulase-to-xylanase ratio with ruminant productive behavior. EFE protection (immobilization) allows researchers to obtain enzymatic products that may act under ruminal pH and temperature conditions. It is possible to generate multi-enzyme cocktails that act at different times, re-associate enzymes, and simulate natural protective structures such as cellulosomes. Some EFEs could consistently improve ruminal NDF degradability if we consider fungal cultures and ruminal environmental conditions variables, and include biotechnological tools that might be useful to design novel enzymatic products.
Collapse
Affiliation(s)
- María Isabel Carrillo-Díaz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Luis Alberto Miranda-Romero
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Edo. México, Mexico;
| | - Griselda Chávez-Aguilar
- Centro Nacional de Investigación Disciplinaria Agricultura Familiar (CENID AF), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ojuelos de Jalisco 47540, Jalisco, Mexico;
| | - José Luis Zepeda-Batista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Mónica González-Reyes
- División de Estudios de Posgrado (DEPI), Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico;
| | - Arturo César García-Casillas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Deli Nazmín Tirado-González
- Departamento de Ingenierías, Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico
| | - Gustavo Tirado-Estrada
- División de Estudios de Posgrado (DEPI), Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico;
| |
Collapse
|
7
|
Dilokpimol A, Verkerk B, Li X, Bellemare A, Lavallee M, Frommhagen M, Nørmølle Underlin E, Kabel MA, Powlowski J, Tsang A, de Vries RP. Screening of novel fungal Carbohydrate Esterase family 1 enzymes identifies three novel dual feruloyl/acetyl xylan esterases. FEBS Lett 2022; 596:1932-1943. [DOI: 10.1002/1873-3468.14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Adiphol Dilokpimol
- Fungal Physiology Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology Utrecht University Uppsalalaan 8 3584 CT Utrecht The Netherlands
- Current address: Protein Production Team VTT Technical Research Center of Finland Ltd Tietotie 2 02150 Espoo Finland
| | - Bart Verkerk
- Fungal Physiology Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology Utrecht University Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Xinxin Li
- Fungal Physiology Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology Utrecht University Uppsalalaan 8 3584 CT Utrecht The Netherlands
| | - Annie Bellemare
- Centre for Functional and Structural Genomics Concordia University Sherbrooke St. W. Montreal QC H4B 1R6 Canada
| | - Mathieu Lavallee
- Centre for Functional and Structural Genomics Concordia University Sherbrooke St. W. Montreal QC H4B 1R6 Canada
| | - Matthias Frommhagen
- Laboratory of Food Chemistry Wageningen University and Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Emilie Nørmølle Underlin
- Laboratory of Food Chemistry Wageningen University and Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
- Department of Chemistry Technical University of Denmark Building 207 Kemitorvet DK‐2800 Denmark
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry Wageningen University and Research Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Justin Powlowski
- Centre for Functional and Structural Genomics Concordia University Sherbrooke St. W. Montreal QC H4B 1R6 Canada
| | - Adrian Tsang
- Centre for Functional and Structural Genomics Concordia University Sherbrooke St. W. Montreal QC H4B 1R6 Canada
| | - Ronald P. de Vries
- Fungal Physiology Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology Utrecht University Uppsalalaan 8 3584 CT Utrecht The Netherlands
| |
Collapse
|
8
|
Sun P, Li X, Dilokpimol A, Henrissat B, de Vries RP, Kabel MA, Mäkelä MR. Fungal glycoside hydrolase family 44 xyloglucanases are restricted to the phylum Basidiomycota and show a distinct xyloglucan cleavage pattern. iScience 2022; 25:103666. [PMID: 35028537 PMCID: PMC8741620 DOI: 10.1016/j.isci.2021.103666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
Xyloglucan is a prominent matrix heteropolysaccharide binding to cellulose microfibrils in primary plant cell walls. Hence, the hydrolysis of xyloglucan facilitates the overall lignocellulosic biomass degradation. Xyloglucanases (XEGs) are key enzymes classified in several glycoside hydrolase (GH) families. So far, family GH44 has been shown to contain bacterial XEGs only. Detailed genome analysis revealed GH44 members in fungal species from the phylum Basidiomycota, but not in other fungi, which we hypothesized to also be XEGs. Two GH44 enzymes from Dichomitus squalens and Pleurotus ostreatus were heterologously produced and characterized. They exhibited XEG activity and displayed a hydrolytic cleavage pattern different from that observed in fungal XEGs from other GH families. Specifically, the fungal GH44 XEGs were not hindered by substitution of neighboring glucosyl units and generated various "XXXG-type," "GXXX(G)-type," and "XXX-type" oligosaccharides. Overall, these fungal GH44 XEGs represent a novel class of enzymes for plant biomass conversion and valorization.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| |
Collapse
|
9
|
Glycoside Hydrolase family 30 harbors fungal subfamilies with distinct polysaccharide specificities. N Biotechnol 2021; 67:32-41. [PMID: 34952234 DOI: 10.1016/j.nbt.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022]
Abstract
Efficient bioconversion of agro-industrial side streams requires a wide range of enzyme activities. Glycoside Hydrolase family 30 (GH30) is a diverse family that contains various catalytic functions and has so far been divided into ten subfamilies (GH30_1-10). In this study, a GH30 phylogenetic tree using over 150 amino acid sequences was contructed. The members of GH30 cluster into four subfamilies and eleven candidates from these subfamilies were selected for biochemical characterization. Novel enzyme activities were identified in GH30. GH30_3 enzymes possess β-(1→6)-glucanase activity. GH30_5 targets β-(1→6)-galactan with mainly β-(1→6)-galactobiohydrolase catalytic behavior. β-(1→4)-Xylanolytic enzymes belong to GH30_7 targeting β-(1→4)-xylan with several activities (e.g. xylobiohydrolase, endoxylanase). Additionally, a new fungal subfamily in GH30 was proposed, i.e. GH30_11, which displays β-(1→6)-galactobiohydrolase. This study confirmed that GH30 fungal subfamilies harbor distinct polysaccharide specificity and have high potential for the production of short (non-digestible) di- and oligosaccharides.
Collapse
|
10
|
Bioconversion of Lignocellulosic Biomass into Value Added Products under Anaerobic Conditions: Insight into Proteomic Studies. Int J Mol Sci 2021; 22:ijms222212249. [PMID: 34830131 PMCID: PMC8624197 DOI: 10.3390/ijms222212249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023] Open
Abstract
Production of biofuels and other value-added products from lignocellulose breakdown requires the coordinated metabolic activity of varied microorganisms. The increasing global demand for biofuels encourages the development and optimization of production strategies. Optimization in turn requires a thorough understanding of the microbial mechanisms and metabolic pathways behind the formation of each product of interest. Hydrolysis of lignocellulosic biomass is a bottleneck in its industrial use and often affects yield efficiency. The accessibility of the biomass to the microorganisms is the key to the release of sugars that are then taken up as substrates and subsequently transformed into the desired products. While the effects of different metabolic intermediates in the overall production of biofuel and other relevant products have been studied, the role of proteins and their activity under anaerobic conditions has not been widely explored. Shifts in enzyme production may inform the state of the microorganisms involved; thus, acquiring insights into the protein production and enzyme activity could be an effective resource to optimize production strategies. The application of proteomic analysis is currently a promising strategy in this area. This review deals on the aspects of enzymes and proteomics of bioprocesses of biofuels production using lignocellulosic biomass as substrate.
Collapse
|
11
|
Kato T, Shiono Y, Koseki T. Identification and characterization of an acetyl xylan esterase from Aspergillus oryzae. J Biosci Bioeng 2021; 132:337-342. [PMID: 34376338 DOI: 10.1016/j.jbiosc.2021.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
In this study, we report the identification and characterization of an acetyl xylan esterase, designated as AoAXEC, which was previously annotated as a hypothetical protein encoded by AO090023000158 in the Aspergillus oryzae genomic database. Based on its amino acid sequence, a low sequence identity to known acetyl xylan esterases was observed in the sequence of characterized acetyl xylan esterase. The gene fused with α-factor signal sequence of Saccharomyces cerevisiae instead of the native signal sequence was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0 and 50 °C, respectively, and was stable up to 50 °C. The optimal substrate for hydrolysis by the purified recombinant AoAXEC, among a panel of α-naphthyl esters (C2-C16), was α-naphthyl propionate (C3), with an activity of 0.35 ± 0.006 units/mg protein. No significant difference of the Km value was observed between C3 (2.3 ± 0.7 mM) and C2 (1.9 ± 0.4 mM). In contrast, kcat value for C3 (18 ± 3.9 s-1) was higher compared to C2 (4.5 ± 0.7 s-1). The purified recombinant enzyme displayed a low activity toward acyl chain substrates containing eight or more carbon atoms. Recombinant AoAXEC catalyzed the release of acetic acid from wheat arabinoxylan. However, no activity was detected on methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. Additionally, the liberation of phenolic acids, such as ferulic acid, from wheat arabinoxylan was not exhibited by the recombinant protein.
Collapse
Affiliation(s)
- Tomoe Kato
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Yoshihito Shiono
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan.
| |
Collapse
|
12
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
13
|
Fungal Treatment for the Valorization of Technical Soda Lignin. J Fungi (Basel) 2021; 7:jof7010039. [PMID: 33435491 PMCID: PMC7827817 DOI: 10.3390/jof7010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/21/2022] Open
Abstract
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.
Collapse
|
14
|
Qaseem MF, Wu AM. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization. Int J Mol Sci 2020; 21:ijms21217875. [PMID: 33114198 PMCID: PMC7660596 DOI: 10.3390/ijms21217875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Xylan is the most abundant hemicellulose, constitutes about 25–35% of the dry biomass of woody and lignified tissues, and occurs up to 50% in some cereal grains. The accurate degree and position of xylan acetylation is necessary for xylan function and for plant growth and development. The post synthetic acetylation of cell wall xylan, mainly regulated by Reduced Wall Acetylation (RWA), Trichome Birefringence-Like (TBL), and Altered Xyloglucan 9 (AXY9) genes, is essential for effective bonding of xylan with cellulose. Recent studies have proven that not only xylan acetylation but also its deacetylation is vital for various plant functions. Thus, the present review focuses on the latest advances in understanding xylan acetylation and deacetylation and explores their effects on plant growth and development. Baseline knowledge about precise regulation of xylan acetylation and deacetylation is pivotal to developing plant biomass better suited for second-generation liquid biofuel production.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|