1
|
Yu H, Yang X, Wang L, Xing K, Zhang T, Ma X, Liu X, Wang Z. Impact of Extracellular Matrix Injury on the Calcification of Artificial Bovine Pericardial Leaflets: An Experimental Study. ASAIO J 2025; 71:61-67. [PMID: 39046703 DOI: 10.1097/mat.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
To investigate the role of extracellular matrix (ECM) injury in bioprosthetic valve calcification, we constructed an ECM damage model by applying a 15 N stress to the bovine pericardium sample in both transverse and longitudinal directions after tissue cross-linking, whereas no stress was applied in the control group. Then we implanted two pieces of bovine pericardium on both sides of the dorsal midline in Wistar rats from both groups and measured the calcium content of the implanted bovine pericardium. The results showed that the calcium content of experimental group was significantly higher than that of control group ( p < 0.05). Second, we implanted prosthetic valves made from bovine pericardium in the experimental and control groups into small-tailed Han sheep ( Ovis aries ). After 180 days, the prosthetic valve was removed for gross and histopathological observation as well as quantitative analysis of calcium. We found a higher average calcium content in bovine pericardium from the experimental group than that from controls. Furthermore, calcium salt deposition was detected on the ventricular surface of valves along with roughened valve leaflets in the experimental group. Our data support the hypothesis that the bovine pericardium with ECM injury is more prone to calcification.
Collapse
Affiliation(s)
- Honghuan Yu
- From the Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Wu Y, Chen X, Song P, Li R, Zhou Y, Wang Q, Shi J, Qiao W, Dong N. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Adv Healthc Mater 2024; 13:e2303737. [PMID: 38560921 DOI: 10.1002/adhm.202303737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.
Collapse
Affiliation(s)
- Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Peng Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
3
|
Jafari Sorkhdehi MM, Doostmohammadi A, Talebi A, Alizadeh A. Decellularization and characterization of camel pericardium as a new scaffold for tissue engineering and regenerative medicine. Asian Cardiovasc Thorac Ann 2024; 32:194-199. [PMID: 38767039 DOI: 10.1177/02184923241255720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Valvular heart diseases (VHDs) have become prevalent in populations due to aging. Application of different biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of VHD. Aortic valve replacement using tissue-engineered xenografts is a considered approach, and the pericardium of different species such as porcine and bovine has been studied over the last few years. It has been suggested that the animal origin can affect the outcomes of replacement. METHODS So, herein, we at first decellularized and characterized the camel pericardium (dCP), then characterized dCP with H&E staining, in vitro and in vivo biocompatibility and mechanical tests and compared it with decellularized bovine pericardium (dBP), to describe the potency of dCP as a new xenograft and bio scaffold. RESULTS The histological assays indicated less decluttering and extracellular matrix damage in dCP after decellularization compared to the dBP also dCP had higher Young Modulus (105.11), and yield stress (1.57 ± 0.45). We observed more blood vessels and also less inflammatory cells in the dCP sections after implantation. CONCLUSIONS In conclusion, the results of this study showed that the dCP has good capabilities not only for use in VHD treatment but also for other applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | - Ali Doostmohammadi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Liu Y, Chen C, Lu T, Liu S, Wu Z, Tang Z. Free-aldehyde neutralized and oligohyaluronan loaded bovine pericardium with improved anti-calcification and endothelialization for bioprosthetic heart valves. Front Bioeng Biotechnol 2023; 11:1138972. [PMID: 37077226 PMCID: PMC10106738 DOI: 10.3389/fbioe.2023.1138972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The number of patients with valvular heart disease is increasing yearly, and valve replacement is the most effective treatment, during which bioprosthetic heart valves (BHVs) are the most widely used. Commercial BHVs are mainly prepared with glutaraldehyde (Glut) cross-linked bovine pericardial or porcine aortic valves, but the residual free aldehyde groups in these tissues can cause calcification and cytotoxicity. Moreover, insufficient glycosaminoglycans (GAGs) in tissues can further reduce biocompatibility and durability. However, the anti-calcification performance and biocompatibility might be improved by blocking the free aldehyde groups and increasing the GAGs content in Glut-crosslinked tissues. In our study, adipic dihydrazide (ADH) was used to neutralize the residual free aldehyde groups in tissues and provide sites to blind with oligohyaluronan (OHA) to increase the content of GAGs in tissues. The modified bovine pericardium was evaluated for its content of residual aldehyde groups, the amount of OHA loaded, physical/chemical characteristics, biomechanical properties, biocompatibility, and in vivo anticalcification assay and endothelialization effects in juvenile Sprague-Dawley rats. The results showed that ADH could completely neutralize the free aldehyde groups in the Glut-crosslinked bovine pericardium, the amount of OHA loaded increased and the cytotoxicity was reduced. Moreover, the in vivo results also showed that the level of calcification and inflammatory response in the modified pericardial tissue was significantly reduced in a rat subcutaneous implantation model, and the results from the rat abdominal aorta vascular patch repair model further demonstrated the improved capability of the modified pericardial tissues for endothelialization. Furthermore, more α-SMA+ smooth muscle cells and fewer CD68+ macrophages infiltrated in the neointima of the modified pericardial patch. In summary, blocking free-aldehydes and loading OHA improved the anti-calcification, anti-inflammation and endothelialization properties of Glut-crosslinked BHVs and in particularly, this modified strategy may be a promising candidate for the next-generation of BHVs.
Collapse
Affiliation(s)
- Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Chunyang Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Sixi Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Engineering Laboratory of Human Province for Cardiovascular Biomaterials, Changsha, Hunan, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| |
Collapse
|
5
|
Peng X, Cheng C, Yue L, Liu Y, Yu X. A Comparative Study Between Porcine Peritoneum and Pericardium as Cardiovascular Material. Tissue Eng Part C Methods 2022; 28:272-284. [PMID: 35611974 DOI: 10.1089/ten.tec.2022.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decellularized porcine pericardium has many applications in the cardiovascular field for its excellent properties. The peritoneum is a single-layer bio-dialysis membrane with many similarities and differences in physical characteristics, biochemical composition, and structure to the pericardium. The limited available literature suggests that, similar to the pericardium, the peritoneum has good application potential in the field of cardiovascular substitute materials. This research focused on comparing the differences between decellularized peritoneum and decellularized pericardium in microstructure, biochemical composition, mechanical properties, hemocompatibility, in vitro enzymatic degradation, in vitro calcification, cytocompatibility, and other vital indicators. The peritoneum was consistent with pericardium in terms of fibrous structure, hemocompatibility, in vitro calcification, and cytocompatibility. The peritoneal elastic fiber content (219 μg/mg) was significantly higher than that of the pericardium (66 μg/mg), resulting in two to three times higher maximum load (21.1 N) and burst pressure (1309 mmHg), and better performance than the pericardium in terms of in vitro resistance to enzymatic degradation. In the cardiovascular field, decellularized peritoneum can be used as vascular substitute material. Impact statement There are many similarities between the embryonic origin and morphological structure of the porcine peritoneum and the porcine pericardium, but little research has been done on the use of the porcine peritoneum as a biomaterial. In this compared research, we showed that porcine peritoneum had better resistance to enzymatic degradation, better stretching, and more suitable burst pressure for being used as vascular substitute material. This research is the first to describe the structural composition of porcine peritoneum and its advantageous properties as a cardiovascular material.
Collapse
Affiliation(s)
- Xu Peng
- College of Polymer Science and Engineering, Experimental and Research Animal Institute, Sichuan University, Chengdu, China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Lunli Yue
- Department of Oncology Hematology, Western Theater Command Air Force Hospital, Chengdu, China
| | - Yan Liu
- Experimental and Research Animal Institute, Sichuan University, Chengdu, China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Jiang Z, Wu Z, Deng D, Li J, Qi X, Song M, Liu Y, Wu Q, Xie X, Chen Z, Tang Z. Improved Cytocompatibility and Reduced Calcification of Glutaraldehyde-Crosslinked Bovine Pericardium by Modification With Glutathione. Front Bioeng Biotechnol 2022; 10:844010. [PMID: 35662844 PMCID: PMC9160462 DOI: 10.3389/fbioe.2022.844010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Bioprosthetic heart valves (BHVs) used in clinics are fabricated via glutaraldehyde (GLUT) crosslinking, which results in cytotoxicity and causes eventual valve calcification after implantation into the human body; therefore, the average lifetime and application of BHVs are limited. To address these issues, the most commonly used method is modification with amino acids, such as glycine (GLY), which is proven to effectively reduce toxicity and calcification. In this study, we used the l-glutathione (GSH) in a new modification treatment based on GLUT-crosslinked bovine pericardium (BP) as the GLUT + GSH group, BPs crosslinked with GLUT as GLUT-BP (control group), and GLY modification based on GLUT-BP as the GLUT + GLY group. We evaluated the characteristics of BPs in different treatment groups in terms of biomechanical properties, cell compatibility, aldehyde group content detection, and the calcification content. Aldehyde group detection tests showed that the GSH can completely neutralize the residual aldehyde group of GLUT-BP. Compared with that of GLUT-BP, the endothelial cell proliferation rate of the GLUT + GSH group increased, while its hemolysis rate and the inflammatory response after implantation into the SD rat were reduced. The results show that GSH can effectively improve the cytocompatibility of the GLUT-BP tissue. In addition, the results of the uniaxial tensile test, thermal shrinkage temperature, histological and SEM evaluation, and enzyme digestion experiments proved that GSH did not affect the ECM stability and biomechanics of the GLUT-BP. The calcification level of GLUT-BP modified using GSH technology decreased by 80%, indicating that GSH can improve the anti-calcification performance of GLUT-BP. Compared with GLUT-GLY, GLUT + GSH yielded a higher cell proliferation rate and lower inflammatory response and calcification level. GSH can be used as a new type of anti-calcification agent in GLUT crosslinking biomaterials and is expected to expand the application domain for BHVs in the future.
Collapse
Affiliation(s)
- Zhenlin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| | - Dengpu Deng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiemin Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoke Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhe Song
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhong Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinlong Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zeguo Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory of Cardiovascular Biomaterials, Changsha, China
- *Correspondence: Zhongshi Wu, ; Zhenjie Tang,
| |
Collapse
|
7
|
Sun P, Yan S, Zhang L, Zhang C, Wu H, Wei S, Xie B, Wang X, Bai H. Egg Shell Membrane as an Alternative Vascular Patch for Arterial Angioplasty. Front Bioeng Biotechnol 2022; 10:843590. [PMID: 35372291 PMCID: PMC8971674 DOI: 10.3389/fbioe.2022.843590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: The egg shell membrane (ESM) is always considered as waste, but recent studies have shown that it has the potential to yield rapid re-endothelialization in vitro. We hypothesized that ESM and heparin-conjugated ESM (HESM) can be used as arterial patch in a rat aortic angioplasty model.Method: Sprague-Dawley rat (200 g) abdominal aortic patch angioplasty model was used. Decellularized rat thoracic aorta (TA) patch was used as the control; ESM patch was made of raw chicken egg; heparin-coated ESM (HESM) patch was made by using dopamine; anticoagulation properties were verified using platelet adhesion tests; the TA, ESM, and HESM patches were implanted to the rat aorta and harvested at day 14; and the samples were examined by immunohistochemistry and immunofluorescence.Result: The ESM patch showed a similar healing process to the TA patch; the cells could migrate and infiltrate into both patches; there was a neointima with von Willebrand factor-positive endothelial cells; the endothelial cells acquired arterial identity with Ephrin-B2- and dll-4-positive cells; there were proliferating cell nuclear antigen (PCNA)-positive cells, and PCNA and alpha smooth muscle actin dual-positive cells in the neointima in both groups. Heparin was conjugated to the patch successfully and showed a strong anticoagulation property in vitro. HESM could decrease mural thrombus formation after rat aortic patch angioplasty.Conclusion: The ESM is a natural scaffold that can be used as a vascular patch; it showed a similar healing process to decellularized TA patch; HESM showed anticoagulation property both in vitro and in vivo; and the ESM may be a promising vascular graft in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Shujie Yan
- National Center for International Research of Micro-Nano Molding Technology, Key Laboratory of Henan Province for Micro Molding Technology, Zhengzhou, China
- School of Mechanics Science and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoliang Wu
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shunbo Wei
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boao Xie
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Wang
- National Center for International Research of Micro-Nano Molding Technology, Key Laboratory of Henan Province for Micro Molding Technology, Zhengzhou, China
- School of Mechanics Science and Safety Engineering, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaofeng Wang, ; Hualong Bai,
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
- *Correspondence: Xiaofeng Wang, ; Hualong Bai,
| |
Collapse
|