1
|
Talebian S, Shahnavaz B, Shakiba M, Rassouli FB. Illuminating new possibilities: Effects of copper oxide nanoparticles on gastrointestinal adenocarcinoma cells in hypoxic condition. Heliyon 2024; 10:e31414. [PMID: 38813193 PMCID: PMC11133906 DOI: 10.1016/j.heliyon.2024.e31414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer remains a major global health concern, necessitating the development of novel therapeutic approaches. Hypoxia is a common characteristic of solid tumors that plays a critical role in tumor progression, making it a prime target for anticancer therapies. This study aimed to determine the effects of copper oxide nanoparticles (CuONPs) on human gastrointestinal cancer cells in hypoxic condition for the first time. Toxicity of CuONPs was evaluated on human colon and gastric adenocarcinoma cells and normal fibroblasts by alamarBlue assay. Real-time polymerase chain reaction (PCR) was performed to study the effects of CuONPs on genes involved in cell apoptosis. To elucidate the molecular mechanisms underlying the effects of CuONPs in hypoxic condition, molecular docking was conducted on HIF-1α. Results revealed dose- and cell-type-dependent toxic effects of CuONPs, as a more significant (p < 0.0001) decrease in viability of LoVo cells (23 %) was observed compared to MKN-45 and HDF cells. In addition, CuONPs significantly (p < 0.0001) reduced LoVo cell viability down to 30.2 % in hypoxic condition. Gene expression analysis revealed significant (p < 0.0001) overexpression of P53 and BAX but downregulation of BCL-2 and CCND1 after treatment with CuONPs. Molecular docking indicated the preferable binding of CuONPs to the HIF-1α PAS-B domain through interaction with 15 residues with -4.8 kcal/mol binding energy. Our findings open up new possibilities for modulating HIF-1 activity and inhibiting hypoxia-induced tumor progression.
Collapse
Affiliation(s)
- Seyedehsaba Talebian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Rizwan M, Faisal S, Tariq MH, Zafar S, Khan A, Ahmad F. Enterobacter hormaechei-Driven Novel Biosynthesis of Tin Oxide Nanoparticles and Evaluation of Their Anti-aging, Cytotoxic, and Enzyme Inhibition Potential. ACS OMEGA 2023; 8:27439-27449. [PMID: 37546648 PMCID: PMC10398689 DOI: 10.1021/acsomega.3c02932] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 08/08/2023]
Abstract
Nanotechnology is a research hotspot that has gained considerable interest due to its potential inferences in the bioscience, medical, and engineering disciplines. The present study uses biomass from the Enterobacter hormaechei EAF63 strain to create bio-inspired metallic tin oxide nanoparticles (SnO2 NPs). The biosynthesized NPs were extensively analyzed using UV spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FTIR) techniques. The identification of the crystalline phase was confirmed by XRD. The SEM technique elucidated the morphological characteristics and size of SnO2 NPs. SEM investigation revealed that the SnO2 NPs have a size of 10 nm with spherical morphology. The capping of NPs was confirmed by FTIR analysis that revealed the presence of different compounds found in the biomass of the E. hormaechei EAF63 strain. Later, EDX confirmed the elemental composition of NPs. Moreover, the synthesized SnO2 NPs were employed for important applications including anti-aging, anti-Alzheimer's, anti-inflammatory, anti-larvicidal, and antibacterial action against sinusitis pathogens. The highest value was observed for Streptococcus pyogenes (19.75 ± 0.46), followed by Moraxella catarrhalis (17.49 ± 0.82) and Haemophilus influenzae (15.31 ± 0.73), respectively. Among the used concentrations, the highest inhibition of 76.8 ± 0.93 for 15-lipoxygenase (15-LOX) was observed at 400 μg/mL, followed by 67.4 ± 0.91 for cyclooxygenase-1 (COX-1). So, as an outcome, E. hormaechei-mediated SnO2 NPs might be considered as the safe and effective nanoplatforms for multifunctional biological applications in the field of nanomedicine.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Center
for Biotechnology and Microbiology, University
of Swat, Swat 19120, Khyber Pakhtunkhwa, Pakistan
| | - Shah Faisal
- Institute
of Biotechnology and Microbiology, Bacha
Khan University, Charsadda 24460, Khyber Pakhtunkhwa, Pakistan
| | | | - Sania Zafar
- Institute
of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Ajmal Khan
- Institute
of Biotechnology and Microbiology, Bacha
Khan University, Charsadda 24460, Khyber Pakhtunkhwa, Pakistan
| | - Farhan Ahmad
- Institute
of Biotechnology and Microbiology, Bacha
Khan University, Charsadda 24460, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Alzahrani B, Elderdery AY, Alzerwi NAN, Alsrhani A, Alsultan A, Rayzah M, Idrees B, Rayzah F, Baksh Y, Alzahrani AM, Subbiah SK, Mok PL. Pluronic-F-127-Passivated SnO 2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091760. [PMID: 37176818 PMCID: PMC10181209 DOI: 10.3390/plants12091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.
Collapse
Affiliation(s)
- Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Afnan Alsultan
- Department of Surgery, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, P.O. Box 7897, Riyadh 11159, Saudi Arabia
| | - Fares Rayzah
- Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Yaser Baksh
- Iman General Hospital, Riyadh 12684, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Surgery, College of Medicine, Majmaah University, P.O. Box 66, Al-Majmaah 11952, Saudi Arabia
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Talebian S, Shahnavaz B, Nejabat M, Abolhassani Y, Rassouli FB. Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials. Front Bioeng Biotechnol 2023; 11:1140010. [PMID: 36949885 PMCID: PMC10025390 DOI: 10.3389/fbioe.2023.1140010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
The application of novel bacterial strains for effective biosynthesis of nanoparticles minimizes negative environmental impact and eliminates challenges of available approaches. In the present study, cell-free extract of Stenotrophomonas sp. BS95. was used for synthesis of copper oxide nanoparticles (CuONPs). Characterization of crude and calcined CuONPs was carried out by UV-vis spectroscopy, X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, zeta potential, dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Afterward, biogenic CuONPs were evaluated for antibacterial, antioxidant, and cytotoxic effects using broth micro-dilution method, DPPH assay and alamarBlue assay, respectively. Finally, molecular mechanisms behind anticancer effects of CuONPs was ascertained by real time PCR. UV-vis absorbance spectra registered surface plasmon resonance peaks at 286 nm and 420 nm for crude and calcined CuONPs, respectively. FTIR spectra exhibited bands associated with organic functional groups of bacterial proteins, confirming capping and functionalization of CuONPs. The average crystallite size of crude and calcined CuONPs was determined as 18.24 and 21.3 nm by XRD, respectively. The average zeta potentials of crude and calcined CuONPs were as -28.57 ± 5.13 and -29.47 ± 4.78 mV, respectively, indicating their high stability. Electron microscopy revealed that crude and calcined CuONPs were roughly spherical particles with an average size of 35.24 ± 4.64 and 43.68 ± 2.31 nm, respectively. Biogenic CuONPs induced antibacterial effects with minimal inhibitory concentrations ranging from 62.5 to 1,000 μg/ml against Gram-negative and Gram-positive strains. The antioxidant activity of crude and calcined CuONPs was found to be 83% ± 2.64% and 78% ± 1.73%, respectively. More intriguingly, CuONPs exerted considerable cytotoxic effects on human colon and gastric adenocarcinoma cells, while induced low toxicity on normal cells. Anticancer effects of biogenic CuONPs were confirmed by significant changes induced in the expression of apoptosis-related genes, including P53, BAX, BCL2 and CCND1. Hence, biosynthesized CuONPs could be considered as potential antimicrobial, antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Seyedehsaba Talebian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Nejabat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yasaman Abolhassani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Kaur M, Prasher D, Sharma A, Ghosh D, Sharma R. Natural sunlight driven photocatalytic dye degradation by biogenically synthesized tin oxide (SnO 2) nanostructures using Tinospora crispa stem extract and its anticancer and antibacterial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38869-38885. [PMID: 36585593 DOI: 10.1007/s11356-022-25028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In the present study, tin oxide (SnO2) was synthesized by advocating the principles of green chemistry for the photo-mediated degradation of pollutants, antimicrobial, and as an antitumor agent. Bioactive SnO2 (nanorods & nanospheres) were fabricated using Tinospora crispa stem extract (TCSE) via sol-gel technique and characterized extensively. XRD, UV-VIS, FTIR, and XPS studies confirmed the formation of crystalline and well stoichiometric pure phase of SnO2 nanostructures with optical bandgap 3.2 to 3.5 eV. The transmission electron microscopy (TEM) results demonstrated the effect of secondary phytoconstituents on the shape of SnO2 in a concentration dependent manner. The morphological variations in the obtained nanostructures attributed to the nucleation density and coalescence effect leading to the formation of nanorods with an average diameter 23-25 nm whereas the average particle size of the nanospheres obtained was found to be 23-30 nm. The zeta potential value of SnO2 nanorods was high (- 58.9 mV) indicating the higher stability compared to nanospheres (- 15.6 mV). The SnO2 nanostructures were investigated for the simultaneous degradation of methylene blue with degradation efficiency of 92.3% and 47.3% for rhodamine B in mono system and 72.3%, 47.7% respectively for binary dye system. The anticancer activity of SnO2 nanorods explored against human breast cancer (MCF-7) cells revealed a concentration dependent cytotoxic effect reactive oxygen species (ROS) induced cell death. Additionally, efficient antibacterial activity of SnO2 was established using E.coli. Multifaceted applications of Tinospora crispa stem extract mediated SnO2 nanostructures.
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Physics, MM Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana, 133207, India
| | - Dixit Prasher
- Department of Physics, MM Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana, 133207, India
| | - Anjana Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali, 140306, Punjab, India
| | - Ranjana Sharma
- Department of Physics, MM Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana, 133207, India.
| |
Collapse
|
6
|
Rabiee N, Ahmadi S, Iravani S, Varma RS. Natural resources for sustainable synthesis of nanomaterials with anticancer applications: A move toward green nanomedicine. ENVIRONMENTAL RESEARCH 2023; 216:114803. [PMID: 36379236 DOI: 10.1016/j.envres.2022.114803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Today, researchers have focused on the application of environmentally-benign and sustainable micro- and nanosystems for drug delivery and cancer therapy. Compared to conventional chemotherapeutics, advanced micro- and nanosystems designed by applying abundant, natural, and renewable feedstocks have shown biodegradability, biocompatibility, and low toxicity advantages. However, important aspects of toxicological assessments, clinical translational studies, and suitable functionalization/modification still need to be addressed. Herein, the benefits and challenges of green nanomedicine in cancer nanotherapy and targeted drug delivery are cogitated using nanomaterials designed by exploiting natural and renewable resources. The application of nanomaterials accessed from renewable natural resources, comprising metallic nanomaterials, carbon-based nanomaterials, metal-organic frameworks, natural-derived nanomaterials, etc. for targeted anticancer drug delivery and cancer nanotherapy are deliberated, with emphasis on important limitations/challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Epigenetic Alterations under Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6439097. [PMID: 36071870 PMCID: PMC9444469 DOI: 10.1155/2022/6439097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene expression, including DNA methylation and histone modifications, provides finely tuned responses for cells that undergo cellular environment changes. Abundant evidences have demonstrated the detrimental role of oxidative stress in various human pathogenesis since oxidative stress results from the imbalance between reactive oxygen species (ROS) accumulation and antioxidant defense system. Stem cells can self-renew themselves and meanwhile have the potential to differentiate into many other cell types. As some studies have described the effects of oxidative stress on homeostasis and cell fate decision of stem cells, epigenetic alterations have emerged crucial for mediating the stem cell behaviours under oxidative stress. Here, we review recent findings on the oxidative effects on DNA and histone modifications in stem cells. We propose that epigenetic alterations and oxidative stress may influence each other in stem cells.
Collapse
|
8
|
Wang Q, Wang LX, Zhang CY, Bai N, Feng C, Zhang ZM, Wang L, Gao ZZ. LncRNA CRNDE promotes cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Mol Cell Biochem 2022; 477:1477-1488. [PMID: 35166986 DOI: 10.1007/s11010-022-04382-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 02/06/2023]
Abstract
Ovarian cancer seriously threatens the health of women. LncRNA CRNDE is known to be upregulated in ovarian cancer. However, the mechanism by which CRNDE regulates the progress of ovarian cancer is largely unknown. MTT assay was applied to measure the cell viability. Colony formation assay was used to measure the cell proliferation. Cell migration was tested by wound healing, and Transwell assay was performed to detect cell invasion. In addition, the expression of miR-423-5p, CRNDE and FSCN1 were detected by RT-qPCR and western blotting, respectively. Meanwhile, dual-luciferase reporter assay and RIP assay were performed to explore the correlation between miR-423-5p and CRNDE (or FSCN1). CRNDE and FSCN1 were upregulated in ovarian cancer cells (SKOV3, CAOV-3, IGROV1, A2780 and C13K), while miR-423-5p was downregulated. Moreover, silencing of FSCN1/CRNDE significantly decreased proliferation, migration and invasion of ovarian cancer cells (SKOV3 and CI3K) via suppressing MMP-2 and MMP-9. In addition, CRNDE could sponge miR-423-5p, and FSCN1 was confirmed to be the direct target of miR-423-5p. Furthermore, CRNDE knockdown-induced inhibition of FSCN1 was notably reversed by miR-423-5p downregulation. Knockdown of CRNDE inhibited cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Thus, CRNDE may serve a new target for ovarian cancer.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Pathology, the First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Ling-Xiong Wang
- Institute of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Chun-Yan Zhang
- Birth Defects Prevention and Control Technology Research Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Nan Bai
- The Medicine Clinical Research Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chen Feng
- Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Zhuo-Mei Zhang
- Department of Obstetrics and Gynecology, the Third Medical Center of PLA General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China
| | - Liang Wang
- Department of Pathology, the First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Zhen-Zhen Gao
- Department of Obstetrics and Gynecology, the Third Medical Center of PLA General Hospital, No. 69, Yongding Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
9
|
Hanna DH, R. Saad G. Induction of mitochondria mediated apoptosis in human ovarian cancer cells by folic acid coated tin oxide nanoparticles. PLoS One 2021; 16:e0258115. [PMID: 34597348 PMCID: PMC8486119 DOI: 10.1371/journal.pone.0258115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study aims to prepare folic acid coated tin oxide nanoparticles (FA-SnO2 NPs) for specifically targeting human ovarian cancer cells with minimum side effects against normal cells. METHODS The prepared FA-SnO2 NPs were characterized by FT-IR, UV-vis spectroscopy, XRD, SEM and TEM. The inhibition effects of FA-SnO2 NPs against SKOV3 cancer cell were tested by MTT and LDH assay. Apoptosis induction in FA-SnO2 NPs treated SKOV3 cells were investigated using Annexin V/PI, AO/EB and Comet assays and the possible mechanisms of the cytotoxic action were studied by Flow cytometry, qRT-PCR, Immunohistochemistry, and Western blotting analyses. The effects of FA-SnO2 NPs on reactive oxygen species generation in SKOV3 cells were also examined. Additionally, the safety of utilization FA-SnO2 NPs were studied in vivo using Wister rats. RESULTS The obtained FA-SnO2 NPs displayed amorphous spherical morphology with an average diameter of 157 nm and a zeta potential value of -24 mV. Comparing to uncoated SnO2 NPs, FA-SnO2 NPs had a superior inhibition effect towards SKOV3 cell growth that was suggested to be mediated through higher reactive oxygen species generation. It was showed that FA-SnO2 NPs increased significantly the % of apoptotic cells in the sub- G1 and G2/M phases with a higher intensity comet nucleus in SKOV3 treated cells. Furthermore, FA-SnO2 NPs was significantly increased the expression levels of P53, Bax, and cleaved Caspase-3 and accompanied with a significant decrease of Bcl-2 in the treated SKOV3 cells. CONCLUSION Overall, the results suggested that an increase in cellular FA-SnO2 NPs internalization resulted in a significant induced cytotoxicity in SKOV3 cancer cells in dose-dependent mode through ROS-mediated cell apoptosis that may have occurred through mitochondrial pathway. Additionally, the results confirmed the safety of utilization FA-SnO2 NPs against living systems. So, FA-SnO2 NPs with a specific targeting moiety may be a promising therapeutic candidate for human ovarian cancer.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Gamal R. Saad
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Using Gold-Nanorod-Filled Mesoporous Silica Nanobeads for Enhanced Radiotherapy of Oral Squamous Carcinoma. NANOMATERIALS 2021; 11:nano11092235. [PMID: 34578551 PMCID: PMC8472528 DOI: 10.3390/nano11092235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Radiotherapy (RT), in combination with surgery, is an essential treatment strategy for oral cancer. Although irradiation provides effective control over tumor growth, the surrounding normal tissues are almost inevitably affected. With further understanding of the molecular mechanisms involved in radiation response and recent advances in nanotechnology, using gold nanoparticles as a radiosensitizer provides the preferential sensitization of tumor cells to radiation and minimizes normal tissue damage. Herein, we developed gold nano-sesame-beads (GNSbs), a gold-nanorod-seeded mesoporous silica nanoparticle, as a novel radioenhancer to achieve radiotherapy with a higher therapeutic index. GNSbs in combination with 2 Gy irradiation effectively enhanced the cytotoxic activity CAL-27 cells. The well-designed structure of GNSbs showed preferential cellular uptake by CAL-27 cells at 24 h after incubation. Gold nanorods with high density modified on mesoporous silica nanoparticles resulted in significant reactive oxygen species (ROS) formation after irradiation exposure compared with irradiation alone. Furthermore, GNSbs and irradiation induced more prominent DNA double-strand breaks and G2/M phase arrest in CAL-27 than those in L929. In animal studies, radiotherapy using GNSbs as a radiosensitizer showed significant suppression of tumor growth in an orthotopic model of oral cancer. These results demonstrate that using GNSbs as a radiosensitizer could possess clinical potential for the treatment of oral squamous carcinoma.
Collapse
|