2
|
Foo JL, Kitano S, Susanto AV, Jin Z, Lin Y, Luo Z, Huang L, Liang Z, Mitchell LA, Yang K, Wong A, Cai Y, Cai J, Stracquadanio G, Bader JS, Boeke JD, Dai J, Chang MW. Establishing chromosomal design-build-test-learn through a synthetic chromosome and its combinatorial reconfiguration. CELL GENOMICS 2023; 3:100435. [PMID: 38020970 PMCID: PMC10667554 DOI: 10.1016/j.xgen.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.
Collapse
Affiliation(s)
- Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Shohei Kitano
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Adelia Vicanatalita Susanto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Zhu Jin
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| | - Yicong Lin
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Leslie A. Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Kun Yang
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Adison Wong
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jitong Cai
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Giovanni Stracquadanio
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joel S. Bader
- High-Throughput Biological Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Wilmar-NUS Corporate Laboratory (WIL@NUS), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
3
|
Patel HN, Haines BE, Stauffacher CV, Helquist P, Wiest O. Computational Study of Base-Catalyzed Thiohemiacetal Decomposition in Pseudomonas mevalonii HMG-CoA Reductase. J Phys Chem B 2023. [PMID: 37219997 DOI: 10.1021/acs.jpcb.2c08969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thiohemiacetals are key intermediates in the active sites of many enzymes catalyzing a variety of reactions. In the case of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR), this intermediate connects the two hydride transfer steps where a thiohemiacetal is the product of the first hydride transfer and its breakdown forms the substrate of the second one, serving as the intermediate during cofactor exchange. Despite the many examples of thiohemiacetals in a variety of enzymatic reactions, there are few studies that detail their reactivity. Here, we present computational studies on the decomposition of the thiohemiacetal intermediate in PmHMGR using both QM-cluster and QM/MM models. This reaction mechanism involves a proton transfer from the substrate hydroxyl to an anionic Glu83 followed by a C-S bond elongation stabilized by a cationic His381. The reaction provides insight into the varying roles of the residues in the active site that favor this multistep mechanism.
Collapse
Affiliation(s)
- Himani N Patel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
4
|
Hayashi Y, Arai M. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Microb Cell Fact 2022; 21:256. [PMID: 36503511 PMCID: PMC9743570 DOI: 10.1186/s12934-022-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
The use of biologically produced alkanes has attracted considerable attention as an alternative energy source to petroleum. In 2010, the alkane synthesis pathway in cyanobacteria was found to include two small globular proteins, acyl-(acyl carrier protein [ACP]) reductase (AAR) and aldehyde deformylating oxygenase (ADO). AAR produces fatty aldehydes from acyl-ACPs/CoAs, which are then converted by ADO to alkanes/alkenes equivalent to diesel oil. This discovery has paved the way for alkane production by genetically modified organisms. Since then, many studies have investigated the reactions catalyzed by AAR and ADO. In this review, we first summarize recent findings on structures and catalytic mechanisms of AAR and ADO. We then outline the mechanism by which AAR and ADO form a complex and efficiently transfer the insoluble aldehyde produced by AAR to ADO. Furthermore, we describe recent advances in protein engineering studies on AAR and ADO to improve the efficiency of alkane production in genetically engineered microorganisms such as Escherichia coli and cyanobacteria. Finally, the role of alkanes in cyanobacteria and future perspectives for bioalkane production using AAR and ADO are discussed. This review provides strategies for improving the production of bioalkanes using AAR and ADO in cyanobacteria for enabling the production of carbon-neutral fuels.
Collapse
Affiliation(s)
- Yuuki Hayashi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XEnvironmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 Japan
| | - Munehito Arai
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan
| |
Collapse
|
6
|
Kim IJ, Brack Y, Bayer T, Bornscheuer UT. Two novel cyanobacterial α-dioxygenases for the biosynthesis of fatty aldehydes. Appl Microbiol Biotechnol 2021; 106:197-210. [PMID: 34882252 PMCID: PMC8720084 DOI: 10.1007/s00253-021-11724-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022]
Abstract
α-Dioxygenases (α-DOXs) are known as plant enzymes involved in the α-oxidation of fatty acids through which fatty aldehydes, with a high commercial value as flavor and fragrance compounds, are synthesized as products. Currently, little is known about α-DOXs from non-plant organisms. The phylogenic analysis reported here identified a substantial number of α-DOX enzymes across various taxa. Here, we report the functional characterization and Escherichia coli whole-cell application of two novel α-DOXs identified from cyanobacteria: CalDOX from Calothrix parietina and LepDOX from Leptolyngbya sp. The catalytic behavior of the recombinantly expressed CalDOX and LepDOX revealed that they are heme-dependent like plant α-DOXs but exhibit activities toward medium carbon fatty acids ranging from C10 to C14 unlike plant α-DOXs. The in-depth molecular investigation of cyanobacterial α-DOXs and their application in an E. coli whole system employed in this study is useful not only for the understanding of the molecular function of α-DOXs, but also for their industrial utilization in fatty aldehyde biosynthesis. Key points • Two novel α-dioxygenases from Cyanobacteria are reported • Both enzymes prefer medium-chain fatty acids • Both enzymes are useful for fatty aldehyde biosynthesis
Collapse
Affiliation(s)
- In Jung Kim
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Yannik Brack
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|