1
|
Ligorio C, Martinez-Espuga M, Laurenza D, Hartley A, Rodgers CB, Kotowska AM, Scurr DJ, Dalby MJ, Ordóñez-Morán P, Mata A. Disassembly of self-assembling peptide hydrogels as a versatile method for cell extraction and manipulation. J Mater Chem B 2024. [PMID: 39449374 PMCID: PMC11502993 DOI: 10.1039/d4tb01575d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Self-assembling peptide hydrogels (SAPHs) are increasingly being used as two-dimensional (2D) cell culture substrates and three-dimensional (3D) matrices due to their tunable properties and biomimicry of native tissues. Despite these advantages, SAPHs often represent an end-point in cell culture, as isolating cells from them leads to low yields and disruption of cells, limiting their use and post-culture analyses. Here, we report on a protocol designed to easily and effectively disassemble peptide amphiphile (PA) SAPHs to retrieve 3D encapsulated cells with high viability and minimal disruption. Due to the pivotal role played by salt ions in SAPH gelation, tetrasodium ethylenediaminetetraacetic acid (Na4EDTA) was used as metal chelator to sequester ions participating in PA self-assembly and induce a rapid, efficient, clean, and gentle gel-to-sol transition. We characterise PA disassembly from the nano- to the macro-scale, provide mechanistic and practical insights into the PA disassembly mechanism, and assess the potential use of the process. As proof-of-concept, we isolated different cell types from cell-laden PA hydrogels and demonstrated the possibility to perform downstream biological analyses including cell re-plating, gene analysis, and flow cytometry with high reproducibility and no material interference. Our work offers new opportunities for the use of SAPHs in cell culture and the potential use of cells cultured on SAPHs, in applications such as cell expansion, analysis of in vitro models, cell therapies, and regenerative medicine.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Magda Martinez-Espuga
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Domenico Laurenza
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Alex Hartley
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Chloe B Rodgers
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Anna M Kotowska
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - David J Scurr
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Kuznetsova VS, Vasilyev AV, Bukharova TB, Nedorubova IA, Goldshtein DV, Popov VK, Kulakov AA. Application of BMP-2 and its gene delivery vehicles in dentistry. Saudi Dent J 2024; 36:855-862. [PMID: 38883899 PMCID: PMC11178965 DOI: 10.1016/j.sdentj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/18/2024] Open
Abstract
The restoration of bone defects resulting from tooth loss, periodontal disease, severe trauma, tumour resection and congenital malformations is a crucial task in dentistry and maxillofacial surgery. Growth factor- and gene-activated bone graft substitutes can be used instead of traditional materials to solve these problems. New materials will overcome the low efficacy and difficulties associated with the use of traditional bone substitutes in complex situations. One of the most well-studied active components for bone graft substitutes is bone morphogenetic protein-2 (BMP-2), which has strong osteoinductive properties. The aim of this review was to examine the use of BMP-2 protein and gene therapy for bone regeneration in the oral and maxillofacial region and to discuss its future use.
Collapse
Affiliation(s)
- Valeriya Sergeevna Kuznetsova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| | - Andrey Vyacheslavovich Vasilyev
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | - Vladimir Karpovich Popov
- Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
3
|
Dixon JE, Wellington V, Elnima A, Eltaher HM. Effects of Microenvironment and Dosing on Efficiency of Enhanced Cell Penetrating Peptide Nonviral Gene Delivery. ACS OMEGA 2024; 9:5014-5023. [PMID: 38313497 PMCID: PMC10831962 DOI: 10.1021/acsomega.3c09306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Transfection, defined as functional delivery of cell-internalized nucleic acids, is dependent on many factors linked to formulation, vector, cell type, and microenvironmental culture conditions. We previously developed a technology termed glycosaminoglycan (GAG)-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding peptides and cell penetrating peptides (CPPs) in the form of nanoparticles, using conventional cell culture. Herein, we demonstrate that the most simple GET transfection formulation (employing the FLR peptide) is relatively poor at transfecting cells at increasingly lower dosages. However, with an endosomally escaping version (FLR:FLH peptide formulations) we demonstrate more effective transfection of cells with lower quantities of plasmid (p)DNA in vitro. We assessed the ability of single and serial delivery of our formulations to readily transfect cells and determined that temperature, pH, and atmospheric pressure can significantly affect transfected cell number and expression levels. Cytocompatible temperatures that maintain high cell metabolism (20-37 °C) were the optimal for transfection. Interestingly, serial delivery can maintain and enhance expression without viability being compromised, and alkaline pH conditions can aid overall efficiencies. Positive atmospheric pressures can also improve the transgene expression levels generated by GET transfection on a single-cell level. Novel nanotechnologies and gene therapeutics such as GET could be transformative for future regenerative medicine strategies. It will be important to understand how such approaches can be optimized at the formulation and application levels in order to achieve efficacy that will be competitive with viral strategies.
Collapse
Affiliation(s)
- James E. Dixon
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- NIHR
Nottingham Biomedical Research Centre, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Vanessa Wellington
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Alaa Elnima
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Hoda M. Eltaher
- Regenerative
Medicine and Cellular Therapies Division, The University of Nottingham
Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
4
|
Rehmani S, McLaughlin CM, Eltaher HM, Moffett RC, Flatt PR, Dixon JE. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. J Control Release 2023; 360:93-109. [PMID: 37315695 DOI: 10.1016/j.jconrel.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Insulin regulates blood glucose levels, and is the mainstay for the treatment of type-1 diabetes and type-2 when other drugs provide inadequate control. Therefore, effective oral Insulin delivery would be a significant advance in drug delivery. Herein, we report the use of the modified cell penetrating peptide (CPP) platform, Glycosaminoglycan-(GAG)-binding-enhanced-transduction (GET), as an efficacious transepithelial delivery vector in vitro and to mediate oral Insulin activity in diabetic animals. Insulin can be conjugated with GET via electrostatic interaction to form nanocomplexes (Insulin GET-NCs). These NCs (size and charge; 140 nm, +27.10 mV) greatly enhanced Insulin transport in differentiated in vitro intestinal epithelium models (Caco2 assays; >22-fold increased translocation) with progressive and significant apical and basal release of up-taken Insulin. Delivery resulted in intracellular accumulation of NCs, enabling cells to act as depots for subsequent sustained release without affecting viability and barrier integrity. Importantly Insulin GET-NCs have enhanced proteolytic stability, and retained significant Insulin biological activity (exploiting Insulin-responsive reporter assays). Our study culminates in demonstrating oral delivery of Insulin GET-NCs which can control elevated blood-glucose levels in streptozotocin (STZ)-induced diabetic mice over several days with serial dosing. As GET promotes Insulin absorption, transcytosis and intracellular release, along with in vivo function, our simplistic complexation platform could allow effective bioavailability of other oral peptide therapeutics and help transform the treatment of diabetes.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Christopher M McLaughlin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Hoda M Eltaher
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Eltaher HM, Blokpoel Ferreras LA, Jalal AR, Dixon JE. Direct contact-mediated non-viral gene therapy using thermo-sensitive hydrogel-coated dressings. BIOMATERIALS ADVANCES 2022; 143:213177. [PMID: 36371970 DOI: 10.1016/j.bioadv.2022.213177] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnologies are being increasingly applied as systems for peptide and nucleic acid macromolecule drug delivery. However systemic targeting of these, or efficient topical and localized delivery remains an issue. A controlled release system that can be patterned and locally administered such as topically to accessible tissue (skin, eye, intestine) would therefore be transformative in realizing the potential of such strategies. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding peptides to mediate cell targeting, and cell penetrating peptides (CPPs) to promote uptake. Herein we demonstrate that the GET transfection system can be used with the moisturizing thermo-reversible hydrogel Pluronic-F127 (PF127) and methyl cellulose (MC) to mediate site specific and effective intracellular transduction and gene delivery through GET nanoparticles (NPs). We investigated hydrogel formulation and the temperature dependence of delivery, optimizing the delivery system. GET-NPs retain their activity to enhance gene transfer within our formulations, with uptake transferred to cells in direct contact with the therapy-laden hydrogel. By using Azowipe™ material in a bandage approach, we were able to show for the first-time localized gene transfer in vitro on cell monolayers. The ability to simply control localization of gene delivery on millimetre scales using contact-mediated transfer from moisture-providing thermo-reversible hydrogels will facilitate new drug delivery methods. Importantly our technology to site-specifically deliver the activity of novel nanotechnologies and gene therapeutics could be transformative for future regenerative medicine.
Collapse
Affiliation(s)
- Hoda M Eltaher
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt, 21521
| | - Lia A Blokpoel Ferreras
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK
| | - Aveen R Jalal
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK
| | - James E Dixon
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK.
| |
Collapse
|
7
|
Yadav D, Wairagu PM, Kwak M, Jin JO, Jin JO. Nanoparticle-Based Inhalation Therapy for Pulmonary Diseases. Curr Drug Metab 2022; 23:882-896. [PMID: 35927812 DOI: 10.2174/1389200223666220803103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023]
Abstract
The lung is exposed to various pollutants and is the primary site for the onset of various diseases, including infections, allergies, and cancers. One possible treatment approach for such pulmonary diseases involves direct administration of therapeutics to the lung so as to maintain the topical concentration of the drug. Particles with nanoscale diameters tend to reach the pulmonary region. Nanoparticles (NPs) have garnered significant interest for applications in biomedical and pharmaceutical industries because of their unique physicochemical properties and biological activities. In this article, we describe the biological and pharmacological activities of NPs as well as summarize their potential in the formulation of drugs employed to treat pulmonary diseases. Recent advances in the use of NPs in inhalation chemotherapy for the treatment of lung diseases have also been highlighted.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, South Korea
| | - Peninah M Wairagu
- Department of Biochemistry and Biotechnology, The Technical University of Kenya, Nairobi, Kenya
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Department of Biotechnology, ITM University, Gwalior, Madhya Pradesh, 474011, India.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
8
|
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2022; 341:166-183. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Lin Teng
- Department of Cardiovascular Medicine, The First Clinical Medical College of China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bonn Belingon
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
9
|
Encapsulation of Large-Size Plasmids in PLGA Nanoparticles for Gene Editing: Comparison of Three Different Synthesis Methods. NANOMATERIALS 2021; 11:nano11102723. [PMID: 34685164 PMCID: PMC8541650 DOI: 10.3390/nano11102723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The development of new gene-editing technologies has fostered the need for efficient and safe vectors capable of encapsulating large nucleic acids. In this work we evaluate the synthesis of large-size plasmid-loaded PLGA nanoparticles by double emulsion (considering batch ultrasound and microfluidics-assisted methodologies) and magnetic stirring-based nanoprecipitation synthesis methods. For this purpose, we characterized the nanoparticles and compared the results between the different synthesis processes in terms of encapsulation efficiency, morphology, particle size, polydispersity, zeta potential and structural integrity of loaded pDNA. Our results demonstrate particular sensibility of large pDNA for shear and mechanical stress degradation during double emulsion, the nanoprecipitation method being the only one that preserved plasmid integrity. However, plasmid-loaded PLGA nanoparticles synthesized by nanoprecipitation did not show cell expression in vitro, possibly due to the slow release profile observed in our experimental conditions. Strong electrostatic interactions between the large plasmid and the cationic PLGA used for this synthesis may underlie this release kinetics. Overall, none of the methods evaluated satisfied all the requirements for an efficient non-viral vector when applied to large-size plasmid encapsulation. Further optimization or alternative synthesis methods are thus in current need to adapt PLGA nanoparticles as delivery vectors for gene editing therapeutic technologies.
Collapse
|