1
|
Kaszecki E, Palberg D, Grant M, Griffin S, Dhanjal C, Capperauld M, Emery RJN, Saville BJ. Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance. Int Microbiol 2024; 27:1249-1268. [PMID: 38167969 PMCID: PMC11300505 DOI: 10.1007/s10123-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis. RESULTS This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum. CONCLUSION This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.
Collapse
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Daniel Palberg
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Mikaella Grant
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Sarah Griffin
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Chetan Dhanjal
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - R J Neil Emery
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
2
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
3
|
Ebenezer TE, Low RS, O'Neill EC, Huang I, DeSimone A, Farrow SC, Field RA, Ginger ML, Guerrero SA, Hammond M, Hampl V, Horst G, Ishikawa T, Karnkowska A, Linton EW, Myler P, Nakazawa M, Cardol P, Sánchez-Thomas R, Saville BJ, Shah MR, Simpson AGB, Sur A, Suzuki K, Tyler KM, Zimba PV, Hall N, Field MC. Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 2022; 11:bio059561. [PMID: 36412269 PMCID: PMC9836076 DOI: 10.1242/bio.059561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Collapse
Affiliation(s)
- ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ross S. Low
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Ishuo Huang
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | - Antonio DeSimone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Scott C. Farrow
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sergio Adrián Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral. CCT CONICET Santa Fe, Santa Fe 3000, Argentina
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 25250, Czech Republic
| | - Geoff Horst
- Kemin Industries, Research and Development, Plymouth, MI 48170, USA
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue 690-8504, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Eric W. Linton
- Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Masami Nakazawa
- Department of Applied Biochemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Pierre Cardol
- Department of Life Sciences, Institut de Botanique, Université de Liège, Liège 4000, Belgium
| | | | - Barry J. Saville
- Forensic Science, Environmental and Life Sciences Graduate Program, Trent University, Peterborough K9L 0G2, Canada
| | - Mahfuzur R. Shah
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aakash Sur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Kengo Suzuki
- R&D Company, Euglena Co., Ltd., 2F Yokohama Bio Industry Center (YBIC), 1-6 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kevin M. Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Paul V. Zimba
- PVZimba, LLC, 12241 Percival St, Chester, VA 23831, USA
- Rice Rivers Center, VA Commonwealth University, Richmond, VA 23284, USA
| | - Neil Hall
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|