1
|
Lamb CD, Maitland B, Hepburn MS, Dargaville TR, Kennedy BF, Dalton PD, Keating A, De-Juan-Pardo EM. Understanding the Significance of Layer Bonding in Melt Electrowriting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407514. [PMID: 39447154 DOI: 10.1002/advs.202407514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Indexed: 10/26/2024]
Abstract
Melt electrowriting (MEW) is a high-resolution additive manufacturing technology capable of depositing micrometric fibers onto a moving collector to form 3D scaffolds of controlled mechanical properties. While the critical role of layer bonding to achieve mechanical integrity in fused deposition modeling has been widely reported, it remains largely unknown in MEW, in part due to a lack of methods to assess it. Here, a systematic framework is developed to unravel the significance of layer bonding in MEW scaffolds and its ultimate effect on their mechanical properties. Results show that printing parameters, scaffold design, and print path have a strong impact on layer bonding strength of poly(ɛ-caprolactone) MEW scaffolds. This study demonstrates that a small increase of 5 µm in fiber diameter can enhance the layer bonding strength by as much as 70%, greatly impacting the overall scaffold properties. A method is also established to control MEW scaffold layer bonding using a heated collector. Importantly, this study reveals that scaffold architecture alone is not responsible for the overall mechanical properties. Finally, a method to obtain tailored layer bond strengths within a given scaffold is established. This has significant implications as provides new possibilities to control mechanical properties of MEW scaffolds through layer bonding.
Collapse
Affiliation(s)
- Christopher D Lamb
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brooke Maitland
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Matt S Hepburn
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, Torun, 87-100, Poland
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Brendan F Kennedy
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, Torun, 87-100, Poland
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Adrian Keating
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
2
|
Joseph A, Uthirapathy V. A Systematic Review of the Contribution of Additive Manufacturing toward Orthopedic Applications. ACS OMEGA 2024; 9:44042-44075. [PMID: 39524636 PMCID: PMC11541519 DOI: 10.1021/acsomega.4c04870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Human bone holds an inherent capacity for repairing itself from trauma and damage, but concerning the severity of the defect, the choice of implant placement is a must. Additive manufacturing has become an elite option due to its various specifications such as patient-specific custom development of implants and its easy fabrication rather than the conventional methods used over the years. Additive manufacturing allows customization of the pore size, porosity, various mechanical properties, and complex structure design and formulation. Selective laser melting, powder bed fusion, electron beam melting, and fused deposition modeling are the various AM methods used extensively for implant fabrication. Metals, polymers, biocrystals, composites, and bio-HEA materials are used for implant fabrication for various applications. A wide variety of polymer implants are fabricated using additive manufacturing for nonload-bearing applications, and β-tricalcium phosphate, hydroxyapatite, bioactive glass, etc. are mainly used as ceramic materials in additive manufacturing due to the biological properties that could be imparted by the latter. For decades metals have played a major role in implant fabrication, and additive manufacturing of metals provides an easy approach to implant fabrication with augmented qualities. Various challenges and setbacks faced in the fabrication need postprocessing such as sintering, coating, surface polishing, etc. The emergence of bio-HEA materials, printing of shape memory implants, and five-dimensional printing are the trends of the era in additive manufacturing.
Collapse
Affiliation(s)
- Alphonsa Joseph
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| | - Vijayalakshmi Uthirapathy
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| |
Collapse
|
3
|
Orozco-Osorio YA, Gaita-Anturi AV, Ossa-Orozco CP, Arias-Acevedo M, Uribe D, Paucar C, Vasquez AF, Saldarriaga W, Ramirez JG, Lopera A, García C. Utilization of Additive Manufacturing Techniques for the Development of a Novel Scaffolds with Magnetic Properties for Potential Application in Enhanced Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402419. [PMID: 39004887 DOI: 10.1002/smll.202402419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.
Collapse
Affiliation(s)
| | | | | | - María Arias-Acevedo
- Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia
| | - Diego Uribe
- Instituto Tecnológico Metropolitano, Calle 73 #76A-354, Campus Robledo, Medellín, Antioquia, 50034, Colombia
| | - Carlos Paucar
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| | | | - Wilmer Saldarriaga
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| | | | - Alex Lopera
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Universidad Nacional de Colombia, La Paz, 202017, Colombia
| | - Claudia García
- Universidad Nacional de Colombia sede Medellín, Carrera 65 # 59A-100, Medellin, Antioquia, 050034, Colombia
| |
Collapse
|
4
|
Wang Y, Fu Y, Wang Q, Kong D, Wang Z, Liu J. Recent advancements in polymeric heart valves: From basic research to clinical trials. Mater Today Bio 2024; 28:101194. [PMID: 39221196 PMCID: PMC11364905 DOI: 10.1016/j.mtbio.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Valvular heart diseases (VHDs) have become one of the most prevalent heart diseases worldwide, and prosthetic valve replacement is one of the effective treatments. With the fast development of minimal invasive technology, transcatheter valves replacement has been exploring in recent years, such as transcatheter aortic valve replacement (TAVR) technology. In addition, basic research on prosthetic valves has begun to shift from traditional mechanical valves and biological valves to the development of polymeric heart valves. The polymeric heart valves (PHVs) have shown a bright future due to their advantages of longer durability, better biocompatibility and reduced cost. This review gives a brief history of the development of polymeric heart valves, provides a summary of the types of polymer materials suitable for heart leaflets and the emerging processing/preparation methods for polymeric heart valves in the basic research. Besides, we facilitate a deeper understanding of polymeric heart valve products that are currently in preclinical/clinical studies, also summary the limitations of the present researches as well as the future development trends. Hence, this review will provide a holistic understanding for researchers working in the field of prosthetic valves, and will offer ideas for the design and research of valves with better durability and biocompatibility.
Collapse
Affiliation(s)
- Yuanchi Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yulong Fu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, Nankai University School of Medicine, Tianjin 300071, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
5
|
Mueller KMA, Mansi S, De-Juan-Pardo EM, Mela P. Advances in melt electrowriting for cardiovascular applications. Front Bioeng Biotechnol 2024; 12:1425073. [PMID: 39355277 PMCID: PMC11442423 DOI: 10.3389/fbioe.2024.1425073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Melt electrowriting (MEW) is an electric-field-assisted additive biofabrication technique that has brought significant advancements to bioinspired scaffold design for soft tissue engineering and beyond. Owing to its targeted microfiber placement, MEW has become a powerful platform technology for the fabrication of in vitro disease models up to functional biohybrid constructs that are investigated in vivo to reach clinical translation soon. This work provides a concise overview of this rapidly evolving field by highlighting the key contributions of MEW to cardiovascular tissue engineering. Specifically, we i) pinpoint the methods to introduce microvascular networks in thick 3D constructs benefitting from (sacrificial) MEW microfibers, ii) report MEW-based concepts for small-diameter vascular grafts and stents, iii) showcase how contracting cardiac tissues can profit from the tunable structure-property relationship of MEW scaffolds, and iv) address how complete regenerative heart valves can be built on complex fiber scaffold architectures that recapitulate J-shaped tensile properties and tissue heterogeneity. Lastly, we touch on novel biomaterial advancements and discuss the technological challenges of MEW to unlock the full potential of this transformative technology.
Collapse
Affiliation(s)
- Kilian Maria Arthur Mueller
- Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany
| | - Salma Mansi
- Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Engineering, The University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Petra Mela
- Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany
| |
Collapse
|
6
|
Bartolf-Kopp M, Jungst T. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process? Adv Healthc Mater 2024; 13:e2400426. [PMID: 38607966 DOI: 10.1002/adhm.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.
Collapse
Affiliation(s)
- Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
- Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
7
|
Vernon MJ, Mela P, Dilley RJ, Jansen S, Doyle BJ, Ihdayhid AR, De-Juan-Pardo EM. 3D printing of heart valves. Trends Biotechnol 2024; 42:612-630. [PMID: 38238246 DOI: 10.1016/j.tibtech.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 05/04/2024]
Abstract
3D printing technologies have the potential to revolutionize the manufacture of heart valves through the ability to create bespoke, complex constructs. In light of recent technological advances, we review the progress made towards 3D printing of heart valves, focusing on studies that have utilised these technologies beyond manufacturing patient-specific moulds. We first overview the key requirements of a heart valve to assess functionality. We then present the 3D printing technologies used to engineer heart valves. By referencing International Organisation for Standardisation (ISO) Standard 5840 (Cardiovascular implants - Cardiac valve prostheses), we provide insight into the achieved functionality of these valves. Overall, 3D printing promises to have a significant positive impact on the creation of artificial heart valves and potentially unlock full complex functionality.
Collapse
Affiliation(s)
- Michael J Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering, Munich Institute of Biomedical Engineering and TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia; Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Abdul R Ihdayhid
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia; Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
8
|
Janssen R, Benito-Zarza L, Cleijpool P, Valverde MG, Mihăilă SM, Bastiaan-Net S, Garssen J, Willemsen LEM, Masereeuw R. Biofabrication Directions in Recapitulating the Immune System-on-a-Chip. Adv Healthc Mater 2024:e2304569. [PMID: 38625078 DOI: 10.1002/adhm.202304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Ever since the implementation of microfluidics in the biomedical field, in vitro models have experienced unprecedented progress that has led to a new generation of highly complex miniaturized cell culture platforms, known as Organs-on-a-Chip (OoC). These devices aim to emulate biologically relevant environments, encompassing perfusion and other mechanical and/or biochemical stimuli, to recapitulate key physiological events. While OoCs excel in simulating diverse organ functions, the integration of the immune organs and immune cells, though recent and challenging, is pivotal for a more comprehensive representation of human physiology. This comprehensive review covers the state of the art in the intricate landscape of immune OoC models, shedding light on the pivotal role of biofabrication technologies in bridging the gap between conceptual design and physiological relevance. The multifaceted aspects of immune cell behavior, crosstalk, and immune responses that are aimed to be replicated within microfluidic environments, emphasizing the need for precise biomimicry are explored. Furthermore, the latest breakthroughs and challenges of biofabrication technologies in immune OoC platforms are described, guiding researchers toward a deeper understanding of immune physiology and the development of more accurate and human predictive models for a.o., immune-related disorders, immune development, immune programming, and immune regulation.
Collapse
Affiliation(s)
- Robine Janssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Laura Benito-Zarza
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Pim Cleijpool
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Marta G Valverde
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Silvia M Mihăilă
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Danone Global Research & Innovation Center, Danone Nutricia Research B.V., Utrecht, 3584 CT, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Pharmacology, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
9
|
Reizabal A, Saiz PG, Luposchainsky S, Liashenko I, Chasko D, Lanceros-Méndez S, Lindberg G, Dalton PD. Cryo-Electrohydrodynamic Jetting of Aqueous Silk Fibroin Solutions. ACS Biomater Sci Eng 2024; 10:1843-1855. [PMID: 37988293 PMCID: PMC10934238 DOI: 10.1021/acsbiomaterials.3c00851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The incorporation of 3D-printing principles with electrohydrodynamic (EHD) jetting provides a harmonious balance between resolution and processing speed, allowing for the creation of high-resolution centimeter-scale constructs. Typically, EHD jetting of polymer melts offers the advantage of rapid solidification, while processing polymer solutions requires solvent evaporation to transition into solid fibers, creating challenges for reliable printing. This study navigates a hybrid approach aimed at minimizing printing instabilities by combining viscous solutions and achieving rapid solidification through freezing. Our method introduces and fully describes a modified open-source 3D printer equipped with a frozen collector that operates at -35 °C. As a proof of concept, highly concentrated silk fibroin aqueous solutions are processed into stable micrometer scale jets, which rapidly solidify upon contact with the frozen collector. This results in the formation of uniform microfibers characterized by an average diameter of 27 ± 5 μm, a textured surface, and porous internal channels. The absence of instabilities and the notably fast direct writing speed of 42 mm·s-1 enable precise, fast, and reliable deposition of these fibers into porous constructs spanning several centimeters. The effectiveness of this approach is demonstrated by the consistent production of biologically relevant scaffolds that can be customized with varying pore sizes and shapes. The achieved degree of control over micrometric jet solidification and deposition dynamics represents a significant advancement in EHD jetting, particularly within the domain of aqueous polymer solutions, offering new opportunities for the development of intricate and functional biological structures.
Collapse
Affiliation(s)
- Ander Reizabal
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science
Park, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Paula G. Saiz
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
- Macromolecular
Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty
of Science and Technology, University of
the Basque Country (UPV/EHU), Barrio Sarriena s/n, E-48940 Leioa, Spain
| | - Simon Luposchainsky
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
| | - Ievgenii Liashenko
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
| | - DeShea Chasko
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
| | | | - Gabriella Lindberg
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
| | - Paul D. Dalton
- Phil
and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene 97403, Oregon, United States
| |
Collapse
|
10
|
Cross-Najafi AA, Farag K, Chen AM, Smith LJ, Zhang W, Li P, Ekser B. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024; 108:357-368. [PMID: 37322580 PMCID: PMC10724374 DOI: 10.1097/tp.0000000000004668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although liver transplantation is the gold-standard therapy for end-stage liver disease, the shortage of suitable organs results in only 25% of waitlisted patients undergoing transplants. Three-dimensional (3D) bioprinting is an emerging technology and a potential solution for personalized medicine applications. This review highlights existing 3D bioprinting technologies of liver tissues, current anatomical and physiological limitations to 3D bioprinting of a whole liver, and recent progress bringing this innovation closer to clinical use. We reviewed updated literature across multiple facets in 3D bioprinting, comparing laser, inkjet, and extrusion-based printing modalities, scaffolded versus scaffold-free systems, development of an oxygenated bioreactor, and challenges in establishing long-term viability of hepatic parenchyma and incorporating structurally and functionally robust vasculature and biliary systems. Advancements in liver organoid models have also increased their complexity and utility for liver disease modeling, pharmacologic testing, and regenerative medicine. Recent developments in 3D bioprinting techniques have improved the speed, anatomical, and physiological accuracy, and viability of 3D-bioprinted liver tissues. Optimization focusing on 3D bioprinting of the vascular system and bile duct has improved both the structural and functional accuracy of these models, which will be critical in the successful expansion of 3D-bioprinted liver tissues toward transplantable organs. With further dedicated research, patients with end-stage liver disease may soon be recipients of customized 3D-bioprinted livers, reducing or eliminating the need for immunosuppressive regimens.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristine Farag
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Baroth T, Loewner S, Heymann H, Cholewa F, Blume H, Blume C. An Intelligent and Efficient Workflow for Path-Oriented 3D Bioprinting of Tubular Scaffolds. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:323-332. [PMID: 38389675 PMCID: PMC10880655 DOI: 10.1089/3dp.2022.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Modern 3D printing is a valuable tool for tissue engineering (TE), and the fabrication of complex geometries such as tubular scaffolds with adaptable structure, for example, as replacements for intestines, bronchi, esophagus, or vessels, could contribute to standardized procedures in the future of regenerative medicine. However, high-precision bioprinting of scaffolds for tubular TE applications remain a major challenge and is an arduous endeavor with currently available three-axis bioprinters, which are limited to planar, layer-by-layer printing processes. In this work, a novel, straightforward workflow for creating toolpaths and command sets for tubular scaffolds is presented. By combining a custom software application with commercial 3D design software, a comparatively large degree of design freedom was achieved while ensuring ease of use and extensibility for future research needs. As a hardware platform, two commercial 3D bioprinters were retrofitted with a rotary axis to accommodate cylindrical mandrels as print beds, overcoming the limitations of planar print beds. The printing process using the new method was evaluated in terms of the mechanical, actuation, and synchronization characteristics of the linear and rotating axes, as well as the stability of the printing process. In this context, it became clear that extrusion-based printing processes are very sensitive to positioning errors when used with small nozzles. Despite these technical difficulties, the new process can produce single-layer, multilayer, and multimaterial structures with a wide range of pore geometries. In addition, extrusion-based printing processes can be combined with melt electrowriting to produce durable scaffolds with features in the micrometer to millimeter range. Overall, the suitability of this setup for a wide range of TE applications has thus been demonstrated.
Collapse
Affiliation(s)
- Timo Baroth
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Sebastian Loewner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Henrik Heymann
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Fabian Cholewa
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Blume
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
12
|
Weekes A, Wehr G, Pinto N, Jenkins J, Li Z, Meinert C, Klein TJ. Highly compliant biomimetic scaffolds for small diameter tissue-engineered vascular grafts (TEVGs) produced via melt electrowriting (MEW). Biofabrication 2023; 16:015017. [PMID: 37992322 DOI: 10.1088/1758-5090/ad0ee1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Biofabrication approaches toward the development of tissue-engineered vascular grafts (TEVGs) have been widely investigated. However, successful translation has been limited to large diameter applications, with small diameter grafts frequently failing due to poor mechanical performance, in particular mismatched radial compliance. Herein, melt electrowriting (MEW) of poly(ϵ-caprolactone) has enabled the manufacture of highly porous, biocompatible microfibre scaffolds with physiological anisotropic mechanical properties, as substrates for the biofabrication of small diameter TEVGs. Highly reproducible scaffolds with internal diameter of 4.0 mm were designed with 500 and 250µm pore sizes, demonstrating minimal deviation of less than 4% from the intended architecture, with consistent fibre diameter of 15 ± 2µm across groups. Scaffolds were designed with straight or sinusoidal circumferential microfibre architecture respectively, to investigate the influence of biomimetic fibre straightening on radial compliance. The results demonstrate that scaffolds with wave-like circumferential microfibre laydown patterns mimicking the architectural arrangement of collagen fibres in arteries, exhibit physiological compliance (12.9 ± 0.6% per 100 mmHg), while equivalent control geometries with straight fibres exhibit significantly reduced compliance (5.5 ± 0.1% per 100 mmHg). Further mechanical characterisation revealed the sinusoidal scaffolds designed with 250µm pores exhibited physiologically relevant burst pressures of 1078 ± 236 mmHg, compared to 631 ± 105 mmHg for corresponding 500µm controls. Similar trends were observed for strength and failure, indicating enhanced mechanical performance of scaffolds with reduced pore spacing. Preliminaryin vitroculture of human mesenchymal stem cells validated the MEW scaffolds as suitable substrates for cellular growth and proliferation, with high cell viability (>90%) and coverage (>85%), with subsequent seeding of vascular endothelial cells indicating successful attachment and preliminary endothelialisation of tissue-cultured constructs. These findings support further investigation into long-term tissue culture methodologies for enhanced production of vascular extracellular matrix components, toward the development of the next generation of small diameter TEVGs.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Gabrielle Wehr
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
13
|
Barceló X, Eichholz K, Gonçalves I, Kronemberger GS, Dufour A, Garcia O, Kelly DJ. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2023; 16:015013. [PMID: 37939395 DOI: 10.1088/1758-5090/ad0ab9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Inês Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc, Dublin D02 R590, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
14
|
Kabirian F, Mozafari M, Mela P, Heying R. Incorporation of Controlled Release Systems Improves the Functionality of Biodegradable 3D Printed Cardiovascular Implants. ACS Biomater Sci Eng 2023; 9:5953-5967. [PMID: 37856240 DOI: 10.1021/acsbiomaterials.3c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
New horizons in cardiovascular research are opened by using 3D printing for biodegradable implants. This additive manufacturing approach allows the design and fabrication of complex structures according to the patient's imaging data in an accurate, reproducible, cost-effective, and quick manner. Acellular cardiovascular implants produced from biodegradable materials have the potential to provide enough support for in situ tissue regeneration while gradually being replaced by neo-autologous tissue. Subsequently, they have the potential to prevent long-term complications. In this Review, we discuss the current status of 3D printing applications in the development of biodegradable cardiovascular implants with a focus on design, biomaterial selection, fabrication methods, and advantages of implantable controlled release systems. Moreover, we delve into the intricate challenges that accompany the clinical translation of these groundbreaking innovations, presenting a glimpse of potential solutions poised to enable the realization of these technologies in the realm of cardiovascular medicine.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering, Munich Institute of Biomedical Engineering, and TUM School of Engineering and Design, Technical University of Munich, Munich 80333, Germany
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
15
|
von Witzleben M, Stoppe T, Zeinalova A, Chen Z, Ahlfeld T, Bornitz M, Bernhardt A, Neudert M, Gelinsky M. Multimodal additive manufacturing of biomimetic tympanic membrane replacements with near tissue-like acousto-mechanical and biological properties. Acta Biomater 2023; 170:124-141. [PMID: 37696412 DOI: 10.1016/j.actbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The three additive manufacturing techniques fused deposition modeling, gel plotting and melt electrowriting were combined to develop a mimicry of the tympanic membrane (TM) to tackle large TM perforations caused by chronic otitis media. The mimicry of the collagen fiber orientation of the TM was accompanied by a study of multiple funnel-shaped mimics of the TM morphology, resulting in mechanical and acoustic properties similar to those of the eardrum. For the different 3D printing techniques used, the process parameters were optimized to allow reasonable microfiber arrangements within the melt electrowriting setup. Interestingly, the fiber pattern was less important for the acousto-mechanical properties than the overall morphology. Furthermore, the behavior of keratinocytes and fibroblasts is crucial for the repair of the TM, and an in vitro study showed a high biocompatibility of both primary cell types while mimicking the respective cell layers of the TM. A simulation of the in vivo ingrowth of both cell types resulted in a cell growth orientation similar to the original collagen fiber orientation of the TM. Overall, the combined approach showed all the necessary parameters to support the growth of a neo-epithelial layer with a similar structure and morphology to the original membrane. It therefore offers a suitable alternative to autologous materials for the treatment of chronic otitis media. STATEMENT OF SIGNIFICANCE: Millions of people worldwide suffer from chronic middle ear infections. Although the tympanic membrane (TM) can be reconstructed with autologous materials, the grafts used for this purpose require extensive manual preparation during surgery. This affects not only the hearing ability but also the stability of the reconstructed TM, especially in the case of full TM reconstruction. The synthetic alternative presented here mimicked not only the fibrous structure of the TM but also its morphology, resulting in similar acousto-mechanical properties. Furthermore, its high biocompatibility supported the migration of keratinocytes and fibroblasts to form a neo-epithelial layer. Overall, this completely new TM replacement was achieved by combining three different additive manufacturing processes.
Collapse
Affiliation(s)
- Max von Witzleben
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Thomas Stoppe
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Alina Zeinalova
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Zhaoyu Chen
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Tilman Ahlfeld
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Matthias Bornitz
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Anne Bernhardt
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Marcus Neudert
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Michael Gelinsky
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany.
| |
Collapse
|
16
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
17
|
Bourdon L, Attik N, Belkessam L, Chevalier C, Bousige C, Brioude A, Salles V. Direct-Writing Electrospun Functionalized Scaffolds for Periodontal Regeneration: In Vitro Studies. J Funct Biomater 2023; 14:jfb14050263. [PMID: 37233373 DOI: 10.3390/jfb14050263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration.
Collapse
Affiliation(s)
- Laura Bourdon
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Liza Belkessam
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- Faculté d'Odontologie, Université Lyon 1, 11 Rue Guillaume Paradin, 69008 Lyon, France
| | - Colin Bousige
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Arnaud Brioude
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR 5615, CNRS, Université Claude Bernard Lyon 1, Bâtiment Chevreul, 6 Rue Victor Grignard, 69622 Villeurbanne, France
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| |
Collapse
|
18
|
Sanetrnik D, Hausnerova B, Novak M, Mukund BN. Effect of Particle Size and Shape on Wall Slip of Highly Filled Powder Feedstocks for Material Extrusion and Powder Injection Molding. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:236-244. [PMID: 37095867 PMCID: PMC10122254 DOI: 10.1089/3dp.2021.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A necessity to distinguish between the influence of powder shape and size (particle size distribution) is especially demanding for highly filled metal powder feedstocks employed in additive manufacturing and powder injection molding. As their processability is evaluated through rheological behavior, the study focuses on the effect of powder size/shape on a wall slip, which is a typical phenomenon determining flow performance of these materials. Water and gas atomized 17-4PH stainless steel powders with D 50 of about 3 and 20 μm are admixed into a binder containing low-density polyethylene, ethylene vinyl acetate, and paraffin wax. Mooney analysis to intercept the slip velocity of 55 vol. % filled compounds reveals that wall slip effect appears to vary significantly with size and shape of metal powders-round shaped and large particles are the most prone to the wall slip. However, the evaluation is affected by the type of the flow streams resulting from the geometry of the dies-conical dies reduce the slip up to 60% in case of fine and round particles.
Collapse
Affiliation(s)
- Daniel Sanetrnik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Berenika Hausnerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
- Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
- Address correspondence to: Berenika Hausnerova, Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, Zlin 760 01, Czech Republic
| | - Martin Novak
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Zlin, Czech Republic
- Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
| | - Bhimasena Nagaraj Mukund
- Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, Zlin, Czech Republic
- Indo MIM Pvt. Ltd., Bangalore, India
| |
Collapse
|
19
|
Javadzadeh M, Del Barrio J, Sánchez-Somolinos C. Melt Electrowriting of Liquid Crystal Elastomer Scaffolds with Programmed Mechanical Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209244. [PMID: 36459991 DOI: 10.1002/adma.202209244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recently, significant advances have been achieved to precisely program the response of liquid crystal elastomers (LCEs) through extrusion-based additive manufacturing techniques; however, important challenges remain, especially when well-defined scaffolds based on ultrafine fibers are required. Here the melt electrowriting of reactive liquid crystalline inks, leading, after ultraviolet-light-induced crosslinking, to digitally positioned uniform LCE fibers with diameters ranging from hundreds of nanometers to tens of micrometers is presented, which is hardly accessible with conventional extrusion-based printing techniques. The electrowriting process induces the preferential alignment of the mesogens parallel to the fiber's axis. Such an alignment, defined by the printing path, determines the mechanical response of the crosslinked material upon stimulation. This manufacturing platform allows the preparation of open square lattice scaffolds with ultrafine fibers (a few micrometers in diameter), periods as small as 90 µm, and well-defined morphology. Additionally, the combination of accurate fiber stacking (up to 50 layers) and fiber fusion between layers leads to unprecedented microstructures composed of high-aspect-ratio LCE thin walls. The possibility of digitally controlling the printing of fibers allows the preparation complex fiber-based scaffolds with programmed and reversible shape-morphing, thus opening new avenues to prepare miniaturized actuators and smart structures for soft robotics and biomedical applications.
Collapse
Affiliation(s)
- Mehrzad Javadzadeh
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Química Orgánica, Zaragoza, 50009, Spain
| | - Carlos Sánchez-Somolinos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Zaragoza, 50018, Spain
| |
Collapse
|
20
|
Zdraveva E, Bendelja K, Bočkor L, Dolenec T, Mijović B. Detection of Limbal Stem Cells Adhered to Melt Electrospun Silk Fibroin and Gelatin-Modified Polylactic Acid Scaffolds. Polymers (Basel) 2023; 15:polym15030777. [PMID: 36772078 PMCID: PMC9919663 DOI: 10.3390/polym15030777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Limbal stem cells (LSCs) are of paramount importance in corneal epithelial tissue repair. The cornea becomes opaque in case of limbal stem cell deficiency (LSCD), which may cause serious damage to the ocular visual function. There are many techniques to restore damaged epithelium, one of which is the transplantation of healthy cultured LSCs, usually onto a human amniotic membrane or onto bio-based engineered scaffolds in recent years. In this study, melt electrospun polylactic acid (PLA) was modified by silk fibroin or gelatin and further cultured with LSCs originating from three different donors. In terms of physicochemical properties, both modifications slightly increased PLA scaffold porosity (with a significantly larger pore area for the PLA/gelatin) and improved the scaffolds' swelling percentage, as well as their biodegradation rate. In terms of the scaffold application function, the aim was to detect/visualize whether LSCs adhered to the scaffolds and to further determine cell viability (total number), as well as to observe p63 and CK3 expressions in the LSCs. LSCs were attached to the surface of microfibers, showing flattened conformations or 3D spheres in the formation of colonies or agglomerations, respectively. All scaffolds showed the ability to bind the cells onto the surface of individual microfibers (PLA and PLA/gelatin), or in between the microfibers (PLA/silk fibroin), with the latter showing the most intense red fluorescence of the stained cells. All scaffolds proved to be biocompatible, while the PLA/silk fibroin scaffolds showed the highest 98% viability of 2.9 × 106 LSCs, with more than 98% of p63 and less than 20% of CK3 expressions in the LSCs, thus confirming the support of their growth, proliferation and corneal epithelial differentiation. The results show the potential of these bio-engineered scaffolds to be used as an alternative clinical approach.
Collapse
Affiliation(s)
- Emilija Zdraveva
- Department of Fundamental Natural and Engineering Sciences, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Bočkor
- Center for Applied Bioanthropology, Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Tamara Dolenec
- Department of Transfusion and Regenerative Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Budimir Mijović
- Department of Fundamental Natural and Engineering Sciences, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
21
|
Reizabal A, Tandon B, Lanceros-Méndez S, Dalton PD. Electrohydrodynamic 3D Printing of Aqueous Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205255. [PMID: 36482162 DOI: 10.1002/smll.202205255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Among the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited. To summarize the field and advocate for increased use of aqueous bio-based materials, this review summarizes the most significant contributions of aqueous solution processing. Special emphasis has been placed on understanding the effects of different printing parameters, the prospects for 3D processing new materials, and future challenges.
Collapse
Affiliation(s)
- Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Biranche Tandon
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| |
Collapse
|
22
|
Daghrery A, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Unveiling the potential of melt electrowriting in regenerative dental medicine. Acta Biomater 2023; 156:88-109. [PMID: 35026478 PMCID: PMC11046422 DOI: 10.1016/j.actbio.2022.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
For nearly three decades, tissue engineering strategies have been leveraged to devise effective therapeutics for dental, oral, and craniofacial (DOC) regenerative medicine and treat permanent deformities caused by many debilitating health conditions. In this regard, additive manufacturing (AM) allows the fabrication of personalized scaffolds that have the potential to recapitulate native tissue morphology and biomechanics through the utilization of several 3D printing techniques. Among these, melt electrowriting (MEW) is a versatile direct electrowriting process that permits the development of well-organized fibrous constructs with fiber resolutions ranging from micron to nanoscale. Indeed, MEW offers great prospects for the fabrication of scaffolds mimicking tissue specificity, healthy and pathophysiological microenvironments, personalized multi-scale transitions, and functional interfaces for tissue regeneration in medicine and dentistry. Excitingly, recent work has demonstrated the potential of converging MEW with other AM technologies and/or cell-laden scaffold fabrication (bioprinting) as a favorable route to overcome some of the limitations of MEW for DOC tissue regeneration. In particular, such convergency fabrication strategy has opened great promise in terms of supporting multi-tissue compartmentalization and predetermined cell commitment. In this review, we offer a critical appraisal on the latest advances in MEW and its convergence with other biofabrication technologies for DOC tissue regeneration. We first present the engineering principles of MEW and the most relevant design aspects for transition from flat to more anatomically relevant 3D structures while printing highly-ordered constructs. Secondly, we provide a thorough assessment of contemporary achievements using MEW scaffolds to study and guide soft and hard tissue regeneration, and draw a parallel on how to extrapolate proven concepts for applications in DOC tissue regeneration. Finally, we offer a combined engineering/clinical perspective on the fabrication of hierarchically organized MEW scaffold architectures and the future translational potential of site-specific, single-step scaffold fabrication to address tissue and tissue interfaces in dental, oral, and craniofacial regenerative medicine. STATEMENT OF SIGNIFICANCE: Melt electrowriting (MEW) techniques can further replicate the complexity of native tissues and could be the foundation for novel personalized (defect-specific) and tissue-specific clinical approaches in regenerative dental medicine. This work presents a unique perspective on how MEW has been translated towards the application of highly-ordered personalized multi-scale and functional interfaces for tissue regeneration, targeting the transition from flat to anatomically-relevant three-dimensional structures. Furthermore, we address the value of convergence of biofabrication technologies to overcome the traditional manufacturing limitations provided by multi-tissue complexity. Taken together, this work offers abundant engineering and clinical perspectives on the fabrication of hierarchically MEW architectures aiming towards site-specific implants to address complex tissue damage in regenerative dental medicine.
Collapse
Affiliation(s)
- Arwa Daghrery
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States; Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Isaac J de Souza Araújo
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Marco C Bottino
- Department of Cardiology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States.
| |
Collapse
|
23
|
Lecina-Tejero Ó, Pérez MÁ, García-Gareta E, Borau C. The rise of mechanical metamaterials: Auxetic constructs for skin wound healing. J Tissue Eng 2023; 14:20417314231177838. [PMID: 37362902 PMCID: PMC10285607 DOI: 10.1177/20417314231177838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Auxetic materials are known for their unique ability to expand/contract in multiple directions when stretched/compressed. In other words, they exhibit a negative Poisson's ratio, which is usually positive for most of materials. This behavior appears in some biological tissues such as human skin, where it promotes wound healing by providing an enhanced mechanical support and facilitating cell migration. Skin tissue engineering has been a growing research topic in recent years, largely thanks to the rapid development of 3D printing techniques and technologies. The combination of computational studies with rapid manufacturing and tailored designs presents a huge potential for the future of personalized medicine. Overall, this review article provides a comprehensive overview of the current state of research on auxetic constructs for skin healing applications, highlighting the potential of auxetics as a promising treatment option for skin wounds. The article also identifies gaps in the current knowledge and suggests areas for future research. In particular, we discuss the designs, materials, manufacturing techniques, and also the computational and experimental studies on this topic.
Collapse
Affiliation(s)
- Óscar Lecina-Tejero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon, Spain
- Centro Universitario de la Defensa de Zaragoza, Zaragoza, 50090, Spain
| |
Collapse
|
24
|
Vernon MJ, Lu J, Padman B, Lamb C, Kent R, Mela P, Doyle B, Ihdayhid AR, Jansen S, Dilley RJ, De‐Juan‐Pardo EM. Engineering Heart Valve Interfaces Using Melt Electrowriting: Biomimetic Design Strategies from Multi-Modal Imaging. Adv Healthc Mater 2022; 11:e2201028. [PMID: 36300603 PMCID: PMC11468946 DOI: 10.1002/adhm.202201028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/12/2022] [Indexed: 01/28/2023]
Abstract
Interfaces within biological tissues not only connect different regions but also contribute to the overall functionality of the tissue. This is especially true in the case of the aortic heart valve. Here, melt electrowriting (MEW) is used to engineer complex, user-defined, interfaces for heart valve scaffolds. First, a multi-modal imaging investigation into the interfacial regions of the valve reveals differences in collagen orientation, density, and recruitment in previously unexplored regions including the commissure and inter-leaflet triangle. Overlapping, suturing, and continuous printing methods for interfacing MEW scaffolds are then investigated for their morphological, tensile, and flexural properties, demonstrating the superior performance of continuous interfaces. G-codes for MEW scaffolds with complex interfaces are designed and generated using a novel software and graphical user interface. Finally, a singular MEW scaffold for the interfacial region of the aortic heart valve is presented incorporating continuous interfaces, gradient porosities, variable layer numbers across regions, and tailored fiber orientations inspired by the collagen distribution and orientation from the multi-modal imaging study. The scaffold exhibits similar yield strain, hysteresis, and relaxation behavior to porcine heart valves. This work demonstrates the ability of a bioinspired approach for MEW scaffold design to address the functional complexity of biological tissues.
Collapse
Affiliation(s)
- Michael J. Vernon
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Jason Lu
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Benjamin Padman
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaPerthWA6009Australia
| | - Christopher Lamb
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Ross Kent
- Regenerative Medicine ProgramCIMAUniversidad de NavarraPamplonaNavarra31008Spain
| | - Petra Mela
- Medical Materials and ImplantsDepartment of Mechanical Engineering, Munich Institute of Biomedical Engineering and TUM School of Engineering and DesignTechnical University of MunichBoltzmannstr. 1585748GarchingGermany
| | - Barry Doyle
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralian Research CouncilParkvilleACT2609Australia
- British Heart Foundation Centre of Cardiovascular ScienceThe University of EdinburghEdinburghEH1‐3ATUK
| | - Abdul Rahman Ihdayhid
- Department of CardiologyFiona Stanley HospitalPerthWA6150Australia
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
| | - Shirley Jansen
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalPerthWA6009Australia
- Heart and Vascular Research InstituteHarry Perkins Institute of Medical ResearchPerthWA6009Australia
| | - Rodney J. Dilley
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| | - Elena M. De‐Juan‐Pardo
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical Centreand UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of EngineeringThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|
25
|
Hai AM, Yue Z, Beirne S, Wallace G. Electrowriting of silk fibroin: Towards
3D
fabrication for tissue engineering applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abdul Moqeet Hai
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
- Institute of Polymer and Textile Engineering University of the Punjab Lahore Pakistan
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| |
Collapse
|
26
|
Loewner S, Heene S, Baroth T, Heymann H, Cholewa F, Blume H, Blume C. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front Bioeng Biotechnol 2022; 10:896719. [PMID: 36061443 PMCID: PMC9428513 DOI: 10.3389/fbioe.2022.896719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Melt electro writing (MEW) is a high-resolution 3D printing technique that combines elements of electro-hydrodynamic fiber attraction and melts extrusion. The ability to precisely deposit micro- to nanometer strands of biocompatible polymers in a layer-by-layer fashion makes MEW a promising scaffold fabrication method for all kinds of tissue engineering applications. This review describes possibilities to optimize multi-parametric MEW processes for precise fiber deposition over multiple layers and prevent printing defects. Printing protocols for nonlinear scaffolds structures, concrete MEW scaffold pore geometries and printable biocompatible materials for MEW are introduced. The review discusses approaches to combining MEW with other fabrication techniques with the purpose to generate advanced scaffolds structures. The outlined MEW printer modifications enable customizable collector shapes or sacrificial materials for non-planar fiber deposition and nozzle adjustments allow redesigned fiber properties for specific applications. Altogether, MEW opens a new chapter of scaffold design by 3D printing.
Collapse
Affiliation(s)
- Sebastian Loewner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Sebastian Loewner,
| | - Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Timo Baroth
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Henrik Heymann
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Fabian Cholewa
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Blume
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
27
|
Eichholz K, Freeman F, Pitacco P, Nulty J, Ahern D, Burdis R, Browe D, Garcia O, Hoey D, Kelly DJ. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication 2022; 14. [PMID: 35947963 DOI: 10.1088/1758-5090/ac88a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
Collapse
Affiliation(s)
- Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons Building, Dublin, IRELAND
| | - Fiona Freeman
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Pierluca Pitacco
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Jessica Nulty
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Daniel Ahern
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - David Browe
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services Inc, Irvine, California, 0000, UNITED STATES
| | - David Hoey
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons building, Dublin, 2, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| |
Collapse
|
28
|
van Kampen KA, Fernández-Pérez J, Baker M, Mota C, Moroni L. Fabrication of a mimetic vascular graft using melt spinning with tailorable fiber parameters. BIOMATERIALS ADVANCES 2022; 139:212972. [PMID: 35882129 DOI: 10.1016/j.bioadv.2022.212972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Smooth muscle cells play a pivotal role in maintaining blood pressure and remodeling of the extracellular matrix. These cells have a characteristic spindle shape and are aligned in the radial direction to aid in the constriction of any artery. Tissue engineered grafts have the potential to recreate this alignment and offer a viable alternative to non-resorbable or autologous grafts. Specifically, with melt spinning small diameter fibers can be created that can align circumferentially on the scaffolds. In this study, a set of simplified equations were formulated to predict the final fiber parameters. Smooth muscle cell alignment was monitored on the fabricated scaffolds. Finally, a co-culture of smooth muscle cells in direct contact with endothelial cells was performed to assess the influence of the smooth muscle cell alignment on the morphology of the endothelial cells. The results show that the equations were able to accurately predict the fiber diameter, distance and angle. Primary vascular smooth muscle cells aligned according to the fiber direction mimicking the native orientation. The co-culture with endothelial cells showed that the aligned smooth muscle cells did not have an influence on the morphology of the endothelial cells. In conclusion, we formulated a series of equations that can predict the fiber parameters during melt spinning. Furthermore, the method described here can create a vascular graft with smooth muscle cells aligned circumferentially that morphologically mimics the native orientation.
Collapse
Affiliation(s)
- Kenny A van Kampen
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Julia Fernández-Pérez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Matthew Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Carlos Mota
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| |
Collapse
|
29
|
3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. J Funct Biomater 2022; 13:jfb13020075. [PMID: 35735931 PMCID: PMC9225379 DOI: 10.3390/jfb13020075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800-2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels.
Collapse
|
30
|
Kabirian F, Mela P, Heying R. 4D Printing Applications in the Development of Smart Cardiovascular Implants. Front Bioeng Biotechnol 2022; 10:873453. [PMID: 35694223 PMCID: PMC9174528 DOI: 10.3389/fbioe.2022.873453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
Smart materials are able to react to different stimuli and adapt their shape to the environment. Although the development of 3D printing technology increased the reproducibility and accuracy of scaffold fabrication, 3D printed scaffolds can still be further improved to resemble the native anatomy. 4D printing is an innovative fabrication approach combining 3D printing and smart materials, also known as stimuli-responsive materials. Especially for cardiovascular implants, 4D printing can promisingly create programmable, adaptable prostheses, which facilitates implantation and/or create the topology of the target tissue post implantation. In this review, the principles of 4D printing with a focus on the applied stimuli are explained and the underlying 3D printing technologies are presented. Then, according to the type of stimulus, recent applications of 4D printing in constructing smart cardiovascular implants and future perspectives are discussed.
Collapse
Affiliation(s)
- Fatemeh Kabirian
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- *Correspondence: Fatemeh Kabirian,
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Munich, Germany
| | - Ruth Heying
- Cardiovascular Developmental Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|
32
|
Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials 2022; 283:121405. [DOI: 10.1016/j.biomaterials.2022.121405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022]
|
33
|
Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater 2022; 138:92-111. [PMID: 34781026 DOI: 10.1016/j.actbio.2021.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Current clinical treatment strategies for the bypassing of small diameter (<6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. STATEMENT OF SIGNIFICANCE: Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Nicole Bartnikowski
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, 4035, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
| |
Collapse
|
34
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
35
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
36
|
Paxton NC, Ho SWK, Tuten BT, Lipton-Duffin J, Woodruff MA. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment. Macromol Rapid Commun 2021; 42:e2100433. [PMID: 34668263 DOI: 10.1002/marc.202100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Melt electrowriting (MEW) has been widely used to process polycaprolactone (PCL) into highly ordered microfiber scaffolds with controllable architecture and geometry. However, the integrity of PCL during specific processes involved in routine MEW scaffold development has not yet been thoroughly investigated. This study investigates the impact of MEW processing on PCL following exposure to high temperatures required for melt extrusion as well as atmospheric plasma, a widely used surface treatment for improving MEW scaffold hydrophilicity. The change in polymer molecular weight and melt temperature is characterized, in comparing unprocessed and processed samples, in addition to analysis of the mechanical and surface properties of the scaffolds. No significant difference in the molecular weight or mechanical properties of the PCL scaffolds is evident following 5 days of cyclic heating to 90 °C. Exposure to plasma for up to 5 min significantly increased hydrophilicity and surface adhesion force, characterized via contact angle and atomic force microscope, however, significant polymer degradation occurred evidenced by increased brittleness of the scaffolds. This study demonstrates the degradation of PCL following fabrication via MEW and surface treatment to guide the optimization of scaffold development for subsequent applications in tissue engineering and biofabrication.
Collapse
Affiliation(s)
- Naomi C Paxton
- Queensland University of Technology (QUT), 2 George St, Brisbane, Queensland, 4059, Australia.,School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Selina W K Ho
- Queensland University of Technology (QUT), 2 George St, Brisbane, Queensland, 4059, Australia.,School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Bryan T Tuten
- Queensland University of Technology (QUT), 2 George St, Brisbane, Queensland, 4059, Australia.,School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Josh Lipton-Duffin
- Queensland University of Technology (QUT), 2 George St, Brisbane, Queensland, 4059, Australia.,Central Analytical Research Facility, Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| | - Maria A Woodruff
- Queensland University of Technology (QUT), 2 George St, Brisbane, Queensland, 4059, Australia.,School of Mechanical, Medical & Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, 4000, Australia
| |
Collapse
|
37
|
Mieszczanek P, Eggert S, Corke P, Hutmacher DW. Automated melt electrowritting platform with real-time process monitoring. HARDWAREX 2021; 10:e00246. [PMID: 35607669 PMCID: PMC9123438 DOI: 10.1016/j.ohx.2021.e00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
Melt electrowriting (MEW) is an additive manufacturing (AM) technology with the ability to fabricate complex designs with high-resolution. The utility of MEW is studied in many fields including tissue engineering and soft robotics. However, current MEW hardware offers only basic functionality and is often designed and built in-house. This affects results replication across different MEW devices and slows down the technological advancement. To address these issues, we present an automated MEW platform with real-time process parameter monitoring and control. We validate the developed platform by demonstrating the ability to accurately print polymer structures and successfully measure and adjust parameters during the printing process. The platform enables the collection of large volumes of data that can be subsequently used for further analysis of the system. Ultimately, the concept will help MEW to become more accessible for both research laboratories and industry and allow advancing the technology by leveraging the process monitoring, control and data collection.
Collapse
Affiliation(s)
- Pawel Mieszczanek
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sebastian Eggert
- Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
| | - Peter Corke
- QUT Centre for Robotics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Electrical Engineering and Robotics, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dietmar W. Hutmacher
- Centre in Transformative Biomimetics in Bioengineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC ITTC in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
38
|
Mueller KMA, Topping GJ, Schwaminger SP, Zou Y, Rojas-González DM, De-Juan-Pardo EM, Berensmeier S, Schilling F, Mela P. Visualization of USPIO-labeled melt-electrowritten scaffolds by non-invasive magnetic resonance imaging. Biomater Sci 2021; 9:4607-4612. [PMID: 34096938 DOI: 10.1039/d1bm00461a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melt electrowriting (MEW) is a high-resolution fiber-forming technology for the digital fabrication of complex micro-structured scaffolds for tissue engineering, which has convincingly shown its potential in in vitro and in vivo animal studies. The clinical translation of such constructs to the patient requires the capability to visualize them upon implantation with clinically accepted methods such as magnetic resonance imaging (MRI). To this end, this work presents the modification of polycaprolactone (PCL) scaffolds with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to render them visualizable by MRI. Composite scaffolds containing up to 0.3 weight % USPIOs were 3D printed by MEW and could be sensitively detected in vitro using T2- and T2*-weighted MRI. At the same time, USPIO incorporation did not affect the usability of PCL for tissue engineering applications as demonstrated by the mechanical and cytocompatibility evaluation. Concentrations up to 0.2% caused small to no decrease in the ultimate tensile strength and Young's modulus. Cytocompatibility tests resulted in excellent cell viability, with proliferating cells adhering to all the scaffolds. This work contributes to the materials library for MEW and opens the possibility of using MRI for longitudinal monitoring of MEW grafts.
Collapse
Affiliation(s)
- Kilian M A Mueller
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
| | - Geoffrey J Topping
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, D-81675 Munich, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Younzhe Zou
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
| | - Diana M Rojas-González
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
| | - Elena M De-Juan-Pardo
- Translational 3D Printing Laboratory for Advanced Tissue Engineering, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, D-81675 Munich, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany.
| |
Collapse
|
39
|
Lepedda AJ, Nieddu G, Formato M, Baker MB, Fernández-Pérez J, Moroni L. Glycosaminoglycans: From Vascular Physiology to Tissue Engineering Applications. Front Chem 2021; 9:680836. [PMID: 34084767 PMCID: PMC8167061 DOI: 10.3389/fchem.2021.680836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases represent the number one cause of death globally, with atherosclerosis a major contributor. Despite the clinical need for functional arterial substitutes, success has been limited to arterial replacements of large-caliber vessels (diameter > 6 mm), leaving the bulk of demand unmet. In this respect, one of the most challenging goals in tissue engineering is to design a "bioactive" resorbable scaffold, analogous to the natural extracellular matrix (ECM), able to guide the process of vascular tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic flow forces, scaffold's properties should include biocompatibility, controlled biodegradability with non-toxic products, low inflammatory/thrombotic potential, porosity, and a specific combination of molecular signals allowing vascular cells to attach, proliferate and synthesize their own ECM. Different fabrication methods, such as phase separation, self-assembly and electrospinning are currently used to obtain nanofibrous scaffolds with a well-organized architecture and mechanical properties suitable for vascular tissue regeneration. However, several studies have shown that naked scaffolds, although fabricated with biocompatible polymers, represent a poor substrate to be populated by vascular cells. In this respect, surface functionalization with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate, chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be effective. GAGs are complex anionic unbranched heteropolysaccharides that represent major structural and functional ECM components of connective tissues. GAGs are very heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass, charge density, degree and pattern of sulfation, degree of epimerization and physicochemical properties. These molecules participate in a number of vascular events such as the regulation of vascular permeability, lipid metabolism, hemostasis, and thrombosis, but also interact with vascular cells, growth factors, and cytokines to modulate cell adhesion, migration, and proliferation. The primary goal of this review is to perform a critical analysis of the last twenty-years of literature in which GAGs have been used as molecular cues, able to guide the processes leading to correct endothelialization and neo-artery formation, as well as to provide readers with an overall picture of their potential as functional molecules for small-diameter vascular regeneration.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matthew Brandon Baker
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Julia Fernández-Pérez
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht, Netherlands
| |
Collapse
|
40
|
Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Chemistry Education Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Life Science Sogang University Seoul 04107 Republic of Korea
- Faculty of Pharmacy Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
41
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
42
|
King WE, Bowlin GL. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers-Progress and Limitations. Polymers (Basel) 2021; 13:1097. [PMID: 33808288 PMCID: PMC8037214 DOI: 10.3390/polym13071097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/18/2022] Open
Abstract
Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the collector, a fiber can be directly written as dictated by preprogrammed geometry. As a result, this precise fiber control results in another dimension of scaffold tailorability for biomedical applications. In this review, biomedically relevant polymers that to date have manufactured fibers by NFES/MEW are explored and the present limitations in direct fiber writing of standardization in published setup details, fiber write throughput, and increased ease in the creation of complex scaffold geometries are discussed.
Collapse
Affiliation(s)
- William E. King
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
- Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| |
Collapse
|
43
|
Kade JC, Dalton PD. Polymers for Melt Electrowriting. Adv Healthc Mater 2021; 10:e2001232. [PMID: 32940962 PMCID: PMC11469188 DOI: 10.1002/adhm.202001232] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Melt electrowriting (MEW) is an emerging high-resolution additive manufacturing technique based on the electrohydrodynamic processing of polymers. MEW is predominantly used to fabricate scaffolds for biomedical applications, where the microscale fiber positioning has substantial implications in its macroscopic mechanical properties. This review gives an update on the increasing number of polymers processed via MEW and different commercial sources of the gold standard poly(ε-caprolactone) (PCL). A description of MEW-processed polymers beyond PCL is introduced, including blends and coated fibers to provide specific advantages in biomedical applications. Furthermore, a perspective on printer designs and developments is highlighted, to keep expanding the variety of processable polymers for MEW.
Collapse
Affiliation(s)
- Juliane C. Kade
- Department of Functional Materials in Medicine and DentistryBavarian Polymer InstituteUniversity Clinic WürzburgPleicherwall 297070WürzburgGermany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and DentistryBavarian Polymer InstituteUniversity Clinic WürzburgPleicherwall 297070WürzburgGermany
| |
Collapse
|