1
|
Xu D, Zhou H, Wang M, Ma X, Gusztav F, Chon TE, Fernandez J, Baker JS, Gu Y. Contribution of ankle motion pattern during landing to reduce the knee-related injury risk. Comput Biol Med 2024; 180:108965. [PMID: 39084051 DOI: 10.1016/j.compbiomed.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Single-leg landing (SL) is an essential technique in sports such as basketball, soccer, and volleyball, which is often associated with a high risk of knee-related injury. The ankle motion pattern plays a crucial role in absorbing the load shocks during SL, but the effect on the knee joint is not yet clear. This work aims to explore the effects of different ankle plantarflexion angles during SL on the risk of knee-related injury. METHODS Thirty healthy male subjects were recruited to perform SL biomechanics tests, and one standard subject was selected to develop the finite element model of foot-ankle-knee integration. The joint impact force was used to evaluate the impact loads on the knee at various landing angles. The internal load forces (musculoskeletal modeling) and stress (finite element analysis) around the knee joint were simulated and calculated to evaluate the risk of knee-related injury during SL. To more realistically revert and simulate the anterior cruciate ligament (ACL) injury mechanics, we developed a knee musculoskeletal model that reverts the ACL ligament to a nonlinear short-term viscoelastic mechanical mechanism (strain rate-dependent) generated by the dense connective tissue as a function of strain. RESULTS As the ankle plantarflexion angle increased during landing, both the peak knee vertical impact force (p = 0.001) and ACL force (p = 0.001) decreased significantly. The maximum von Mises stress of ACL, meniscus, and femoral cartilage decreased as the ankle plantarflexion angle increased. The overall range of variation in ACL stress was small and was mainly distributed in the femoral and tibial attachment regions, as well as in the mid-lateral region. CONCLUSION The current findings revealed that the use of larger ankle plantarflexion angles during landing may be an effective solution to reduce knee impact load and the risk of rupture of the medial femoral attachment area in the ACL. The findings of this study have the potential to offer novel perspectives in the optimized application of landing strategies, thus giving crucial theoretical backing for decreasing the risk of knee-related injury.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Meizi Wang
- Faculty of Sports Science, Ningbo University, Ningbo, China; Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fekete Gusztav
- Department of Material Science and Technology, Audi Hungaria Faculty of Automotive Engineering, Széchenyi István University, Gyor, Hungary
| | - Teo-Ee Chon
- Faculty of Sports Science, Ningbo University, Ningbo, China; School of Chemical and Biomedical Engineering, Nanyang Technological University, 639798, Singapore
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Julien S Baker
- Faculty of Sports Science, Ningbo University, Ningbo, China; Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Zaheri RM, Majlesi M, Fatahi A. The effects of fatigue on the relationship between ankle angle at initial contact and the knee and hip joints in landing: Assessing the risk of ACL injury. Gait Posture 2024; 113:462-467. [PMID: 39126958 DOI: 10.1016/j.gaitpost.2024.07.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) injuries may correlate with lower limb angles and biomechanical factors in both dominant and non-dominant legs at initial contact (IC) post-landing. This study aims to investigate the correlation between ankle angles in three axes at IC and knee and hip joint angles during post-spike landings in professional volleyball players, both pre- and post-fatigue induction. RESEARCH QUESTION To what extent does fatigue influence lower limb joint angles, and what is the relationship between ankle joint angles and hip and knee angles at IC during the landing phase following a volleyball spike? METHODS Under conditions involving the peripheral fatiguing protocol, the lower limb joint angles at IC following post-spike landings were measured in 28 professional male volleyball players aged between 19 and 28 years, who executed the Bosco fatigue protocol both before and after inducing fatigue. A paired t-test was utilized to compare the joint angles pre- and post-fatigue in both dominant and non-dominant legs. Furthermore, Pearson's correlation test was conducted to explore the relationship between ankle angles at IC and the corresponding knee and hip joint angles. RESULTS The findings of the study revealed that fatigue significantly increased hip external rotation and decreased knee joint flexion and external rotation in both the dominant and non-dominant legs (p < 0.05). Additionally, correlation analysis demonstrated that the ankle joint's positioning in the frontal and horizontal planes was significantly associated with hip flexion and external rotation at the IC, as well as with knee flexion and rotation (0.40 < r < 0.80). CONCLUSION Fatigue increased hip external rotation and ankle internal rotation, weakening the correlation between these joints while strengthening the ankle-knee relationship, indicating a reduced hip control in jumps. This suggests a heightened ACL injury risk in the dominant leg due to the weakened ankle-hip connection, contrasting with the non-dominant leg.
Collapse
Affiliation(s)
- Rafe Mohammad Zaheri
- Department of Sports Biomechanics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Majlesi
- Department of Sport Biomechanics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Ali Fatahi
- Department of Sports Biomechanics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Xu D, Zhou H, Quan W, Ma X, Chon TE, Fernandez J, Gusztav F, Kovács A, Baker JS, Gu Y. New Insights Optimize Landing Strategies to Reduce Lower Limb Injury Risk. CYBORG AND BIONIC SYSTEMS 2024; 5:0126. [PMID: 38778877 PMCID: PMC11109754 DOI: 10.34133/cbsystems.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Single-leg landing (SL) is often associated with a high injury risk, especially anterior cruciate ligament (ACL) injuries and lateral ankle sprain. This work investigates the relationship between ankle motion patterns (ankle initial contact angle [AICA] and ankle range of motion [AROM]) and the lower limb injury risk during SL, and proposes an optimized landing strategy that can reduce the injury risk. To more realistically revert and simulate the ACL injury mechanics, we developed a knee musculoskeletal model that reverts the ACL ligament to a nonlinear short-term viscoelastic mechanical mechanism (strain rate-dependent) generated by the dense connective tissue as a function of strain. Sixty healthy male subjects were recruited to collect biomechanics data during SL. The correlation analysis was conducted to explore the relationship between AICA, AROM, and peak vertical ground reaction force (PVGRF), joint total energy dissipation (TED), peak ankle knee hip sagittal moment, peak ankle inversion angle (PAIA), and peak ACL force (PAF). AICA exhibits a negative correlation with PVGRF (r = -0.591) and PAF (r = -0.554), and a positive correlation with TED (r = 0.490) and PAIA (r = 0.502). AROM exhibits a positive correlation with TED (r = 0.687) and PAIA (r = 0.600). The results suggested that the appropriate increases in AICA (30° to 40°) and AROM (50° to 70°) may reduce the lower limb injury risk. This study has the potential to offer novel perspectives on the optimized application of landing strategies, thus giving the crucial theoretical basis for decreasing injury risk.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science,
Ningbo University, Ningbo, China
| | - Huiyu Zhou
- Faculty of Sports Science,
Ningbo University, Ningbo, China
| | - Wenjing Quan
- Faculty of Sports Science,
Ningbo University, Ningbo, China
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital,
Fudan University, Shanghai, China
| | - Teo-Ee Chon
- Faculty of Sports Science,
Ningbo University, Ningbo, China
- School of Chemical and Biomedical Engineering,
Nanyang Technological University, Singapore 639798, Singapore
| | - Justin Fernandez
- Auckland Bioengineering Institute,
University of Auckland, Auckland, New Zealand
- Department of Engineering Science,
University of Auckland, Auckland, New Zealand
| | - Fekete Gusztav
- Department of Material Science and Technology, Audi Hungaria Faculty of Automotive Engineering,
Széchenyi István University, Gyor, Hungary
| | - András Kovács
- Faculty of Engineering,
University of Pannonia, Veszprém, Hungary
| | - Julien S. Baker
- Faculty of Sports Science,
Ningbo University, Ningbo, China
- Department of Sport and Physical Education,
Hong Kong Baptist University, Hong Kong, China
| | - Yaodong Gu
- Faculty of Sports Science,
Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Arefin MS, Chieh HF, Lin CJ, Lin CF, Su FC. Influence of altered torsional stiffness through sole modification of air pressure shoes on lower extremity biomechanical behaviour during side-step cutting maneuvers. PLoS One 2024; 19:e0297592. [PMID: 38422014 PMCID: PMC10903810 DOI: 10.1371/journal.pone.0297592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Directional changes in cutting maneuvers are critical in sports, where shoe torsional stiffness (STS) is an important factor. Shoes are designed based on different constructions and movement patterns. Hence, it is unclear how adjustable spacers into the sole constructions of air pressure chambers (APC) affect the STS in side-step cutting. Therefore, this study investigated the effects of altered STS through adjustable sole spacers on ground reaction force (GRF) and ankle and knee joint moments in side-step cutting. Seventeen healthy recreational athletes performed side-step cutting with experimental conditions including (i) barefoot (BF), (ii) unaltered shoes (UAS): soles consisting of APC, and (iii) altered shoes (AS): modified UAS by inserting elastomeric spacers into cavities formed by APC. Mechanical and biomechanical variables were measured. Significant differences were revealed across shoe conditions for impact peak (p = 0.009) and impulse (p = 0.018) in vertical GRF, time to achieve peak braking (p = 0.004), and peak propulsion (p = 0.025) for anterior-posterior GRF in ANOVA test. No significant differences were observed in GRF peaks and impulses between UAS and AS except for a trend of differences in impact peak (p = 0.087) for vertical GRF. At the ankle and knee joint, peak ankle power absorption (p = 0.019), peak knee internal rotation moment (p = 0.042), peak knee extension moment (p = 0.001), peak knee flexion moment (0.000), peak knee power absorption (p = 0.047) showed significant difference across three shoe conditions. However, no significant differences between the UAS and AS were noticed for peak joint moments and power. Altered shoe torsional stiffness did not significantly affect the peak forces and peak ankle and knee joint moments or powers; hence sole adjustment did not influence the cutting performance. This study might be insightful in sports footwear design, and adjusting shoe torsional stiffness by sole modification might be advantageous for athletes playing sports with cutting maneuvers to reduce the risk of injuries by controlling the twisting force at the ankle that frequently happens during cutting maneuvers.
Collapse
Affiliation(s)
- Md Samsul Arefin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Department of Leather Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Hsiao-Feng Chieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Ju Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Feng Lin
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Xu D, Zhou H, Quan W, Ugbolue UC, Gusztav F, Gu Y. A new method applied for explaining the landing patterns: Interpretability analysis of machine learning. Heliyon 2024; 10:e26052. [PMID: 38370177 PMCID: PMC10869904 DOI: 10.1016/j.heliyon.2024.e26052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
As one of many fundamental sports techniques, the landing maneuver is also frequently used in clinical injury screening and diagnosis. However, the landing patterns are different under different constraints, which will cause great difficulties for clinical experts in clinical diagnosis. Machine learning (ML) have been very successful in solving a variety of clinical diagnosis tasks, but they all have the disadvantage of being black boxes and rarely provide and explain useful information about the reasons for making a particular decision. The current work validates the feasibility of applying an explainable ML (XML) model constructed by Layer-wise Relevance Propagation (LRP) for landing pattern recognition in clinical biomechanics. This study collected 560 groups landing data. By incorporating these landing data into the XML model as input signals, the prediction results were interpreted based on the relevance score (RS) derived from LRP. The interpretation obtained from XML was evaluated comprehensively from the statistical perspective based on Statistical Parametric Mapping (SPM) and Effect Size. The RS has excellent statistical characteristics in the interpretation of landing patterns between classes, and also conforms to the clinical characteristics of landing pattern recognition. The current work highlights the applicability of XML methods that can not only satisfy the traditional decision problem between classes, but also largely solve the lack of transparency in landing pattern recognition. We provide a feasible framework for realizing interpretability of ML decision results in landing analysis, providing a methodological reference and solid foundation for future clinical diagnosis and biomechanical analysis.
Collapse
Affiliation(s)
- Datao Xu
- Research Academy of Medicine Combining Sports, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Faculty of Engineering, University of Pannonia, Veszprém, Hungary
| | - Huiyu Zhou
- Research Academy of Medicine Combining Sports, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Wenjing Quan
- Research Academy of Medicine Combining Sports, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ukadike Chris Ugbolue
- School of Health and Life Sciences, University of the West of Scotland, Scotland, United Kingdom
| | - Fekete Gusztav
- Vehicle Industry Research Center, Széchenyi István University, Gyor, Hungary
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No. 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
6
|
Ramalingam V, Cheong SK, Lee PF. Effect of six-week short-duration deep breathing on young adults with chronic ankle instability-a pilot randomized control trial. BMC Sports Sci Med Rehabil 2023; 15:155. [PMID: 37968738 PMCID: PMC10652500 DOI: 10.1186/s13102-023-00758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Chronic ankle instability (CAI) is the most common injury in youth sports, which leads to psychological stress from doubting their performance. Cost effective and easy to access tool to reduce the stress among this target group are desired. Therefore, the purpose of this study was to investigate the effect of adding on intervention with short-duration deep breathing (SDDB) alongside with conventional physiotherapy (CP) among young adults with chronic ankle instability (CAI). METHODS Total of 30 CAI participants attended physiotherapy, who were randomly assigned into control and experimental groups. The participants in the experimental group received combined intervention (SDDB + CP), and the control group received CP for 6 weeks. The effectiveness of interventions was assessed at 3 intervals with a battery of questionnaires (Visual Analog Score, Cumberland Ankle Instability Tool, Mindful Attention Awareness Scale, and Oxford Happiness Questionnaire) at the end of week 3, week 6, and week 12 as follow-up. A two-way repeated measures of ANOVA was applied to report the statistical significance at p < 0.05. RESULTS The results showed a better improvement in pain, balance, happiness, and mindfulness attention among participants in the experimental group, with a significant improvement in mindful attention over the time point as compared to the control group. CONCLUSION The findings provide insight into incorporating SDDB additions to the existing CP for better CAI management. Breathing techniques that improve attention and happiness play a vital role in CAI, which recommends the biopsychosocial approach in chronic injury rehabilitation. TRIAL REGISTRATION Current Controlled Trials using Clinical Trials Registry under ID number NCT04812158 retrospectively registered on 23/03/2021.
Collapse
Affiliation(s)
- Vinodhkumar Ramalingam
- Saveetha College of Physiotherapy, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia.
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Kajang, Selangor, Malaysia
| | - Poh Foong Lee
- Lee Kong Chian Faculty of Engineering & Science, University Tunku Abdul Rahman, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
7
|
Gao X, Xu D, Li F, Baker JS, Li J, Gu Y. Biomechanical Analysis of Latin Dancers' Lower Limb during Normal Walking. Bioengineering (Basel) 2023; 10:1128. [PMID: 37892858 PMCID: PMC10604096 DOI: 10.3390/bioengineering10101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Latin dance involves fundamental walking steps, integral to the dance process. While resembling daily walking, Latin dance demands higher balance levels, necessitating body adjustments by dancers. These adaptations affect dancers' gait biomechanics, prompting our study on gait differences between Latin dancers (LDs) and non-dancers (NDs). We enlisted 21 female Latin dancers and 21 subjects based on specific criteria. Participants executed walking tasks, with an independent sample t-test for 1-dimensional statistical parameter mapping (SPM 1d) analyzing stance phase variations between LDs and NDs. Notably, significant differences in ankle and hip external rotation were evident during the 16.43-29.47% (p = 0.015) and 86.35-100% (p = 0.014) stance phase. Moreover, pronounced distinctions in rectus Achilles tendon force (ATF) (12.83-13.10%, p = 0.049; 15.89-80.19%, p < 0.001) and Patellofemoral joint contact force (PTF) (15.85-18.31%, p = 0.039; 21.14-24.71%, p = 0.030) during stance were noted between LDs (Latin dancers) and NDs (Non-dancers). The study revealed dancers' enhanced balance attributed to external ankle rotation for dance stability, coupled with augmented Achilles tendon and patellofemoral joint strength from prolonged practice. Moreover, integrating suitable Latin dance into rehabilitation may benefit those with internal rotation gait issues.
Collapse
Affiliation(s)
- Xiangli Gao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.G.); (D.X.); (F.L.)
| | - Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.G.); (D.X.); (F.L.)
- Faculty of Engineering, University of Pannonia, 8201 Veszprem, Hungary
| | - Fengfeng Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.G.); (D.X.); (F.L.)
| | - Julien S. Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jiao Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.G.); (D.X.); (F.L.)
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.G.); (D.X.); (F.L.)
- Faculty of Engineering, University of Szeged, 6724 Szeged, Hungary
| |
Collapse
|
8
|
Jia R, Wang F, Jiang J, Zhang H, Li J. The biomechanical effects of insoles with different cushioning on the knee joints of people with different body mass index grades. Front Bioeng Biotechnol 2023; 11:1241171. [PMID: 37781527 PMCID: PMC10540770 DOI: 10.3389/fbioe.2023.1241171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Enhancing knee protection for individuals who are overweight and obese is crucial. Cushioning insoles may improve knee biomechanics and play a significant protective role. However, the impact of insoles with varying cushioning properties on knee joints in individuals with different body mass index (BMI) categories remains unknown. Our aim was to investigate the biomechanical effects of insoles with different cushioning properties on knee joints across different BMI grades. Methods: Gravity-driven impact tests were used to characterize the cushioning properties of three types of Artificial Cartilage Foam (ACF18, 28, and 38) and ethylene-vinyl acetate (EVA) insoles. Knee joint sagittal, coronal, and vertical axis angles and moments were collected from healthy-weight (BMI 18.5-23.9 kg/m2, n = 15), overweight (BMI 24.0-27.9 kg/m2, n = 16), and obese (BMI ≥28.0 kg/m2, n = 15) individuals randomly assigned four different insoles during a drop jump. The Kruskal-Wallis test and mixed model repeated measures analysis of variance were used to compare differences among cushioning and biomechanical data across various insoles, respectively. Results: ACF showed higher cushioning than EVA, and ACF38 was the highest among the three types of ACF (all p < 0.001). During the drop jump, the knee flexion angles and moments of the ACF insoles were lower than those of the EVA insoles, the knee adduction angles of the ACF18 and ACF28 insoles were lower than those of the EVA insoles, and ACF18 insoles increased the first cushion time (all p < 0.05) for all participants in whom biomechanical variables demonstrated no interactions between insoles and BMI. Regarding the BMI-dependent biomechanical variables, compared with the EVA insoles, ACF28 insoles decreased the knee flexion angle and ACF38 insoles decreased the knee adduction and rotation moment in the healthy-weight group; ACF18 insoles decreased the knee flexion angle and ACF38 insoles decreased the knee moment in the overweight group; ACF28 insoles decreased the knee flexion and adduction moment, and ACF38 insoles decreased the knee flexion angle and rotation moment in the obese group (all p < 0.05). Conclusion: Insoles with higher cushioning properties could improve knee biomechanics and provide better knee joint protection in people across different BMI ranges.
Collapse
Affiliation(s)
- Rui Jia
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiang Jiang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongtao Zhang
- Zhongshan Torch Development Zone People’s Hospital, Zhongshan, China
| | - Jianyi Li
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Caseiro-Filho LC, Girasol CE, Rinaldi ML, Lemos TW, Guirro RRJ. Analysis of the accuracy and reliability of vertical jump evaluation using a low-cost acquisition system. BMC Sports Sci Med Rehabil 2023; 15:107. [PMID: 37674232 PMCID: PMC10483722 DOI: 10.1186/s13102-023-00718-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND The vertical jump can be analyzed based on the flight time achieved by the individual. This measurement can be obtained using a force platform or a three-dimensional infrared camera system, but such equipment is expensive and requires training for data collection and processing. Thus, this study aimed to evaluate the accuracy and reliability of using a smartphone and the Kinovea software compared with a force platform as a method of vertical jump analysis. METHODS For this purpose, two independent evaluators analyzed videos of bipodal and unipodal vertical jumps by counting the variables among participants. The participants performed three consecutive jumps in bipodal and unipodal conditions with the dominant and non-dominant legs. RESULTS The intra-rater analysis for bipodal jumps was found to have excellent reproducibility (ICC = 0.903 to 0.934), whereas for unipodal jumps, the reproducibility was moderate to excellent (ICC = 0.713 to 0.902). The inter-rater analysis showed that for bipodal jumps, the reproducibility is substantial to excellent (ICC = 0.823 to 0.926), while for unipodal jumps, it is moderate (ICC = 0.554 to 0.702). CONCLUSIONS Therefore, it can be concluded that the vertical jump evaluation can be performed using the smartphone-Kinovea system. However, the same evaluator should carry out the evaluation to maintain reliable indices.
Collapse
Affiliation(s)
- Luis C Caseiro-Filho
- Department of Health Sciences, Ribeirão Preto Medical School of the University of São Paulo (USP) - Ribeirão Preto, São Paulo, Brazil
| | - Carlos E Girasol
- Department of Health Sciences, Ribeirão Preto Medical School of the University of São Paulo (USP) - Ribeirão Preto, São Paulo, Brazil
| | - Mateus L Rinaldi
- Department of Health Sciences, Ribeirão Preto Medical School of the University of São Paulo (USP) - Ribeirão Preto, São Paulo, Brazil
| | - Tenysson W Lemos
- Department of Health Sciences, Ribeirão Preto Medical School of the University of São Paulo (USP) - Ribeirão Preto, São Paulo, Brazil
| | - Rinaldo R J Guirro
- Department of Health Sciences, Ribeirão Preto Medical School of the University of São Paulo (USP) - Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
10
|
López NR, Gómez RM, Valderrama MM, González AG, de la Torre-Montero JC, Moreno ÁPS, Fidalgo-Herrera AJ, Ribeiro ASF, López-Moreno C, Martínez-Beltrán MJ. Biomechanical analysis of barefoot walking and three different sports footwear in children aged between 4 and 6 years old. PLoS One 2023; 18:e0291056. [PMID: 37669303 PMCID: PMC10479898 DOI: 10.1371/journal.pone.0291056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The technological transformation and advertising utilized in the footwear industry significantly impact purchasing decisions. The gait properties, barefoot and with shoes, change depending on the footwear structure. The aim of this work is the biomechanical analysis of walking barefoot and with different sports shoes in a controlled group of 12 children between 4 and 6 years old. Kinematic and spatiotemporal variables were analyzed using a BTS motion capture analysis system with the Helen Hayes protocol. Previously, a survey was carried out with 262 families with children between 4 and 6 years old to justify the choice of footwear for this study. No significant differences were found between any of the measured conditions. The kinematic results showed significant differences in the ankle (right sagittal plane p = 0.04, left p < 0.01; right frontal plane p < 0.01, left p < 0.01), knee (right and left sagittal plane p < 0.01) and hip (right sagittal plane p < 0.01, left p = 0.04; right frontal plane p = 0.03). Additionally, the post hoc analysis revealed significant differences between barefoot gait and different footwear. The footwear used for this study and each one's various characteristics are not preponderant in the spatiotemporal and kinematic parameters of the children's gait. Thus, the footwear purchase may be conditioned by its design or composition and other properties may not be relevant.
Collapse
Affiliation(s)
| | | | - Mar Mínguez Valderrama
- Center of childish development and early attention of Mancomunidad Sagra Alta, Toledo, Spain
| | - Adela García González
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | - Julio C. de la Torre-Montero
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | | | | | - Ana S. F. Ribeiro
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | - Carlos López-Moreno
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| | - María Jesús Martínez-Beltrán
- Comillas Pontifical University, Department of Health Sciences, San Juan de Dios School of Nursing and Physical Therapy, Madrid, Spain
- San Juan de Dios Foundation, Madrid, Spain
| |
Collapse
|
11
|
Taghizadeh Kerman M, Brunetti C, Yalfani A, Atri AE, Sforza C. The Effects of FIFA 11+ Kids Prevention Program on Kinematic Risk Factors for ACL Injury in Preadolescent Female Soccer Players: A Randomized Controlled Trial. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1206. [PMID: 37508703 PMCID: PMC10377808 DOI: 10.3390/children10071206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
This study aimed to investigate the effects of the 8-week FIFA 11+ Kids program on kinematic risk factors for ACL injury in preadolescent female soccer players during single-leg drop landing. For this, 36 preadolescent female soccer players (10-12 years old) were randomly allocated to the FIFA 11+ Kids program and control groups (18 players per group). The intervention group performed the FIFA 11+ Kids warm-up program twice per week for 8 weeks, while the control group continued with regular warm-up. Trunk, hip, and knee peak angles (from initial ground contact to peak knee flexion) were collected during the single-leg drop landing using a 3D motion capture system. A repeated measure ANOVA was used to analyze groups over time. Significant group × time interactions were found for the peak knee flexion, with a medium effect size (p = 0.05; effect size = 0.11), and peak hip internal rotation angles, with a large effect size (p < 0.01; effect size = 0.28). We found that the FIFA 11+ Kids program was effective in improving knee flexion and hip internal rotation, likely resulting in reducing ACL stress during single-leg drop landing in young soccer players.
Collapse
Affiliation(s)
- Maedeh Taghizadeh Kerman
- Department of Sports Injury and Corrective Exercises, Faculty of Physical Education and Sport Sciences, Bu-Ali Sina University, Hamadan 65167-38695, Iran
| | - Claudia Brunetti
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Ali Yalfani
- Department of Sports Injury and Corrective Exercises, Faculty of Physical Education and Sport Sciences, Bu-Ali Sina University, Hamadan 65167-38695, Iran
| | - Ahmad Ebrahimi Atri
- Department of Sports Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Chiarella Sforza
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
12
|
Qiu Y, Guan Y, Liu S. The analysis of infrared high-speed motion capture system on motion aesthetics of aerobics athletes under biomechanics analysis. PLoS One 2023; 18:e0286313. [PMID: 37228162 DOI: 10.1371/journal.pone.0286313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
This paper uses an infrared high-speed motion capture system based on deep learning to analyze difficult movements, which helps aerobics athletes master difficult movements more accurately. Firstly, changes in joint angle, speed of movement, and ground pressure are used to analyze the impact and role of motion fluency and completion based on a biomechanical perspective. Moreover, based on the existing infrared high-speed motion capture systems, the Restricted Boltzmann Machine (RBM) model is introduced to construct an unsupervised similarity framework model. Next, the motion data is reorganized based on three-dimensional information to adapt to the model's input. Then, the framework performs similar frame matching to obtain a set of candidate frames that can be used as motion graph nodes. After the infrared high-speed motion capture system and inertial sensors are simultaneously applied to subjects, the multi-correlation coefficients (CMC) values of the hip, knee, and ankle angles are 0.94 ± 0.06, 0.98 ± 0.01, and 0.87 ± 0.09, respectively. The two systems show a high degree of correlation in the measurement results, and the knee joint is the most significant correlation. Finally, a motion graph is constructed to control its trajectory and adjust its motion pattern. The infrared high-speed motion capture system optimized for deep learning can extract features from human bone data and capture motion more accurately, helping trainers to fully understand difficult movements.
Collapse
Affiliation(s)
- Yaoyu Qiu
- School of Sport, Shangrao Normal University, Shangrao, China
| | - Yingrong Guan
- School of Sport, Shangrao Normal University, Shangrao, China
| | - Shuang Liu
- College of Physical Education, Jinggangshan University, Ji'an, China
| |
Collapse
|
13
|
Xu D, Zhou H, Zhang Q, Baker JS, Ugbolue UC, Radak Z, Ma X, Gusztav F, Wang M, Gu Y. A new method proposed to explore the feline's paw bones of contributing most to landing pattern recognition when landed under different constraints. Front Vet Sci 2022; 9:1011357. [PMID: 36299631 PMCID: PMC9589501 DOI: 10.3389/fvets.2022.1011357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
Felines are generally acknowledged to have natural athletic ability, especially in jumping and landing. The adage “felines have nine lives” seems applicable when we consider its ability to land safely from heights. Traditional post-processing of finite element analysis (FEA) is usually based on stress distribution trend and maximum stress values, which is often related to the smoothness and morphological characteristics of the finite element model and cannot be used to comprehensively and deeply explore the mechanical mechanism of the bone. Machine learning methods that focus on feature pattern variable analysis have been gradually applied in the field of biomechanics. Therefore, this study investigated the cat forelimb biomechanical characteristics when landing from different heights using FEA and feature engineering techniques for post-processing of FEA. The results suggested that the stress distribution feature of the second, fourth metacarpal, the second, third proximal phalanx are the features that contribute most to landing pattern recognition when cats landed under different constraints. With increments in landing altitude, the variations in landing pattern differences may be a response of the cat's forelimb by adjusting the musculoskeletal structure to reduce the risk of injury with a more optimal landing strategy. The combination of feature engineering techniques can effectively identify the bone's features that contribute most to pattern recognition under different constraints, which is conducive to the grasp of the optimal feature that can reveal intrinsic properties in the field of biomechanics.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China,Savaria Institute of Technology, Eötvös Loránd University, Szombathely, Hungary,Faculty of Engineering, University of Pannonia, Veszprem, Hungary
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China,School of Health and Life Sciences, University of the West of Scotland, Scotland, United Kingdom
| | - Qiaolin Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Julien S. Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Ukadike C. Ugbolue
- School of Health and Life Sciences, University of the West of Scotland, Scotland, United Kingdom
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Xin Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fekete Gusztav
- Savaria Institute of Technology, Eötvös Loránd University, Szombathely, Hungary,Faculty of Engineering, University of Pannonia, Veszprem, Hungary
| | - Meizi Wang
- Faculty of Sports Science, Ningbo University, Ningbo, China,Faculty of Health and Safety, Óbuda University, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China,*Correspondence: Yaodong Gu
| |
Collapse
|
14
|
The Influence of Different Rope Jumping Methods on Adolescents' Lower Limb Biomechanics during the Ground-Contact Phase. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9050721. [PMID: 35626898 PMCID: PMC9139829 DOI: 10.3390/children9050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
As a simple and beneficial way of exercise, rope skipping is favored by the majority of teenagers, but incorrect rope skipping may lead to the risk of injury. In this study, 16 male adolescent subjects were tested for bounced jump skipping and alternating jump rope skipping. The kinematic data of the hip, knee, ankle and metatarsophalangeal joint of lower extremities and the kinetics data of lower extremity touching the ground during rope skipping were collected, respectively. Moreover, the electromyography (EMG) data of multiple muscles of the lower extremity were collected by Delsys wireless surface EMG tester. Results revealed that bounced jump (BJ) depicted a significantly smaller vertical ground reaction force (VGRF) than alternate jump (AJ) during the 11−82% of the ground-contact stage (p < 0.001), and the peak ground reaction force and average loading rate were significantly smaller than AJ. From the kinematic perspective, in the sagittal plane, when using BJ, the flexion angle of the hip joint was comparably larger at 12−76% of the ground-contact stage (p < 0.01) and the flexion angle of the knee joint was significantly larger at 13−72% of the ground-contact stage (p < 0.001). When using two rope skipping methods, the minimum dorsal extension angle of the metatarsophalangeal joint was more than 25°, and the maximum was even higher than 50°. In the frontal plane, when using AJ, the valgus angle of the knee joint was significantly larger during the whole ground-contact stage (p < 0.001), and the adduction angle of the metatarsophalangeal joint (MPJ) was significantly larger at 0−97% of the ground-contact stage (p = 0.001). EMG data showed that the standardized value of root mean square amplitude of the tibialis anterior and gastrocnemius lateral head of BJ was significantly higher than AJ. At the same time, that of semitendinosus and iliopsoas muscle was significantly lower. According to the above results, compared with AJ, teenagers receive less GRF and have a better landing buffer strategy to reduce load, and have less risk of injury during BJ. In addition, in BJ rope skipping, the lower limbs are more inclined to the calf muscle group force, while AJ is more inclined to the thigh muscle group force. We also found that in using two ways of rope skipping, the extreme metatarsophalangeal joint back extension angle could be a potential risk of injury for rope skipping.
Collapse
|
15
|
Xu D, Zhou H, Jiang X, Li S, Zhang Q, Baker JS, Gu Y. New Insights for the Design of Bionic Robots: Adaptive Motion Adjustment Strategies During Feline Landings. Front Vet Sci 2022; 9:836043. [PMID: 35529841 PMCID: PMC9070819 DOI: 10.3389/fvets.2022.836043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 01/17/2023] Open
Abstract
Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China.,School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Xinyan Jiang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Shudong Li
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Qiaolin Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Julien S Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Li F, Adrien N, He Y. Biomechanical Risks Associated with Foot and Ankle Injuries in Ballet Dancers: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4916. [PMID: 35457783 PMCID: PMC9029463 DOI: 10.3390/ijerph19084916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022]
Abstract
Professional ballet dancers can be classified as dance artists and sports performers. This systematic review aims to consider the biomechanical risk factors for foot and ankle injuries in ballet dancers, as this could potentially reduce the impact that 'cost of injury' may have on ballet companies. An additional outcome was to examine the effects of injury on the career of ballet dancers. This study searched articles in four electronic databases for information in peer-reviewed journals. The included articles examined the relationships between biomechanical factors and the relationship between ballet shoes and foot performance. There were 9 articles included in this review. Among these articles, two focused on the peak force of the foot using two types of pointe shoes, three focused on overuse injuries of the ballet dancer's foot, one article focused on the loading of the foot of a dancer, and three articles focused on the function and biomechanics of the foot in dancers. This review also found that the pointe shoe condition was the most important factor contributing to a foot injury; overuse injury related to high-intensity training and affected both the ankle and the foot; and metatarsophalangeal joint injury related to the function and structure of the foot. Finally, strengthening the lower extremity muscle is also a recommendation to improve muscle coordination and reduce injuries.
Collapse
Affiliation(s)
- Fengfeng Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (F.L.); (N.A.)
| | - Ntwali Adrien
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (F.L.); (N.A.)
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Yuhuan He
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (F.L.); (N.A.)
- Department of Physical and Health Education, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
- CEEC Economic and Trade Cooperation Institute, Ningbo University, Ningbo 315211, China
| |
Collapse
|
17
|
Xu D, Quan W, Zhou H, Sun D, Baker JS, Gu Y. Explaining the differences of gait patterns between high and low-mileage runners with machine learning. Sci Rep 2022; 12:2981. [PMID: 35194121 PMCID: PMC8863837 DOI: 10.1038/s41598-022-07054-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Running gait patterns have implications for revealing the causes of injuries between higher-mileage runners and low-mileage runners. However, there is limited research on the possible relationships between running gait patterns and weekly running mileages. In recent years, machine learning algorithms have been used for pattern recognition and classification of gait features to emphasize the uniqueness of gait patterns. However, they all have a representative problem of being a black box that often lacks the interpretability of the predicted results of the classifier. Therefore, this study was conducted using a Deep Neural Network (DNN) model and Layer-wise Relevance Propagation (LRP) technology to investigate the differences in running gait patterns between higher-mileage runners and low-mileage runners. It was found that the ankle and knee provide considerable information to recognize gait features, especially in the sagittal and transverse planes. This may be the reason why high-mileage and low-mileage runners have different injury patterns due to their different gait patterns. The early stages of stance are very important in gait pattern recognition because the pattern contains effective information related to gait. The findings of the study noted that LRP completes a feasible interpretation of the predicted results of the model, thus providing more interesting insights and more effective information for analyzing gait patterns.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Wenjing Quan
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China.,Faculty of Engineering, University of Pannonia, Veszprém, Hungary.,Savaria Institute of Technology, Eötvös Loránd University, Budapest, Hungary
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China.,School of Health and Life Sciences, University of the West of Scotland, Glasgow, G72 0LH, Scotland, UK
| | - Dong Sun
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China
| | - Julien S Baker
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, 999077, China.
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Dadfar M, Sheikhhoseini R, Jafarian M, Esmaeili A. Lower extremity kinematic coupling during single and double leg landing and gait in female junior athletes with dynamic knee valgus. BMC Sports Sci Med Rehabil 2021; 13:152. [PMID: 34886878 PMCID: PMC8662875 DOI: 10.1186/s13102-021-00385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dynamic knee valgus (DKV) is a common lower extremity movement disorder among females. This study aimed to investigate kinematic couplings between lower extremity joints in female junior athletes with DKV during single and double-leg landing and gait. METHODS Twenty-six physically active female junior athletes (10-14 years old) with DKV were recruited. Kinematic couplings between rearfoot, tibia, knee, and hip were extracted using eight Vicon motion capture cameras and two force plates. Zero-lag cross-correlation coefficient and vector coding were used to calculate kinematic couplings between joints during physical tasks. Paired t-test and Wilcoxon tests were run to find significant couplings between joint motions and coupling strengths. Bonferroni posthoc was used to determine significance with α ≤ 0.05. RESULTS The results showed that the strongest kinematic relationship existed between rearfoot eversion/inversion and tibial internal/external rotation during all three tasks. Correlations of the rearfoot supination/pronation with tibial rotations, knee, and hip motions in sagittal, frontal, and transverse planes were very strong to strong during double-leg landing and moderate to weak during gait. A weak correlation was observed between rearfoot supination/pronation and hip adduction/abduction during single-leg landing. CONCLUSIONS Coupling relationships between rearfoot, knee, and hip vary by the task intensity and alignment profiles in female juniors with DKV.
Collapse
Affiliation(s)
- Mahdis Dadfar
- Department of Corrective Exercise and Sport Injury, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Western Azadi Sport Complex Boulevard, Hakim Highway, Tehran, Iran
| | - Rahman Sheikhhoseini
- Department of Corrective Exercise and Sport Injury, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Western Azadi Sport Complex Boulevard, Hakim Highway, Tehran, Iran
| | - Mohadeseh Jafarian
- Department of Electrical Engineering, Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Esmaeili
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Australian Football League (AFL), Melbourne, Australia
| |
Collapse
|
19
|
A Pilot Study of Muscle Force between Normal Shoes and Bionic Shoes during Men Walking and Running Stance Phase Using Opensim. ACTUATORS 2021. [DOI: 10.3390/act10100274] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The original idea for bionic shoes (BSs) involves combining the function of unstable foot conditions and the structure of the human plantar. The purpose of this study was to investigate the differences between the normal shoes (NS) and the BS during the stance phases of walking and running. A total of 15 Chinese males from Ningbo University were recruited for this study (age: 24.3 ± 2.01 years; height: 176.25 ± 7.11 cm, body weight (BW): 75.75 ± 8.35 kg). The participants were asked to perform a walking and running task. Statistical parametric mapping (SPM) analysis was used to investigate any differences between NSs and BSs during the walking and running stance phases. The results demonstrated that there were significant differences found (21.23–28.24%, p = 0.040; 84.47–100%, p = 0.017) in hip extension and flexion between the NS and the BS during the walking stance phase. There were no significant differences found in ankle and moment during the running stance phase. Significant differences were found in the rectus femoris (5.29–6.21%; p = 0.047), tibialis anterior (14.37–16.40%; p = 0.038), and medial gastrocnemius (25.55–46.86%; p < 0.001) between the NS and the BS during the walking stance phase. Significant differences were found in rectus femoris (12.83–13.10%, p = 0.049; 15.89–80.19%, p < 0.001), tibialis anterior (15.85–18.31%, p = 0.039; 21.14–24.71%, p = 0.030), medial gastrocnemius (80.70–90.44%; p = 0.007), and lateral gastrocnemius (11.16–27.93%, p < 0.001; 62.20–65.63%, p = 0.032; 77.56–93.45%, p < 0.001) between the NS and the BS during the running stance phase. These findings indicate that BSs are more efficient for muscle control than unstable shoes and maybe suitable for rehabilitation training.
Collapse
|
20
|
Quan W, Zhou H, Xu D, Li S, Baker JS, Gu Y. Competitive and Recreational Running Kinematics Examined Using Principal Components Analysis. Healthcare (Basel) 2021; 9:healthcare9101321. [PMID: 34683001 PMCID: PMC8544359 DOI: 10.3390/healthcare9101321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Kinematics data are primary biomechanical parameters. A principal component analysis (PCA) of waveforms is a statistical approach used to explore patterns of variability in biomechanical curve datasets. Differences in experienced and recreational runners' kinematic variables are still unclear. The purpose of the present study was to compare any differences in kinematics parameters for competitive runners and recreational runners using principal component analysis in the sagittal plane, frontal plane and transverse plane. Forty male runners were divided into two groups: twenty competitive runners and twenty recreational runners. A Vicon Motion System (Vicon Metrics Ltd., Oxford, UK) captured three-dimensional kinematics data during running at 3.3 m/s. The principal component analysis was used to determine the dominating variation in this model. Then, the principal component scores retained the first three principal components and were analyzed using independent t-tests. The recreational runners were found to have a smaller dorsiflexion angle, initial dorsiflexion contact angle, ankle inversion, knee adduction, range motion in the frontal knee plane and hip frontal plane. The running kinematics data were influenced by running experience. The findings from the study provide a better understanding of the kinematics variables for competitive and recreational runners. Thus, these findings might have implications for reducing running injury and improving running performance.
Collapse
Affiliation(s)
- Wenjing Quan
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (W.Q.); (H.Z.); (D.X.)
- Faculty of Engineering, University of Pannonia, H-8201 Veszprém, Hungary
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (W.Q.); (H.Z.); (D.X.)
- School of Health and Life Sciences, University of the West of Scotland, Glasgow G72 0LH, UK
| | - Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (W.Q.); (H.Z.); (D.X.)
| | - Shudong Li
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (W.Q.); (H.Z.); (D.X.)
- Correspondence: (S.L.); (Y.G.)
| | - Julien S. Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong 999077, China;
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (W.Q.); (H.Z.); (D.X.)
- Correspondence: (S.L.); (Y.G.)
| |
Collapse
|
21
|
Jiang X, Zhou H, Quan W, Hu Q, Baker JS, Gu Y. Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189787. [PMID: 34574713 PMCID: PMC8469130 DOI: 10.3390/ijerph18189787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022]
Abstract
Running-related injuries are common among runners. Recent studies in footwear have shown that designs of shoes can potentially affect sports performance and risk of injury. Bionic shoes combine the functions of barefoot running and foot protection and incorporate traditional unstable structures based on bionic science. The purpose of this study was to investigate ground reaction force (GRF) differences for a 5 km run and how bionic shoes affect GRFs. Sixteen male recreational runners volunteered to participate in this study and finished two 5 km running sessions (a neutral shoe session and a bionic shoe session). Two-way repeated-measures ANOVAs were performed to determine the differences in GRFs. In the analysis of the footwear conditions of runners, bionic shoes showed significant decreases in vertical impulse, peak propulsive force, propulsive impulse, and contact time, while the braking impulse and vertical instantaneous loading rate (VILR) increased significantly compared to the neutral shoes. Main effects for a 5 km run were also observed at vertical GRFs and anterior–posterior GRFs. The increases of peak vertical impact force, vertical average loading rate (VALR), VILR, peak braking force and braking impulse were observed in post-5 km running trials and a reduction in peak propulsive force and propulsive impulse. The interaction effects existed in VILR and contact time. The results suggest that bionic shoes may benefit runners with decreasing injury risk during running. The findings of the present study may help to understand the effects of footwear design during prolonged running, thereby providing valuable information for reducing the risk of running injuries.
Collapse
Affiliation(s)
- Xinyan Jiang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- School of Health and Life Sciences, University of the West of Scotland, Scotland G72 0LH, UK
| | - Wenjing Quan
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Qiuli Hu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- Correspondence: (Q.H.); (Y.G.); Tel.: +86-574-87600456 (Q.H.); +86-574-87600208 (Y.G.)
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health Hong Kong Baptist University, Hong Kong 999077, China;
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (X.J.); (H.Z.); (W.Q.)
- Correspondence: (Q.H.); (Y.G.); Tel.: +86-574-87600456 (Q.H.); +86-574-87600208 (Y.G.)
| |
Collapse
|