1
|
Kattimani V, Bhukya NKN, Panga GSK, Chakrabarty A, Lingamaneni P. Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review. J Maxillofac Oral Surg 2024; 23:763-771. [PMID: 39118900 PMCID: PMC11303611 DOI: 10.1007/s12663-024-02251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Nanotechnology has shown potential in treating different types of cancers. In particular, nano-drug delivery systems (DDSs) offer a promising strategy for treating oral cancer. By customizing therapy and improving drug delivery, these systems can improve outcomes for patients. Hence, a review was conducted to assess the current evidence and explore the use of DDSs for treating oral cancer. Aim To comprehensively explore the nano-drug carriers and target delivery for oral cancer therapy and to discuss the benefits, challenges, and potential to guide future research and clinical practice. Methodology A systematic search of articles archived in PubMed, Scopus, and Cochrane using keywords such as Nano, drug carrier, target drug delivery, and oral cancer was performed to fulfill the objectives from inception till February 2, 2024. Articles providing insights into nano-drug carriers in oral cancer were included. Results The results revealed a total of 156 articles. After duplicate removal, 136 articles were screened for title and abstract as per the inclusion and exclusion criteria. A total of 113 articles were excluded with reasons. Out of the remaining 23 articles, only 11 were included for qualitative data synthesis. Conclusion The literature revealed scarcity of oral cancer-related work using DDSs. Qualitative synthesis of data revealed that nano-drug carriers demonstrated a promising avenue for targeted therapeutic approaches in oral cancer, despite the challenges and their potential benefits. Continued research and development in this field are crucial to overcoming these challenges and fully realizing the potential of nano-drug carriers in revolutionizing oral cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-024-02251-z.
Collapse
Affiliation(s)
- Vivekanand Kattimani
- SIBAR Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh 522509 India
| | - Nom Kumar Naik Bhukya
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | | | | |
Collapse
|
2
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Singh IR, Aggarwal N, Srivastava S, Panda JJ, Mishra J. Small Peptide-Based Nanodelivery Systems for Cancer Therapy and Diagnosis. J Pharmacol Exp Ther 2024; 390:30-44. [PMID: 37977815 DOI: 10.1124/jpet.123.001845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
Developing nano-biomaterials with tunable topology, size, and surface characteristics has shown tremendously favorable benefits in various biologic and clinical applications. Among various nano-biomaterials, peptide-based drug delivery systems offer multiple merits over other synthetic systems due to their enhanced bio- and cytocompatibility and desirable biochemical and biophysical properties. Currently, around 100 peptide-based drugs are clinically available for numerous therapeutic purposes. In conjugation with chemotherapeutic moieties, peptides demonstrate a remarkable ability to reduce nonspecific drug effects by improving drug targetability at cancer sites. This review encompasses a wide-ranging role played by different peptide-based nanostructures in cancer theranostics. Section 1 introduces the rising concern about cancer as a disease and further describes peptide-based nanomaterials as biomedical agents to tackle the ailment. The subsequent section explores the mechanistic pathways behind the self-assembly of peptides to form hierarchically distinct assemblies. The crux of our review lies in an exhaustive exploration of the applications of various types of peptide-based nanostructures in cancer therapy and diagnosis. SIGNIFICANCE STATEMENT: Peptide-based drug delivery systems possess superior biocompatibility, biochemical, and biophysical properties compared to other synthetic alternatives. The development of these nano-biomaterials with customizable topology, size, and surface characteristics have shown promising outcomes in biomedical contexts. Peptides in conjunction with chemotherapeutic agents exhibit the ability to enhance drug targetability at cancer sites, reducing nonspecific drug effects. This comprehensive review emphasizes the pivotal role of diverse peptide-based nanostructures as cancer theranostics, elucidating their potential in revolutionizing cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Imocha Rajkumar Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Nidhi Aggarwal
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Swapnil Srivastava
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jiban Jyoti Panda
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| | - Jibanananda Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India (I.R.S., N.A., S.S., J.J.P.) and School of Biosciences, RIMT University, Mandi Gobindgarh, India (J.M.)
| |
Collapse
|
4
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
5
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
6
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
7
|
Deigin V, Linkova N, Vinogradova J, Vinogradov D, Polyakova V, Medvedev D, Krasichkov A, Volpina O. The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. Int J Mol Sci 2024; 25:5042. [PMID: 38732260 PMCID: PMC11084461 DOI: 10.3390/ijms25095042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides' susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed.
Collapse
Affiliation(s)
- Vladislav Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Julia Vinogradova
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Dmitrii Vinogradov
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
- The Department of Social Rehabilitation and Occupational Therapy of the St. Petersburg Medical and Social Institute, Kondratievsky St., 72A, St. Petersburg 195271, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University ‘LETI’, St. Petersburg 197376, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| |
Collapse
|
8
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
9
|
Aibinder P, Cohen-Erez I, Rapaport H. Rational Formulation of targeted ABT-737 nanoparticles by self-assembled polypeptides and designed peptides. Heliyon 2024; 10:e26095. [PMID: 38420433 PMCID: PMC10900936 DOI: 10.1016/j.heliyon.2024.e26095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Here we present the development of nanoparticles (NPs) formulations specifically designed for targeting the antiapoptotic Bcl-2 proteins on the outer membrane of mitochondria with the drug agent ABT-737. The NPs which are self-assembled by the natural polypeptide poly gamma glutamic acid (ϒPGA) and a designed cationic and amphiphilic peptide (PFK) have been shown to target drugs toward mitochondria. In this study we systematically developed the formulation of such NPs loaded with the ABT-737 and demonstrated the cytotoxic effect of the best identified formulation on MDA-MB-231 cells. Our findings emphasize the critical role of solutions pH and the charged state of the components throughout the formulation process as well as the concentrations of the co-components and their mixing sequence, in achieving the most stable and effective cytotoxic formulation. Our study highlights the potential versatility of designed peptides in combination with biopolymers for improving drug delivery formulations and enhance their targeting abilities.
Collapse
Affiliation(s)
- Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ifat Cohen-Erez
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
10
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
11
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
12
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
13
|
Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem 2023; 38:2276663. [PMID: 37955285 PMCID: PMC10653662 DOI: 10.1080/14756366.2023.2276663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H3-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group. Then, there is the question as to how/whether the uptake of biotin conjugates goes through the SMVT. If not, then what is the mechanism? Herein, we present known uptake mechanisms of biotin and its applications reported in the literature. We also critically analyse possible uptake mechanism(s) of biotin conjugates to address the disconnect between the results from SMVT-based SAR and "biotin-facilitated" targeted drug delivery. We believe understanding the uptake mechanism of biotin conjugates is critical for their future applications and further development.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Anchala Guglani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rujuta Ghorpade
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
14
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
15
|
Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: challenges and strategies. J Nanobiotechnology 2023; 21:381. [PMID: 37848888 PMCID: PMC10583313 DOI: 10.1186/s12951-023-02147-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Small interfering RNA (siRNA) is a potential method of gene silencing to target specific genes. Although the U.S. Food and Drug Administration (FDA) has approved multiple siRNA-based therapeutics, many biological barriers limit their use for treating diseases. Such limitations include challenges concerning systemic or local administration, short half-life, rapid clearance rates, nonspecific binding, cell membrane penetration inability, ineffective endosomal escape, pH sensitivity, endonuclease degradation, immunological responses, and intracellular trafficking. To overcome these barriers, various strategies have been developed to stabilize siRNA, ensuring their delivery to the target site. Chemical modifications implemented with nucleotides or the phosphate backbone can reduce off-target binding and immune stimulation. Encapsulation or formulation can protect siRNA from endonuclease degradation and enhance cellular uptake while promoting endosomal escape. Additionally, various techniques such as viral vectors, aptamers, cell-penetrating peptides, liposomes, and polymers have been developed for delivering siRNA, greatly improving their bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faria Fatima
- College of Medical Technology, Ziauddin University, Karachi, 74700, Pakistan
| | - Syed Aqib Ali Zaidi
- Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Chongqing Diabetic Foot Medical Research Center, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Abstract
The nanoscale properties of nanomaterials, especially nanoparticles, including size, shape, and surface charge, have been extensively studied for their impact on nanomedicine. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest to manipulate the chirality of nanomaterials to enhance their biomolecular interactions and improve nanotherapeutics. Chiral nanostructures are currently more prevalently used in biosensing and diagnostic applications owing to their distinctive physical and optical properties, but they hold great promise for use in nanomedicine. In this Review, we first discuss stereospecific interactions between chiral nanomaterials and biomolecules before comparing the synthesis and characterization methods of chiral nanoparticles and nanoassemblies. Finally, we examine the applications of chiral nanotherapeutics in cancer, immunomodulation, and neurodegenerative diseases and propose plausible mechanisms in which chiral nanomaterials interact with cells for biological manipulation. This Review on chirality is a timely reminder of the arsenal of nanoscale modifications to boost research in nanotherapeutics.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
- Institute of Health Innovation and Technology, National University of Singapore, Singapore 117599
- Tissue Engineering Program, National University of Singapore, Singapore 117510
| |
Collapse
|
17
|
Vadevoo SMP, Gurung S, Lee HS, Gunassekaran GR, Lee SM, Yoon JW, Lee YK, Lee B. Peptides as multifunctional players in cancer therapy. Exp Mol Med 2023; 55:1099-1109. [PMID: 37258584 PMCID: PMC10318096 DOI: 10.1038/s12276-023-01016-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/02/2023] Open
Abstract
Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Smriti Gurung
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Hyun-Su Lee
- Department of Physiology, Daegu Catholic University School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seok-Min Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jae-Won Yoon
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Ki Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
18
|
Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, Azevedo NF, Loureiro JA, Pereira MC. Fighting Methicillin-Resistant Staphylococcus aureus with Targeted Nanoparticles. Int J Mol Sci 2023; 24:ijms24109030. [PMID: 37240376 DOI: 10.3390/ijms24109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance (AMR) is considered one of the greatest threats to global health. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, accounting for about 90% of S. aureus infections widespread in the community and hospital settings. In recent years, the use of nanoparticles (NPs) has emerged as a promising strategy to treat MRSA infections. NPs can act directly as antibacterial agents via antibiotic-independent activity and/or serve as drug delivery systems (DDSs), releasing loaded antibiotics. Nonetheless, directing NPs to the infection site is fundamental for effective MRSA treatment so that highly concentrated therapeutic agents are delivered to the infection site while directly reducing the toxicity to healthy human cells. This leads to decreased AMR emergence and less disturbance of the individual's healthy microbiota. Hence, this review compiles and discusses the scientific evidence related to targeted NPs developed for MRSA treatment.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Ramalho
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvio B Santos
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Rita S Santos
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Guimarães
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A Loureiro
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C Pereira
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
Dong Y, Yang K, Xu Z, Li X, Wang F, Zhang Y. Effective Delivery of Paclitaxel-Loaded Ferritin via Inverso CendR Peptide for Enhanced Cancer Therapy. Mol Pharm 2023; 20:942-952. [PMID: 36574345 DOI: 10.1021/acs.molpharmaceut.2c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The application of drug delivery systems based on ferritin nanocarrier has been developed as a potential strategy in cancer therapy. The limited permeability of ferritin remains a challenge for drug penetration into the deeper tumor tissues. CendR peptides have been reported to bear tumor-specific penetration by recognizing neuropilin (NRP-1) receptor that overexpressed on a wide range of cancer cells. Herein, we modified CendR peptide L(RGERPPR), its retro-inverso peptide D(RPPREGR), and inverso peptide D(RGERPPR) on the outer surface of human H chain ferritin by sulfhydryl-maleimide coupling reaction. Approximately 45 paclitaxel (PTX) molecules could be loaded into each ferritin inner cavity by a thermal-triggered method at a specific ionic strength. The penetration ability of three peptide-modified ferritin constructs showed that D(RGERPPR)-modified HFtn was able to be engulfed by A549 and MCF-7 tumor cells and spheroids at the highest level. Due to the dual-targeting effect of ferritin and modified peptides, the PTX-loaded nanocomposites could effectively enter the cells with high expression of TfR1 and NRP-1 receptors and enhanced the cytotoxicity against tumor cells. Remarkably, H-D(RGE)-PTX displayed a superior tumor growth suppression efficacy in A549 tumor-bearing nude mice. The inverso CendR peptide-modified HFtn nanocarrier was first generated and could provide an effective dual-targeting platform for treatment of cancers.
Collapse
Affiliation(s)
- Yixin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Kun Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Zicheng Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing210009, P. R. China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
20
|
Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, Gupta M, Acosta C, Stoddard J, Reynaga R, Tschetter W, Jacomino N, Taratula O, Sun C, Lauer AK, Neuringer M, Sahay G. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. SCIENCE ADVANCES 2023; 9:eadd4623. [PMID: 36630502 PMCID: PMC9833661 DOI: 10.1126/sciadv.add4623] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Lipid nanoparticle (LNP)-based mRNA delivery holds promise for the treatment of inherited retinal degenerations. Currently, LNP-mediated mRNA delivery is restricted to the retinal pigment epithelium (RPE) and Müller glia. LNPs must overcome ocular barriers to transfect neuronal cells critical for visual phototransduction, the photoreceptors (PRs). We used a combinatorial M13 bacteriophage-based heptameric peptide phage display library for the mining of peptide ligands that target PRs. We identified the most promising peptide candidates resulting from in vivo biopanning. Dye-conjugated peptides showed rapid localization to the PRs. LNPs decorated with the top-performing peptide ligands delivered mRNA to the PRs, RPE, and Müller glia in mice. This distribution translated to the nonhuman primate eye, wherein robust protein expression was observed in the PRs, Müller glia, and RPE. Overall, we have developed peptide-conjugated LNPs that can enable mRNA delivery to the neural retina, expanding the utility of LNP-mRNA therapies for inherited blindness.
Collapse
Affiliation(s)
- Marco Herrera-Barrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Renee C. Ryals
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Madeleine Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Tetiana Korzun
- Oregon Health and Science University Medical School, Portland, OR 97239, USA
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Chris Acosta
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Jonathan Stoddard
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Rene Reynaga
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Wayne Tschetter
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nick Jacomino
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
| | - Andreas K. Lauer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Martha Neuringer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Robertson Life Sciences Building, Oregon State University, Portland, OR 97201, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Robertson Life Sciences Building, Oregon Health and Science University, Portland, OR 97201, USA
- Corresponding author.
| |
Collapse
|
21
|
Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology 2023; 31:145-169. [PMID: 36609717 PMCID: PMC9823267 DOI: 10.1007/s10787-022-01115-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Cell-derived exosomes have opened new horizons in modern therapy for advanced drug delivery and therapeutic applications, due to their key features such as low immunogenicity, high physicochemical stability, capacity to penetrate into tissues, and the innate capacity to communicate with other cells over long distances. Exosome-based liquid biopsy has been potentially used for the diagnosis and prognosis of a range of disorders. Exosomes deliver therapeutic agents, including immunological modulators, therapeutic drugs, and antisense oligonucleotides to certain targets, and can be used as vaccines, though their clinical application is still far from reality. Producing exosomes on a large-scale is restricted to their low circulation lifetime, weak targeting capacity, and inappropriate controls, which need to be refined before being implemented in practice. Several bioengineering methods have been used for refining therapeutic applications of exosomes and promoting their effectiveness, on the one hand, and addressing the existing challenges, on the other. In the short run, new diagnostic platforms and emerging therapeutic strategies will further develop exosome engineering and therapeutic potential. This requires a thorough analysis of exosome engineering approaches along with their merits and drawbacks, as outlined in this paper. The present study is a comprehensive review of novel techniques for exosome development in terms of circulation time in the body, targeting capacity, and higher drug loading/delivery efficacies.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shafiee
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Medical Nanotechnology and tissue engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Liu Q, Liu H, Griveau A, Li X, Eyer J, Arib C, Spadavecchia J. NFL-TBS.40-63 Peptide Gold Complex Nanovector: A Novel Therapeutic Approach to Increase Anticancer Activity by Breakdown of Microtubules in Pancreatic Adenocarcinoma (PDAC). ACS Pharmacol Transl Sci 2022; 5:1267-1278. [PMID: 36524008 PMCID: PMC9745895 DOI: 10.1021/acsptsci.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/28/2022]
Abstract
The role of the NFL-TBS.40-63 peptide is to destroy the microtubule network of target glioma cancer cells. Recently, we have conceived a gold-complex biotinylated NFL-TBS.40-63 (BIOT-NFL) to form a hybrid gold nanovector (BIOT-NFL-PEG-AuNPs). This methodology showed, for the first time, the ability of the BIOT-NFL-PEG-AuNPs to target the destruction of pancreatic cancer cells (PDAC) under experimental conditions, as well as detoxification and preclinical therapeutic efficacy regulated by the steric and chemical configuration of the peptide. For this aim, a mouse transplantation tumor model induced by MIA-PACA-2 cells was applied to estimate the therapeutic efficacy of BIOT-NFL-PEG-AuNPs as a nanoformulation. Our relevant results display that BIOT-NFL-PEG-AuNPs slowed the tumor growth and decreased the tumor index without effects on the body weight of mice with an excellent antiangiogenic effect, mediated by the ability of BIOT-NFL-PEG-AuNPs to alter the metabolic profiles of these MIA-PACA-2 cells. The cytokine levels were detected to evaluate the behavior of serum inflammatory factors and the power of BIOT-NFL-PEG-AuNPs to boost the immune system.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Hui Liu
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Audrey Griveau
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Xiaowu Li
- Department
of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases & Carson International Cancer Center, Shenzhen
University General Hospital & Shenzhen University Clinical Medical
Academy Center, Shenzhen University, Shenzhen518083China
| | - Joel Eyer
- Laboratoire
Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021,
Institut de Recherche en Ingénierie de la Sante, Bâtiment
IBS Institut de Biologie de la Sante, Université′
Angers, Centre Hospitalier Universitaire, Angers49100France
| | - Celia Arib
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| | - Jolanda Spadavecchia
- CNRS,
UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et
d′Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord, Bobigny93000, France
| |
Collapse
|
23
|
Mansour S, Adhya I, Lebleu C, Dumpati R, Rehan A, Chall S, Dai J, Errasti G, Delacroix T, Chakrabarti R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci Rep 2022; 12:20725. [PMID: 36456600 PMCID: PMC9715707 DOI: 10.1038/s41598-022-25257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report here the selection and characterization of a novel peptide ligand using phage display targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer: ovarian cancer, breast cancer and glioblastoma, but not in normal tissues. A 12-mer random peptide library was screened against EGFRvIII. Phage-selected peptides were sequenced in high-throughput by next generation sequencing (NGS), and their diversity was studied to identify highly abundant clones expected to bind with the highest affinities to EGFRvIII. The enriched peptides were characterized and their binding capacity towards stable cell lines expressing EGFRvIII, EGFR wild type (EGFR WT), or a low endogenous level of EGFR WT was confirmed by flow cytometry analysis. The best peptide candidate, VLGREEWSTSYW, was synthesized, and its binding specificity towards EGFRvIII was validated in vitro. Additionally, computational docking analysis suggested that the identified peptide binds selectively to EGFRvIII. The novel VLGREEWSTSYW peptide is thus a promising EGFRvIII-targeting agent for future applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sourour Mansour
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Indranil Adhya
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Coralie Lebleu
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Rama Dumpati
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Ahmed Rehan
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Santu Chall
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Jingqi Dai
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Gauthier Errasti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Thomas Delacroix
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Raj Chakrabarti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France ,Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India ,Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Ste 110, Mount Laurel, NJ 08054 USA
| |
Collapse
|
24
|
Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022; 29:1959-1970. [PMID: 35762636 PMCID: PMC9246174 DOI: 10.1080/10717544.2022.2089296] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Conventional chemotherapy lacking target selectivity often leads to severe side effects, limiting the effectiveness of chemotherapy. Therefore, drug delivery systems ensuring both selective drug release and efficient intracellular uptake at the target sites are highly demanded in chemotherapy to improve the quality of life of patients with low toxicity. One of the effective approaches for tumor-selective drug delivery is the adoption of functional ligands that can interact with specific receptors overexpressed in malignant cancer cells. Various functional ligands including folic acid, hyaluronic acid, transferrin, peptides, and antibodies, have been extensively explored to develop tumor-selective drug delivery systems. Furthermore, cell-penetrating peptides or ligands for tight junction opening are also actively pursued to improve the intracellular trafficking of anticancer drugs. Sometimes, multiple ligands with different roles are used in combination to enhance the cellular uptake as well as target selectivity of anticancer drugs. In this review, the current status of various functional ligands applicable to improve the effectiveness of cancer chemotherapy is overviewed with a focus on their roles, characteristics, and preclinical/clinical applications.
Collapse
Affiliation(s)
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hye-Mi Noh
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
25
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
26
|
Desrosiers A, Derbali RM, Hassine S, Berdugo J, Long V, Lauzon D, De Guire V, Fiset C, DesGroseillers L, Leblond Chain J, Vallée-Bélisle A. Programmable self-regulated molecular buffers for precise sustained drug delivery. Nat Commun 2022; 13:6504. [PMID: 36323663 PMCID: PMC9630261 DOI: 10.1038/s41467-022-33491-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Unlike artificial nanosystems, biological systems are ideally engineered to respond to their environment. As such, natural molecular buffers ensure precise and quantitative delivery of specific molecules through self-regulated mechanisms based on Le Chatelier's principle. Here, we apply this principle to design self-regulated nucleic acid molecular buffers for the chemotherapeutic drug doxorubicin and the antimalarial agent quinine. We show that these aptamer-based buffers can be programmed to maintain any specific desired concentration of free drug both in vitro and in vivo and enable the optimization of the chemical stability, partition coefficient, pharmacokinetics and biodistribution of the drug. These programmable buffers can be built from any polymer and should improve patient therapeutic outcome by enhancing drug activity and minimizing adverse effects and dosage frequency.
Collapse
Affiliation(s)
- Arnaud Desrosiers
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada ,grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Rabeb Mouna Derbali
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada
| | - Sami Hassine
- grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Jérémie Berdugo
- grid.14848.310000 0001 2292 3357Département de Pathologie, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Valérie Long
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada ,grid.482476.b0000 0000 8995 9090Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, QC H1Y 3G4 Canada
| | - Dominic Lauzon
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada
| | - Vincent De Guire
- grid.414216.40000 0001 0742 1666Clinical Biochemistry Department, Maisonneuve-Rosemont Hospital, Optilab-CHUM Laboratory Network, Montreal, QC Canada
| | - Céline Fiset
- grid.14848.310000 0001 2292 3357Faculté de Pharmacie, Université de Montréal, PO Box 6128 Downtown Station, Montréal, QC H3C 3J7 Canada ,grid.482476.b0000 0000 8995 9090Centre de Recherche, Institut de Cardiologie de Montréal, Montréal, QC H1Y 3G4 Canada
| | - Luc DesGroseillers
- grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| | - Jeanne Leblond Chain
- grid.503113.50000 0004 0459 4432Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Alexis Vallée-Bélisle
- grid.14848.310000 0001 2292 3357Laboratoire de Biosenseurs et Nanomachines, Département de Chimie, Université de Montréal, Montréal, QC H3C 3J7 Canada ,grid.14848.310000 0001 2292 3357Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3T 1J4 Canada
| |
Collapse
|
27
|
Chavda VP, Solanki HK, Davidson M, Apostolopoulos V, Bojarska J. Peptide-Drug Conjugates: A New Hope for Cancer Management. Molecules 2022; 27:7232. [PMID: 36364057 PMCID: PMC9658517 DOI: 10.3390/molecules27217232] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 08/07/2023] Open
Abstract
Cancer remains the leading cause of death worldwide despite advances in treatment options for patients. As such, safe and effective therapeutics are required. Short peptides provide advantages to be used in cancer management due to their unique properties, amazing versatility, and progress in biotechnology to overcome peptide limitations. Several appealing peptide-based therapeutic strategies have been developed. Here, we provide an overview of peptide conjugates, the better equivalents of antibody-drug conjugates, as the next generation of drugs for required precise targeting, enhanced cellular permeability, improved drug selectivity, and reduced toxicity for the efficient treatment of cancers. We discuss the basic components of drug conjugates and their release action, including the release of cytotoxins from the linker. We also present peptide-drug conjugates under different stages of clinical development as well as regulatory and other challenges.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Hetvi K. Solanki
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
| |
Collapse
|
28
|
Abi-Ghanem C, Jonnalagadda D, Chun J, Kihara Y, Ranscht B. CAQK, a peptide associating with extracellular matrix components targets sites of demyelinating injuries. Front Cell Neurosci 2022; 16:908401. [PMID: 36072569 PMCID: PMC9441496 DOI: 10.3389/fncel.2022.908401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
The destruction of the myelin sheath that encircles axons leads to impairments of nerve conduction and neuronal dysfunctions. A major demyelinating disorder is multiple sclerosis (MS), a progressively disabling disease in which immune cells attack the myelin. To date, there are no therapies to target selectively myelin lesions, repair the myelin or stop MS progression. Small peptides recognizing epitopes selectively exposed at sites of injury show promise for targeting therapeutics in various pathologies. Here we show the selective homing of the four amino acid peptide, cysteine-alanine-lysine glutamine (CAQK), to sites of demyelinating injuries in three different mouse models. Homing was assessed by administering fluorescein amine (FAM)-labeled peptides into the bloodstream of mice and analyzing sites of demyelination in comparison with healthy brain or spinal cord tissue. FAM-CAQK selectively targeted demyelinating areas in all three models and was absent from healthy tissue. At lesion sites, the peptide was primarily associated with the fibrous extracellular matrix (ECM) deposited in interstitial spaces proximal to reactive astrocytes. Association of FAM-CAQK was detected with tenascin-C although tenascin depositions made up only a minor portion of the examined lesion sites. In mice on a 6-week cuprizone diet, FAM-CAQK peptide crossed the nearly intact blood-brain barrier and homed to demyelinating fiber tracts. These results demonstrate the selective targeting of CAQK to demyelinating injuries under multiple conditions and confirm the previously reported association with the ECM. This work sets the stage for further developing CAQK peptide targeting for diagnostic and therapeutic applications aimed at localized myelin repair.
Collapse
|
29
|
Arib C, Griveau A, Eyer J, Spadavecchia J. Cell penetrating peptide (CPP) gold(iii) - complex - bioconjugates: from chemical design to interaction with cancer cells for nanomedicine applications. NANOSCALE ADVANCES 2022; 4:3010-3022. [PMID: 36133522 PMCID: PMC9417459 DOI: 10.1039/d2na00096b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 05/14/2023]
Abstract
This study promotes an innovative synthesis of a nanotheragnostic scaffold capable of targeting and destroying pancreatic cancer cells (PDAC) using the Biotinylated NFL-TBS.40-63 peptide (BIOT-NFL), known to enter various glioblastoma cancer cells (GBM) where it specifically destroys their microtubule network. This recently proposed methodology (P7391FR00-50481 LIV) applied to other peptides VIM (Vimentin) and TAT (Twin-Arginine Translocation) (CPP peptides) has many advantages, such as targeted selective internalization and high stability under experimental conditions, modulated by steric and chemical configurations of peptides. The successful interaction of peptides on gold surfaces has been confirmed by UV-visible, dynamic light scattering (DLS), Zeta potential (ZP) and Raman spectroscopy analyses. The cellular internalization in pancreatic ductal adenocarcinoma (PDAC; MIA PACA-2) and GBM (F98) cells was monitored by transmission electron microscopy (TEM) and showed a better cellular internalization in the presence of peptides with gold nanoparticles. In this work, we also evaluated the power of these hybrid peptide-nanoparticles as photothermal agents after cancer cell internalization. These findings envisage novel perspectives for the development of high peptide-nanotheragnostics.
Collapse
Affiliation(s)
- Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13 Sorbonne Paris Cité Bobigny France
| | - Audrey Griveau
- Laboratoire Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Sante, Bâtiment IBS Institut de Biologie de la Sante, Université, Angers, Centre Hospitalier Universitaire Angers France
| | - Joel Eyer
- Laboratoire Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Sante, Bâtiment IBS Institut de Biologie de la Sante, Université, Angers, Centre Hospitalier Universitaire Angers France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13 Sorbonne Paris Cité Bobigny France
| |
Collapse
|
30
|
Nandhini KP, Albericio F, de la Torre BG. 2-Methoxy-4-methylsulfinylbenzyl Alcohol as a Safety-Catch Linker for the Fmoc/ tBu Solid-Phase Peptide Synthesis Strategy. J Org Chem 2022; 87:9433-9442. [PMID: 35801570 DOI: 10.1021/acs.joc.2c01057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fmoc and Boc group are the two main groups used to protect the α-amino function in Solid-Phase Peptide Synthesis (SPPS). In this regard, the use of the Mmsb linker allows the combination of these two groups. Peptide-O-Mmsb-Resin is stable to the piperidine and trifluoroacetic acid (TFA) treatment used to remove Fmoc and Boc, respectively. The peptide is detached in a two-step protocol, namely reduction of the sulfoxide to the sulfide with Me3SiCl and Ph3P, and then treatment with TFA. The advantage of this strategy has been demonstrated by the following: preparation of peptide with no diketopiperazine formation in sequences prone to this side reaction; on-resin cyclization without the concourse of common organic reagents such as Pd(0) but of difficult use in a biological laboratory; and on-resin disulfide formation in a total side-chain unprotected peptide. The use of Mmsb linker together with Msib (4-(methylsulfinyl)benzyl) and Msbh (4,4'-bis(methylsulfinyl)benzhydryl) described in the accompanying manuscript add a fourth dimension to the SPPS protecting group scheme.
Collapse
Affiliation(s)
- K P Nandhini
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.,Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
31
|
Luiz MT, Dutra JAP, Tofani LB, de Araújo JTC, Di Filippo LD, Marchetti JM, Chorilli M. Targeted Liposomes: A Nonviral Gene Delivery System for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14040821. [PMID: 35456655 PMCID: PMC9030342 DOI: 10.3390/pharmaceutics14040821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second most frequent cause of death worldwide, with 28.4 million new cases expected for 2040. Despite de advances in the treatment, it remains a challenge because of the tumor heterogenicity and the increase in multidrug resistance mechanisms. Thus, gene therapy has been a potential therapeutic approach owing to its ability to introduce, silence, or change the content of the human genetic code for inhibiting tumor progression, angiogenesis, and metastasis. For the proper delivery of genes to tumor cells, it requires the use of gene vectors for protecting the therapeutic gene and transporting it into cells. Among these vectors, liposomes have been the nonviral vector most used because of their low immunogenicity and low toxicity. Furthermore, this nanosystem can have its surface modified with ligands (e.g., antibodies, peptides, aptamers, folic acid, carbohydrates, and others) that can be recognized with high specificity and affinity by receptor overexpressed in tumor cells, increasing the selective delivery of genes to tumors. In this context, the present review address and discuss the main targeting ligands used to functionalize liposomes for improving gene delivery with potential application in cancer treatment.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Larissa Bueno Tofani
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | | | - Leonardo Delello Di Filippo
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto 14040-900, Brazil; (M.T.L.); (J.M.M.)
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (J.A.P.D.); (L.B.T.); (J.T.C.d.A.); (L.D.D.F.)
- Correspondence: ; Tel./Fax: +55-16-3301-6998
| |
Collapse
|