1
|
Redolfi-Bristol D, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Exploring the cellular antioxidant mechanism against cytotoxic silver nanoparticles: a Raman spectroscopic analysis. NANOSCALE 2024; 16:9985-9997. [PMID: 38695726 DOI: 10.1039/d4nr00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
2
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
3
|
Roth A, Tannert A, Ziller N, Eiserloh S, Göhrig B, Guliev RR, Gonzalez Vazquez MJ, Naumann M, Mosig AS, Stengel S, Heutelbeck ARR, Neugebauer U. Quantification of Polystyrene Uptake by Different Cell Lines Using Fluorescence Microscopy and Label-Free Visualization of Intracellular Polystyrene Particles by Raman Microspectroscopic Imaging. Cells 2024; 13:454. [PMID: 38474417 DOI: 10.3390/cells13050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Environmental pollution caused by plastic is a present problem. Polystyrene is a widely used packaging material (e.g., Styrofoam) that can be broken down into microplastics through abrasion. Once the plastic is released into the environment, it is dispersed by wind and atmospheric dust. In this study, we investigated the uptake of polystyrene particles into human cells using A549 cells as a model of the alveolar epithelial barrier, CaCo-2 cells as a model of the intestinal epithelial barrier, and THP-1 cells as a model of immune cells to simulate a possible uptake of microplastics by inhalation, oral uptake, and interaction with the cellular immune system, respectively. The uptake of fluorescence-labeled beads by the different cell types was investigated by confocal laser scanning microscopy in a semi-quantitative, concentration-dependent manner. Additionally, we used Raman spectroscopy as a complementary method for label-free qualitative detection and the visualization of polystyrene within cells. The uptake of polystyrene beads by all investigated cell types was detected, while the uptake behavior of professional phagocytes (THP-1) differed from that of adherent epithelial cells.
Collapse
Affiliation(s)
- Amelie Roth
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Occupational, Social and Environmental Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Astrid Tannert
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Center for Sepsis Control and Care and Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Nadja Ziller
- Occupational, Social and Environmental Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Simone Eiserloh
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Center for Sepsis Control and Care and Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Bianca Göhrig
- Occupational, Social and Environmental Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rustam R Guliev
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - María José Gonzalez Vazquez
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Center for Sepsis Control and Care and Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Max Naumann
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07747 Jena, Germany
| | - Sven Stengel
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
| | - Astrid R R Heutelbeck
- Occupational, Social and Environmental Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
- Center for Sepsis Control and Care and Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
4
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Annušová A, Labudová M, Truchan D, Hegedűšová V, Švajdlenková H, Mičušík M, Kotlár M, Pribusová Slušná L, Hulman M, Salehtash F, Kálosi A, Csáderová L, Švastová E, Šiffalovič P, Jergel M, Pastoreková S, Majková E. Selective Tumor Hypoxia Targeting Using M75 Antibody Conjugated Photothermally Active MoO x Nanoparticles. ACS OMEGA 2023; 8:44497-44513. [PMID: 38046334 PMCID: PMC10688043 DOI: 10.1021/acsomega.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation. Here, we present a promising new PTT platform combining a recently emerged two-dimensional (2D) inorganic nanomaterial, MoOx, and a tumor hypoxia targeting element, the monoclonal antibody M75. M75 specifically binds to carbonic anhydrase IX (CAIX), a hypoxia marker associated with many solid tumors with a poor prognosis. The as-prepared nanoconjugates showed highly specific binding to cancer cells expressing CAIX while being able to produce significant photothermal yield after irradiation with near-IR wavelengths. Small aminophosphonic acid linkers were recognized to be more effective over the combination of poly(ethylene glycol) chain and biotin-avidin-biotin bridge in constructing a PTT platform with high tumor-binding efficacy. The in vitro cellular uptake of nanoconjugates was visualized by high-resolution fluorescence microscopy and label-free live cell confocal Raman microscopy. The key to effective cancer treatment may be the synergistic employment of active targeting and noninvasive, tumor-selective therapeutic approaches, such as nanoscale-mediated PTT. The use of active targeting can streamline nanoparticle delivery increasing photothermal yield and therapeutic success.
Collapse
Affiliation(s)
- Adriana Annušová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Martina Labudová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Daniel Truchan
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Université
Sorbonne Paris Nord, Université Paris
Cité, Laboratory for Vascular Translational Science, LVTS,
INSERM, UMR 1148, Bobigny F-93017, France
| | - Veronika Hegedűšová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Helena Švajdlenková
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Mário Kotlár
- Centre
for Nanodiagnostics of Materials, Slovak
University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Lenka Pribusová Slušná
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Martin Hulman
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Farnoush Salehtash
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Anna Kálosi
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Lucia Csáderová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eliška Švastová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Matej Jergel
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Silvia Pastoreková
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eva Majková
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| |
Collapse
|
6
|
Notarstefano V, Belloni A, Mariani P, Orilisi G, Orsini G, Giorgini E, Byrne HJ. Multivariate curve Resolution-Alternating least squares coupled with Raman microspectroscopy: new insights into the kinetic response of primary oral squamous carcinoma cells to cisplatin. Analyst 2023; 148:4365-4372. [PMID: 37548234 DOI: 10.1039/d3an01182h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Raman MicroSpectroscopy (RMS) is a powerful label-free tool to probe the effects of drugs at a cellular/subcellular level. It is important, however, to be able to extract relevant biochemical and kinetic spectroscopic signatures of the specific cellular responses. In the present study, a combination of Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis (PCA) is used to analyse the RMS data for the example of exposure of primary Oral Squamous Carcinoma Cells (OSCC) to the chemotherapeutic agent cisplatin. Dosing regimens were established by cytotoxicity assays, and the effects of the drug on cellular spectral profiles were monitored from 16 to 72 hours post-exposure using an apoptosis assay, to establish the relative populations of viable (V), early (EA) and late apoptotic/dead (LA/D) cells after the drug treatment. Based on a kinetic model of the progression from V > EA > D, MCR-ALS regression analysis of the RMS responses was able to extract spectral profiles associated with each stage of the cellular responses, enabling a quantitative comparison of the response rates for the respective drug treatments. Moreover, PCA was used to compare the spectral profiles of the viable cells exposed to the drug. Spectral differences were highlighted in the early stages (16 hours exposure), indicative of the initial cellular response to the drug treatment, and also in the late stages (48-72 hours exposure), representing the cell death pathway. The study demonstrates that RMS coupled with multivariate analysis can be used to quantitatively monitor the progression of cellular responses to different drugs, towards future applications for label-free, in vitro, pre-clinical screening.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Giulia Orilisi
- Department of Clinical Sciences and Stomatology, Università Politecnica delle Marche, Via Brecce Bianche, 60126 Ancona, Italy
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, Università Politecnica delle Marche, Via Brecce Bianche, 60126 Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland
| |
Collapse
|
7
|
Contributions of vibrational spectroscopy to virology: A review. CLINICAL SPECTROSCOPY 2022; 4:100022. [PMCID: PMC9093054 DOI: 10.1016/j.clispe.2022.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/17/2023]
Abstract
Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970 s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review considers the history of the application of vibrational spectroscopic techniques to the characterisation of the morphology and chemical compositions of viruses, their attachment to, uptake by and replication in cells, and their potential for the detection of viruses in population screening, and in infection response monitoring applications. Particular consideration is devoted to recent efforts in the detection of severe acute respiratory syndrome coronavirus 2, and monitoring COVID-19.
Collapse
|
8
|
Bengalli R, Zerboni A, Bonfanti P, Saibene M, Mehn D, Cella C, Ponti J, La Spina R, Mantecca P. Characterization of microparticles derived from waste plastics and their bio-interaction with human lung A549 cells. J Appl Toxicol 2022; 42:2030-2044. [PMID: 35929361 PMCID: PMC9805234 DOI: 10.1002/jat.4372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023]
Abstract
Microplastics (MPs) represent a worldwide emerging relevant concern toward human and environmental health due to their intentional or unintentional release. Human exposure to MPs by inhalation is predicted to be among the most hazardous. MPs include both engineered, or primary MPs, and secondary MPs, materials obtained by fragmentation from any plastic good. The major part of the environmental MPs is constituted by the second ones that are irregular in size, shape and composition. These features make the study of the biological impact of heterogenous MPs of extremely high relevance to better estimate the real toxicological hazards of these materials on human and environmental organisms. The smallest fractions of plastic granules, relying on the micron-sized scale, can be considered as the most abundant component of the environmental MPs, and for this reason, they are typically used to perform toxicity tests using in vitro systems representative of an inhalation exposure scenario. In the present work, MPs obtained from industrial treatment of waste plastics (wMPs < 50 μm) were investigated, and after the physico-chemical characterization, the cytotoxic, inflammatory and genotoxic responses, as well as the modality of wMPs interactions with alveolar lung cells, were determined. Obtained results indicated that, at high concentrations (100 μg/ml) and prolonged exposure time (48 h), wMPs affect biological responses by inducing inflammation and genotoxicity, as a result of the cell-wMP interactions, also including the uptake of the smaller particles.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Alessandra Zerboni
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Patrizia Bonfanti
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Melissa Saibene
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| | - Dora Mehn
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Claudia Cella
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Jessica Ponti
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Rita La Spina
- Joint Research Centre (JRC)European CommissionIspraItaly
| | - Paride Mantecca
- POLARIS Reaserch Center, Department of Earth and Environmental SciencesUniversity of Milano – BicoccaMilanItaly
| |
Collapse
|
9
|
Skotland T, Iversen TG, Llorente A, Sandvig K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv Drug Deliv Rev 2022; 186:114326. [PMID: 35588953 DOI: 10.1016/j.addr.2022.114326] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
Abstract
There is a large interest in developing nanoparticles and extracellular vesicles for delivery of therapeutics or imaging agents. Regulatory approval of such products requires knowledge about their biodistribution, metabolism and excretion. We here discuss possibilities and challenges of methods used for such studies, which most often are performed after labelling with radioactive isotopes or fluorescent molecules. It is important to evaluate if the labelled and unlabeled products can be expected to behave similarly in the body. Furthermore, one needs to critically consider whether the labels are still associated with the product at the time of analyses. We discuss advantages and disadvantages of different imaging modalities such as PET, SPECT, MRI, CT, ultrasound and optical imaging for whole-body biodistribution, and describe how to estimate the amount of labelled product in harvested organs and tissue. Microscopy of cells and tissues and various mass spectrometry methods are also discussed in this review.
Collapse
|
10
|
Rusciano G, Capaccio A, Sasso A, Singh M, Valadan M, Dell’Aversana C, Altucci L, Altucci C. Single-Cell Photothermal Analysis Induced by MoS2 Nanoparticles by Raman Spectroscopy. Front Bioeng Biotechnol 2022; 10:844011. [PMID: 35360403 PMCID: PMC8960122 DOI: 10.3389/fbioe.2022.844011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm−1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process.
Collapse
Affiliation(s)
- Giulia Rusciano
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
- CNR-INO, National Research Council—National Institute of Optics, Pozzuoli, Italy
- *Correspondence: Giulia Rusciano, ; Carlo Altucci,
| | - Angela Capaccio
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
| | - Antonio Sasso
- Department of Physics “E. Pancini”, University of Naples Federico II, Naples, Italy
- CNR-INO, National Research Council—National Institute of Optics, Pozzuoli, Italy
| | - Manjot Singh
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mohammadhassan Valadan
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Dell’Aversana
- CNR-IEOS, National Research Council—Institute of Experimental Endocrinology and Oncology—IEOS, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- CNR-IEOS, National Research Council—Institute of Experimental Endocrinology and Oncology—IEOS, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BIOGEM, Biologia e Genetica Molecolare, Ariano Irpino, Italy
| | - Carlo Altucci
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- INFN Sezione di Napoli, Compl. Univ. di Monte S. Angelo, Napoli, Italy
- *Correspondence: Giulia Rusciano, ; Carlo Altucci,
| |
Collapse
|