1
|
Wang S, Li X, Wang T, Sun Z, Feng E, Jin Y. Overexpression of USP35 enhances the protective effect of hUC-MSCs and their extracellular vesicles in oxygen-glucose deprivation/reperfusion-induced SH-SY5Y cells via stabilizing FUNDC1. Commun Biol 2024; 7:1330. [PMID: 39406943 PMCID: PMC11480199 DOI: 10.1038/s42003-024-07024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemia-reperfusion (IR) injury is associated with neurological disorders such as stroke. The therapeutic potential of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their secreted extracellular vesicles (EVs) in alleviating IR injury across various cell types including neuronal cells has been documented. However, the underlying mechanisms through which hUC-MSCs and hUC-MSC-EVs protect neuronal cells from IR-triggered damage are not well understood. In this study, we co-cultured SH-SY5Y neuroblastoma cells with hUC-MSCs or hUC-MSC-EVs and subjected them to oxygen-glucose deprivation/reperfusion (OGD/R) treatment. Our findings indicate that both hUC-MSCs and hUC-MSC-EVs significantly improved viability, reduced apoptosis, promoted autophagy of OGD/R-induced SH-SY5Y cells, and decreased mitochondrial reactive oxygen species levels within them. Furthermore, the neuroprotective effect of hUC-MSCs and hUC-MSC-EVs in OGD/R-induced SH-SY5Y cells was enhanced by overexpressing USP35, a deubiquitinase. Mechanistically, USP35 interacted with and stabilized FUNDC1, a positive regulator of mitochondrial metabolism. Knockdown of FUNDC1 in USP35-overexpressing hUC-MSCs and their secreted EVs eliminated the augmented neuroprotective function induced by excess USP35. In conclusion, these findings underscore the crucial role of USP35 in enhancing the neuroprotective function of hUC-MSCs and their secreted EVs, achieved through the stabilization of FUNDC1 in OGD/R-induced SH-SY5Y cells.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xigong Li
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Tianjiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, People's Republic of China
| | - Zeyu Sun
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Erwei Feng
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yongming Jin
- Department of Orthopedics Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
2
|
Young CC, Kan P, Chen SR, Lang FF. Endovascular surgical neuro-oncology: advancing a new subspecialty. J Neurooncol 2024; 170:31-40. [PMID: 39222190 DOI: 10.1007/s11060-024-04782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Endovascular surgical neuro-oncology is a relatively new subspecialty which uses endovascular neuro-interventional techniques for the management of nervous system tumors and tumor-related vascular conditions. Although there are several endovascular procedures that are widely available as standard-of-care diagnostic and treatment adjuncts, there has been a renewed interest to explore endovascular approaches as a means for selective intra-arterial delivery of therapeutic agents to nervous system tumors, including methods for opening the blood brain and blood tumor barriers. In this review, we discuss the historical development of various forms of endovascular intra-arterial treatment for tumors over the past 40 years, summarize endovascular approaches that are currently being employed, and highlight current clinical trials.
Collapse
Affiliation(s)
- Christopher C Young
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Peter Kan
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen R Chen
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Wang Z, Yang C, Yan S, Sun J, Zhang J, Qu Z, Sun W, Zang J, Xu D. Emerging Role and Mechanism of Mesenchymal Stem Cells-Derived Extracellular Vesicles in Rheumatic Disease. J Inflamm Res 2024; 17:6827-6846. [PMID: 39372581 PMCID: PMC11451471 DOI: 10.2147/jir.s488201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from mesoderm. Through cell-to-cell contact or paracrine effects, they carry out biological tasks like immunomodulatory, anti-inflammatory, regeneration, and repair. Extracellular vesicles (EVs) are the primary mechanism for the paracrine regulation of MSCs. They deliver proteins, nucleic acids, lipids, and other active compounds to various tissues and organs, thus facilitating intercellular communication. Rheumatic diseases may be treated using MSCs and MSC-derived EVs (MSC-EVs) due to their immunomodulatory capabilities, according to mounting data. Since MSC-EVs have low immunogenicity, high stability, and similar biological effects as to MSCs themselves, they are advantageous over cell therapy for potential therapeutic applications in rheumatoid arthritis, systemic erythematosus lupus, systemic sclerosis, Sjogren's syndrome, and other rheumatoid diseases. This review integrates recent advances in the characteristics, functions, and potential molecular mechanisms of MSC-EVs in rheumatic diseases and provides a new understanding of the pathogenesis of rheumatic diseases and MSC-EV-based treatment strategies.
Collapse
Affiliation(s)
- Zhangxue Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Chunjuan Yang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jiamei Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Zhuojian Qu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| | - Donghua Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Department of Rheumatology and Immunology, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, 261000, People’s Republic of China
| |
Collapse
|
4
|
Gong X, Zhao Q, Zhang H, Liu R, Wu J, Zhang N, Zou Y, Zhao W, Huo R, Cui R. The Effects of Mesenchymal Stem Cells-Derived Exosomes on Metabolic Reprogramming in Scar Formation and Wound Healing. Int J Nanomedicine 2024; 19:9871-9887. [PMID: 39345908 PMCID: PMC11438468 DOI: 10.2147/ijn.s480901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Pathological scarring results from aberrant cutaneous wound healing due to the overactivation of biological behaviors of human skin fibroblasts, characterized by local inordinate inflammation, excessive extracellular matrix and collagen deposition. Yet, its underlying pathogenesis opinions vary, which could be caused by increased local mechanical tension, enhanced and continuous inflammation, gene mutation, as well as cellular metabolic disorder, etc. Metabolic reprogramming is the process by which the metabolic pattern of cells undergoes a systematic adjustment and transformation to adapt to the changes of the external environment and meet the needs of their growth and differentiation. Therefore, the abnormality of metabolic reprogramming in cells within wounds and scars attaches great importance to scar formation. Mesenchymal stem cells-derived exosomes (MSC-Exo) are the extracellular vesicles that play an important role in tissue repair, cancer treatment as well as immune and metabolic regulation. However, there is not a systematic work to detail the relevant studies. Herein, we gave a comprehensive summary of the existing research on three main metabolisms, including glycometabolism, lipid metabolism and amino acid metabolism, and MSC-Exo regulating metabolic reprogramming in wound healing and scar formation for further research reference.
Collapse
Affiliation(s)
- Xiangan Gong
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Qian Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Wu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Nanxin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Yuanxian Zou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
5
|
Wang H, Zhao C, Rong Q, Cao J, Chen H, Li R, Zhang B, Xu P. The Role of Exosomes from Mesenchymal Stem Cells in Spinal Cord Injury: A Systematic Review. Int J Stem Cells 2024; 17:236-252. [PMID: 38016704 PMCID: PMC11361850 DOI: 10.15283/ijsc23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/30/2023] Open
Abstract
Spinal cord injury (SCI) is a serious nervous system disease that usually leads to the impairment of the motor, sensory, and autonomic nervous functions of the spinal cord, and it places a heavy burden on families and healthcare systems every year. Due to the complex pathophysiological mechanism of SCI and the poor ability of neurons to regenerate, the current treatment scheme has very limited effects on the recovery of spinal cord function. In addition, due to their unique advantages, exosomes can be used as carriers for cargo transport. In recent years, some studies have confirmed that treatment with mesenchymal stem cells (MSCs) can promote the recovery of SCI nerve function. The therapeutic effect of MSCs is mainly related to exosomes secreted by MSCs, and exosomes may have great potential in SCI therapy. In this review, we summarized the repair mechanism of mesenchymal stem cells-derived exosomes (MSCs-Exos) in SCI treatment and discussed the microRNAs related to SCI treatment based on MSCs-Exos and their mechanism of action, which is helpful to further understand the role of exosomes in SCI.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chunxia Zhao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingqing Rong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jinghe Cao
- Department of Reproduce, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Hongyi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Ruolin Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bin Zhang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Xu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Choudhery MS, Arif T, Mahmood R, Harris DT. Stem Cell-Based Acellular Therapy: Insight into Biogenesis, Bioengineering and Therapeutic Applications of Exosomes. Biomolecules 2024; 14:792. [PMID: 39062506 PMCID: PMC11275160 DOI: 10.3390/biom14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The vast regenerative potential of stem cells has laid the foundation for stem cell-based therapies. However, certain challenges limit the application of cell-based therapies. The therapeutic use of cell-free therapy can avoid limitations associated with cell-based therapies. Acellular stem cell-based therapies rely on the use of biological factors released by stem cells, including growth factors and extracellular vesicles such as exosomes. Due to their comparable regenerative potential, acellular therapies may provide a feasible and scalable alternative to stem cell-based therapies. Exosomes are small vesicles secreted by various types of cells, including stem cells. Exosomes contain parent cell-derived nucleic acids, proteins, lipids, and other bioactive molecules. They play an important role in intra-cellular communication and influence the biological characteristics of cells. Exosomes inherit the properties of their parent cells; therefore, stem cell-derived exosomes are of particular interest for applications of regenerative medicine. In comparison to stem cell-based therapy, exosome therapy offers several benefits, such as easy transport and storage, no risk of immunological rejection, and few ethical dilemmas. Unlike stem cells, exosomes can be lyophilized and stored off-the-shelf, making acellular therapies standardized and more accessible while reducing overall treatment costs. Exosome-based acellular treatments are therefore readily available for applications in patients at the time of care. The current review discusses the use of exosomes as an acellular therapy. The review explores the molecular mechanism of exosome biogenesis, various methods for exosome isolation, and characterization. In addition, the latest advancements in bioengineering techniques to enhance exosome potential for acellular therapies have been discussed. The challenges in the use of exosomes as well as their diverse applications for the diagnosis and treatment of diseases have been reviewed in detail.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
8
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
9
|
Qian Z, Zhang X, Huang J, Niu X, Zhu C, Tai Z, Zhu Q, Chen Z, Zhu T, Wu G. ROS-responsive MSC-derived Exosome Mimetics Carrying MHY1485 Alleviate Renal Ischemia Reperfusion Injury through Multiple Mechanisms. ACS OMEGA 2024; 9:24853-24863. [PMID: 38882096 PMCID: PMC11170644 DOI: 10.1021/acsomega.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Renal ischemia reperfusion (IR) injury is a prevalent inflammatory nephropathy in surgeries such as renal transplantation or partial nephrectomy, damaging renal function through inducing inflammation and cell death in renal tubules. Mesenchymal stromal/stem cell (MSC)-based therapies, common treatments to attenuate inflammation in IR diseases, fail to exhibit satisfying effects on cell death in renal IR. In this study, we prepared MSC-derived exosome mimetics (EMs) carrying the mammalian target of the rapamycin (mTOR) agonist to protect kidneys in proinflammatory environments under IR conditions. The thioketal-modified EMs carried the mTOR agonist and bioactive molecules in MSCs and responsively released them in kidney IR areas. MSC-derived EMs and mTOR agonists protected kidneys synergistically from IR through alleviating inflammation, apoptosis, and ferroptosis. The current study indicates that MSC-TK-MHY1485 EMs (MTM-EM) are promising therapeutic biomaterials for renal IR injury.
Collapse
Affiliation(s)
- Zhiyu Qian
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Jiahua Huang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Xinhao Niu
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital Fudan University, 170 Fenglin Road, Shanghai 200030, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200030, China
| | - Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201500, China
| |
Collapse
|
10
|
Wang Y, Chen Y, Yang F, Yu X, Chu Y, Zhou J, Yan Y, Xi J. MiR-4465-modified mesenchymal stem cell-derived small extracellular vesicles inhibit liver fibrosis development via targeting LOXL2 expression. J Zhejiang Univ Sci B 2024; 25:594-604. [PMID: 39011679 PMCID: PMC11254680 DOI: 10.1631/jzus.b2300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/29/2023] [Indexed: 05/23/2024]
Abstract
Liver fibrosis is a significant health burden, marked by the consistent deposition of collagen. Unfortunately, the currently available treatment approaches for this condition are far from optimal. Lysyl oxidase-like protein 2 (LOXL2) secreted by hepatic stellate cells (HSCs) is a crucial player in the cross-linking of matrix collagen and is a significant target for treating liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proposed as a potential treatment option for chronic liver disorders. Previous studies have found that MSC-sEV can be used for microRNA delivery into target cells or tissues. It is currently unclear whether microRNA-4465 (miR-4465) can target LOXL2 and inhibit HSC activation. Additionally, it is uncertain whether MSC-sEV can be utilized as a gene therapy vector to carry miR-4465 and effectively inhibit the progression of liver fibrosis. This study explored the effect of miR-4465-modified MSC-sEV (MSC-sEVmiR-4465) on LOXL2 expression and liver fibrosis development. The results showed that miR-4465 can bind specifically to the promoter of the LOXL2 gene in HSC. Moreover, MSC-sEVmiR-4465 inhibited HSC activation and collagen expression by downregulating LOXL2 expression in vitro. MSC-sEVmiR-4465 injection could reduce HSC activation and collagen deposition in the CCl4-induced mouse model. MSC-sEVmiR-4465 mediating via LOXL2 also hindered the migration and invasion of HepG2 cells. In conclusion, we found that MSC-sEV can deliver miR-4465 into HSC to alleviate liver fibrosis via altering LOXL2, which might provide a promising therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yifei Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolong Yu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China. ,
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China. ,
| | - Jianbo Xi
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Clinical College of Xuzhou Medical University, Changzhou 213017, China.
| |
Collapse
|
11
|
Ponomareva N, Brezgin S, Karandashov I, Kostyusheva A, Demina P, Slatinskaya O, Bayurova E, Silachev D, Pokrovsky VS, Gegechkori V, Khaydukov E, Maksimov G, Frolova A, Gordeychuk I, Zamyatnin Jr. AA, Chulanov V, Parodi A, Kostyushev D. Swelling, Rupture and Endosomal Escape of Biological Nanoparticles Per Se and Those Fused with Liposomes in Acidic Environment. Pharmaceutics 2024; 16:667. [PMID: 38794330 PMCID: PMC11126099 DOI: 10.3390/pharmaceutics16050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.
Collapse
Affiliation(s)
- Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
| | - Polina Demina
- Institute of Physics, Technology, and Informational Systems, Moscow Pedagogical State University, Malaya Pirogovskaya St. 1, 119435 Moscow, Russia; (P.D.); (E.K.)
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq. 1, 123182 Moscow, Russia
| | - Olga Slatinskaya
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.S.); (G.M.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia;
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Evgeny Khaydukov
- Institute of Physics, Technology, and Informational Systems, Moscow Pedagogical State University, Malaya Pirogovskaya St. 1, 119435 Moscow, Russia; (P.D.); (E.K.)
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq. 1, 123182 Moscow, Russia
| | - Georgy Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.S.); (G.M.)
| | - Anastasia Frolova
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Andrey A. Zamyatnin Jr.
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vladimir Chulanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
12
|
Hu W, Wang W, Chen Z, Chen Y, Wang Z. Engineered exosomes and composite biomaterials for tissue regeneration. Theranostics 2024; 14:2099-2126. [PMID: 38505616 PMCID: PMC10945329 DOI: 10.7150/thno.93088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/25/2024] [Indexed: 03/21/2024] Open
Abstract
Exosomes, which are small vesicles enclosed by a lipid bilayer and released by many cell types, are widely dispersed and have garnered increased attention in the field of regenerative medicine due to their ability to serve as indicators of diseases and agents with therapeutic potential. Exosomes play a crucial role in mediating intercellular communication through the transfer of many biomolecules, including proteins, lipids, RNA, and other molecular constituents, between cells. The targeted transport of proteins and nucleic acids to specific cells has the potential to enhance or impair specific biological functions. Exosomes have many applications, and they can be used alone or in combination with other therapeutic approaches. The examination of the unique attributes and many functions of these factors has emerged as a prominent field of study in the realm of biomedical research. This manuscript summarizes the origins and properties of exosomes, including their structural, biological, physical, and chemical aspects. This paper offers a complete examination of recent progress in tissue repair and regenerative medicine, emphasizing the possible implications of these methods in forthcoming tissue regeneration attempts.
Collapse
Affiliation(s)
- Weikang Hu
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wang Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| |
Collapse
|
13
|
Ray R, Chowdhury SG, Karmakar P. A vivid outline demonstrating the benefits of exosome-mediated drug delivery in CNS-associated disease environments. Arch Biochem Biophys 2024; 753:109906. [PMID: 38272158 DOI: 10.1016/j.abb.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of drug delivery mechanisms has been improvised with time for different therapeutic purposes. In most cases, nano-sized delivery systems have been modeled over decades for the on-target applicability of the drugs. The use of synthetic drug delivery materials has been a common practice, although research has now focussed more on using natural vehicles, to avoid the side effects of synthetic delivery systems and easy acceptance by the body. Exosome is such a natural nano-sized vehicle that exceeds the efficiency of many natural vehicles, for being immune-friendly, due to its origin. Unlike, other natural drug delivery systems, exosomes are originated within the body's cells, and from there, they happen to travel through the extracellular matrices into neighboring cells. This capacity of exosomes has made them an efficient drug delivery system over recent years and now a large number of researches have been carried out to develop exosomes as natural drug delivery vehicles. Several experimental strategies have been practiced in this regard which have shown that exosomes are exclusively capable of carrying drugs and they can also be used in targeted delivery, for which they efficiently can reach and release the drug at their target cells for consecutive effects. One of the most interesting features of exosomes is they can cross the blood-brain barrier (BBB) in the body and hence, for the disease where other delivery vehicles are incapable of reaching the destination of the drug, exosomes can overcome the hurdle. This review particularly, focuses on the different aspects of using exosomes as a potential nano-sized drug delivery system for some of the severe diseases associated with the central nervous system of the human body.
Collapse
Affiliation(s)
- Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
14
|
Tashima T. Mesenchymal Stem Cell (MSC)-Based Drug Delivery into the Brain across the Blood-Brain Barrier. Pharmaceutics 2024; 16:289. [PMID: 38399342 PMCID: PMC10891589 DOI: 10.3390/pharmaceutics16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
At present, stem cell-based therapies using induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs) are being used to explore the potential for regenerative medicine in the treatment of various diseases, owing to their ability for multilineage differentiation. Interestingly, MSCs are employed not only in regenerative medicine, but also as carriers for drug delivery, homing to target sites in injured or damaged tissues including the brain by crossing the blood-brain barrier (BBB). In drug research and development, membrane impermeability is a serious problem. The development of central nervous system drugs for the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, remains difficult due to impermeability in capillary endothelial cells at the BBB, in addition to their complicated pathogenesis and pathology. Thus, intravenously or intraarterially administered MSC-mediated drug delivery in a non-invasive way is a solution to this transendothelial problem at the BBB. Substances delivered by MSCs are divided into artificially included materials in advance, such as low molecular weight compounds including doxorubicin, and expected protein expression products of genetic modification, such as interleukins. After internalizing into the brain through the fenestration between the capillary endothelial cells, MSCs release their cargos to the injured brain cells. In this review, I introduce the potential and advantages of drug delivery into the brain across the BBB using MSCs as a carrier that moves into the brain as if they acted of their own will.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
15
|
Yu J, Wei Y, Cui Z, Tian J, Cai H, Zhang W. Thermosensitive Capturer Coupled with the CD63 Aptamer for Highly Efficient Isolation of Exosomes. ACS Macro Lett 2024:195-200. [PMID: 38261001 DOI: 10.1021/acsmacrolett.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Exosomes are bioactive substances secreted by various cells that play a crucial role in cell communication. Due to their nanoscale size and interference from nonexosome proteins, the rapid capture and nondestructive release of exosomes remain a technical challenge which significantly hinders their biomedical application. To overcome this obstacle, we have designed a CD63 aptamer-based thermosensitive copolymer for the effective isolation of exosomes from mesenchymal stem cells (MSCs). A thermal-responsive copolymer, poly(N-isopropylacrylamide-co-butyl methacrylate-co-N-hydroxysuccinimide methacrylate) P(NIPAM-co-BMA-co-NHSMA, PNB), was prepared, which could realize reversible hydrophilic/hydrophobic phase transition by varying temperature. Then, CD63 aptamers were further modified to the copolymer to form the PNB-aptamer, where the aptamer units, acting as a "lock and key", specifically bind exosomes. Under the low critical solution temperature (LCST) of the PNB-aptamer, it can maintain a hydrophilic state, capturing exosomes from the cell culture medium. Subsequently, exosome-carrying PNB-aptamers can endure from hydrophilic to hydrophobic phase transition by increasing the temperature above its LCST, and then they can be collected after centrifugation. By introducing the complementary sequence of the CD63 aptamer, the stronger binding affinity between the complementary sequence and the aptamers facilitates the release of exosomes from the PNB-aptamer. The yield of exosome samples captured from a MSC culture medium by the PNB-aptamer system (around 62%) is considerably higher than that obtained by the current "gold standard" ultrafiltration (UC) approach (around 42%). Thus, the PNB-aptamer capturer provides a potential strategy for highly efficient exosome isolation.
Collapse
Affiliation(s)
- Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Ying Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
17
|
Harrell CR, Volarevic A, Djonov V, Arsenijevic A, Volarevic V. The Role of MicroRNAs in Mesenchymal Stem Cell-Based Modulation of Pulmonary Fibrosis. Cell Transplant 2024; 33:9636897241281026. [PMID: 39323033 PMCID: PMC11450564 DOI: 10.1177/09636897241281026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024] Open
Abstract
Pulmonary fibrosis is a complex and multifactorial condition that involves a cascade of events, including lung injury, damage of alveolar epithelial cells (AECs), generation of immune cell-driven inflammation, and activation of fibroblasts and their differentiation into myofibroblasts, resulting in the excessive production and deposition of collagen and progressive scarring and fibrosis of the lung tissue. As lung fibrosis advances, the scarring and stiffening of lung tissue can significantly hinder the exchange of oxygen and carbon dioxide, potentially leading to respiratory failure that can be life-threatening. Anti-inflammatory and immunosuppressive drugs are used to slow down the progression of the disease, manage symptoms, and enhance the patient's quality of life. However, prolonged immunosuppression could increase the susceptibility to severe bacterial, viral, or fungal pneumonia in lung-transplant recipients. Therefore, there is an urgent need for new therapeutic agents that can effectively reduce lung inflammation and fibrosis without compromising the protective immune response in patients with severe lung fibrosis. Results obtained in recently published studies demonstrated that mesenchymal stem/stromal cell-derived microRNAs (MSC-miRNAs) could attenuate detrimental immune response in injured lungs and prevent progression of lung fibrosis. Through the post-transcriptional regulation of target mRNA, MSC-miRNAs modulate protein synthesis and affect viability, proliferation, and cytokine production in AECs, fibroblasts, and lung-infiltrated immune cells. In order to delineate molecular mechanisms responsible for beneficial effects of MSC-miRNAs in the treatment of lung fibrosis, in this review article, we summarized current knowledge related to anti-fibrotic and anti-inflammatory pathways elicited in immune cells, AECs, and myofibroblasts by MSC-miRNAs.
Collapse
Affiliation(s)
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, Kragujevac, Serbia
| | | | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Novi Sad, Serbia
| |
Collapse
|
18
|
Psaraki A, Zagoura D, Ntari L, Makridakis M, Nikokiraki C, Trohatou O, Georgila K, Karakostas C, Angelioudaki I, Kriebardis AG, Gramignioli R, Sakellariou S, Xilouri M, Eliopoulos AG, Vlahou A, Roubelakis MG. MFGE-8 identified in fetal mesenchymal-stromal-cell-derived exosomes ameliorates acute hepatic failure pathology. iScience 2023; 26:108100. [PMID: 37915594 PMCID: PMC10616317 DOI: 10.1016/j.isci.2023.108100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Liver transplantation is the gold-standard therapy for acute hepatic failure (AHF) with limitations related to organ shortage and life-long immunosuppressive therapy. Cell therapy emerges as a promising alternative to transplantation. We have previously shown that IL-10 and Annexin-A1 released by amniotic fluid human mesenchymal stromal cells (AF-MSCs) and their hepatocyte progenitor-like (HPL) or hepatocyte-like (HPL) cells induce liver repair and downregulate systemic inflammation in a CCl4-AHF mouse model. Herein, we demonstrate that exosomes (EXO) derived from these cells improve liver phenotype in CCl4-induced mice and promote oval cell proliferation. LC-MS/MS proteomic analysis identified MEFG-8 in EXO cargo that facilitates rescue of AHF by suppressing PI3K signaling. Administration of recombinant MFGE-8 protein also reduced liver damage in CCl4-induced mice. Clinically, MEFG-8 expression was decreased in liver biopsies from AHF patients. Collectively, our study provides proof-of-concept for an innovative, cell-free, less immunogenic, and non-toxic alternative strategy for AHF.
Collapse
Affiliation(s)
- Adriana Psaraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Dimitra Zagoura
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Lydia Ntari
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Christina Nikokiraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Ourania Trohatou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Konstantina Georgila
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Christos Karakostas
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Ioanna Angelioudaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str, 12243 Egaleo, Greece
| | - Roberto Gramignioli
- Clinical Pathology and Cancer Diagnosis Unit, Karolinska Institute, 141 57 Huddinge, Sweden
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Stratigoula Sakellariou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Aristides G. Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
19
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
20
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
21
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Sharma A, Fernandes DC, Reis RL, Gołubczyk D, Neumann S, Lukomska B, Janowski M, Kortylewski M, Walczak P, Oliveira JM, Maciaczyk J. Cutting-edge advances in modeling the blood-brain barrier and tools for its reversible permeabilization for enhanced drug delivery into the brain. Cell Biosci 2023; 13:137. [PMID: 37501215 PMCID: PMC10373415 DOI: 10.1186/s13578-023-01079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
The blood-brain barrier (BBB) is a sophisticated structure whose full functionality is required for maintaining the executive functions of the central nervous system (CNS). Tight control of transport across the barrier means that most drugs, particularly large size, which includes powerful biologicals, cannot reach their targets in the brain. Notwithstanding the remarkable advances in characterizing the cellular nature of the BBB and consequences of BBB dysfunction in pathology (brain metastasis, neurological diseases), it remains challenging to deliver drugs to the CNS. Herein, we outline the basic architecture and key molecular constituents of the BBB. In addition, we review the current status of approaches that are being explored to temporarily open the BBB in order to allow accumulation of therapeutics in the CNS. Undoubtedly, the major concern in field is whether it is possible to open the BBB in a meaningful way without causing negative consequences. In this context, we have also listed few other important key considerations that can improve our understanding about the dynamics of the BBB.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Stereotacitc and Functional Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany
| | - Diogo C Fernandes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Dominika Gołubczyk
- Ti-Com, Polish Limited Liability Company, 10-683, Olsztyn, Poland
- Center for Translational Medicine, Warsaw University of Life Sciences, 02-797, Warsaw, Poland
| | - Silke Neumann
- Department of Pathology, University of Otago, Dunedin, 9054, New Zealand
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga, Portugal.
| | - Jarek Maciaczyk
- Department of Stereotacitc and Functional Neurosurgery, University Hospital Bonn, 53127, Bonn, Germany.
- Department of Surgical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
23
|
Li J, Huang Y, Sun H, Yang L. Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases. Front Immunol 2023; 14:1181308. [PMID: 37275920 PMCID: PMC10232739 DOI: 10.3389/fimmu.2023.1181308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) from multiple tissues have the capability of multidirectional differentiation and self-renewal. Many reports indicated that MSCs exert curative effects on a variety of age-related diseases through regeneration and repair of aging cells and organs. However, as research has progressed, it has become clear that it is the MSCs derived exosomes (MSC-Exos) that may have a real role to play, and that they can be modified to achieve better therapeutic results, making them even more advantageous than MSCs for treating disease. This review generalizes the biological characteristics of MSCs and exosomes and their mechanisms in treating age-related diseases, for example, MSCs and their exosomes can treat age-related diseases through mechanisms such as oxidative stress (OS), Wnt/β-catenin signaling pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and so on. In addition, current in vivo and in vitro trials are described, and ongoing clinical trials are discussed, as well as the prospects and challenges for the future use of exosomes in disease treatment. This review will provide references for using exosomes to treat age-related diseases.
Collapse
Affiliation(s)
- Jia Li
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Linkova N, Khavinson V, Diatlova A, Myakisheva S, Ryzhak G. Peptide Regulation of Chondrogenic Stem Cell Differentiation. Int J Mol Sci 2023; 24:ijms24098415. [PMID: 37176122 PMCID: PMC10179481 DOI: 10.3390/ijms24098415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The search for innovative ways to treat osteoarthritis (OA) is an urgent task for molecular medicine and biogerontology. OA leads to disability in persons of middle and older age, while safe and effective methods of treating OA have not yet been discovered. The directed differentiation of mesenchymal stem cells (MSCs) into chondrocytes is considered one of the possible methods to treat OA. This review describes the main molecules involved in the chondrogenic differentiation of MSCs. The peptides synthesized on the basis of growth factors' structures (SK2.1, BMP, B2A, and SSPEPS) and components of the extracellular matrix of cartilage tissue (LPP, CFOGER, CMP, RDG, and N-cadherin mimetic peptide) offer the greatest promise for the regulation of the chondrogenic differentiation of MSCs. These peptides regulate the WNT, ERK-p38, and Smad 1/5/8 signaling pathways, gene expression, and the synthesis of chondrogenic differentiation proteins such as COL2, SOX9, ACAN, etc.
Collapse
Affiliation(s)
- Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
- Pavlov Institute of Physiology of Russia Academy of Sciences, Makarova emb. 6, 199034 Saint Petersburg, Russia
| | - Anastasiia Diatlova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Svetlana Myakisheva
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| | - Galina Ryzhak
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr. 3, 197110 Saint Petersburg, Russia
| |
Collapse
|
25
|
Lotfy A, AboQuella NM, Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res Ther 2023; 14:66. [PMID: 37024925 PMCID: PMC10079493 DOI: 10.1186/s13287-023-03287-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are widely utilized in cell therapy because of their robust immunomodulatory and regenerative properties. Their paracrine activity is one of the most important features that contribute to their efficacy. Recently, it has been demonstrated that the production of various factors via extracellular vesicles, especially exosomes, governs the principal efficacy of MSCs after infusion in experimental models. Compared to MSCs themselves, MSC-derived exosomes (MSC-Exos) have provided significant advantages by efficiently decreasing unfavorable adverse effects, such as infusion-related toxicities. MSC-Exos is becoming a promising cell-free therapeutic tool and an increasing number of clinical studies started to assess the therapeutic effect of MSC-Exos in different diseases. In this review, we summarized the ongoing and completed clinical studies using MSC-Exos for immunomodulation, regenerative medicine, gene delivery, and beyond. Additionally, we summarized MSC-Exos production methods utilized in these studies with an emphasis on MSCs source, MSC-Exos isolation methods, characterization, dosage, and route of administration. Lastly, we discussed the current challenges and future directions of exosome utilization in different clinical studies as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Noha M AboQuella
- International Graduate Program Medical Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
26
|
Enhanced Drug Delivery System Using Mesenchymal Stem Cells and Membrane-Coated Nanoparticles. Molecules 2023; 28:molecules28052130. [PMID: 36903399 PMCID: PMC10004171 DOI: 10.3390/molecules28052130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have newly developed as a potential drug delivery system. MSC-based drug delivery systems (MSCs-DDS) have made significant strides in the treatment of several illnesses, as shown by a plethora of research. However, as this area of research rapidly develops, several issues with this delivery technique have emerged, most often as a result of its intrinsic limits. To increase the effectiveness and security of this system, several cutting-edge technologies are being developed concurrently. However, the advancement of MSC applicability in clinical practice is severely hampered by the absence of standardized methodologies for assessing cell safety, effectiveness, and biodistribution. In this work, the biodistribution and systemic safety of MSCs are highlighted as we assess the status of MSC-based cell therapy at this time. We also examine the underlying mechanisms of MSCs to better understand the risks of tumor initiation and propagation. Methods for MSC biodistribution are explored, as well as the pharmacokinetics and pharmacodynamics of cell therapies. We also highlight various promising technologies, such as nanotechnology, genome engineering technology, and biomimetic technology, to enhance MSC-DDS. For statistical analysis, we used analysis of variance (ANOVA), Kaplan Meier, and log-rank tests. In this work, we created a shared DDS medication distribution network using an extended enhanced optimization approach called enhanced particle swarm optimization (E-PSO). To identify the considerable untapped potential and highlight promising future research paths, we highlight the use of MSCs in gene delivery and medication, also membrane-coated MSC nanoparticles, for treatment and drug delivery.
Collapse
|
27
|
Draguet F, Bouland C, Dubois N, Bron D, Meuleman N, Stamatopoulos B, Lagneaux L. Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles as Natural Nanocarriers: Concise Review. Pharmaceutics 2023; 15:pharmaceutics15020558. [PMID: 36839879 PMCID: PMC9964668 DOI: 10.3390/pharmaceutics15020558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Intercellular communication, through direct and indirect cell contact, is mandatory in multicellular organisms. These last years, the microenvironment, and in particular, transfer by extracellular vesicles (EVs), has emerged as a new communication mechanism. Different biological fluids and cell types are common sources of EVs. EVs play different roles, acting as signalosomes, biomarkers, and therapeutic agents. As therapeutic agents, MSC-derived EVs display numerous advantages: they are biocompatible, non-immunogenic, and stable in circulation, and they are able to cross biological barriers. Furthermore, EVs have a great potential for drug delivery. Different EV isolation protocols and loading methods have been tested and compared. Published and ongoing clinical trials, and numerous preclinical studies indicate that EVs are safe and well tolerated. Moreover, the latest studies suggest their applications as nanocarriers. The current review will describe the potential for MSC-derived EVs as drug delivery systems (DDS) in disease treatment, and their advantages. Thereafter, we will outline the different EV isolation methods and loading techniques, and analyze relevant preclinical studies. Finally, we will describe ongoing and published clinical studies. These elements will outline the benefits of MSC-derived EV DDS over several aspects.
Collapse
Affiliation(s)
- Florian Draguet
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Correspondence:
| | - Cyril Bouland
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Stomatology and Maxillofacial Surgery, Saint-Pierre Hospital, 322 Rue Haute, 1000 Brussels, Belgium
- Department of Maxillofacial and Reconstructive Surgery, Grand Hôpital de Charleroi, 3 Grand’Rue, 6000 Charleroi, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Dominique Bron
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
- Medicine Faculty, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy (LCCT), Jules Bordet Institute, Université Libre de Bruxelles (ULB), 90 Rue Meylemeersch, 1070 Brussels, Belgium
| |
Collapse
|
28
|
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal 2023; 21:20. [PMID: 36690996 PMCID: PMC9869323 DOI: 10.1186/s12964-022-01017-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.
Collapse
Affiliation(s)
- Elham Oveili
- Department of Pharmaceutical Science, Azad Islamic University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Bazavar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mamaghanizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Yasamineh
- Department of Biotechnology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Zhang B, Gong J, He L, Khan A, Xiong T, Shen H, Li Z. Exosomes based advancements for application in medical aesthetics. Front Bioeng Biotechnol 2022; 10:1083640. [PMID: 36605254 PMCID: PMC9810265 DOI: 10.3389/fbioe.2022.1083640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Beauty is an eternal pursuit of all people. Wound repair, anti-aging, inhibiting hyperpigmentation and hair loss are the main demands for medical aesthetics. At present, the repair and remodeling of human body shape and function in medical aesthetics are often achieved by injection of antioxidants, hyaluronic acid and botulinum toxin, stem cell therapy. However, there are some challenges, such as difficulty controlling the injection dose, abnormal local contour, increased foreign body sensation, and the risk of tumor occurrence and deformity induced by stem cell therapy. Exosomes are tiny vesicles secreted by cells, which are rich in proteins, nucleic acids and other bioactive molecules. They have the characteristics of low immunogenicity and strong tissue penetration, making them ideal for applications in medical aesthetics. However, their low yield, strong heterogeneity, and long-term preservation still hinder their application in medical aesthetics. In this review, we summarize the mechanism of action, administration methods, engineered production and preservation technologies for exosomes in medical aesthetics in recent years to further promote their research and industrialization in the field of medical aesthetics.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianmin Gong
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei He
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, China
| | - Han Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
30
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
31
|
Chen W, Lin W, Yu N, Zhang L, Wu Z, Chen Y, Li Z, Gong F, Li N, Chen X, He X, Wu Y, Zeng X, Yueh Y, Xu R, Ji G. Activation of Dynamin-Related Protein 1 and Induction of Mitochondrial Apoptosis by Exosome-Rifampicin Nanoparticles Exerts Anti-Osteosarcoma Effect. Int J Nanomedicine 2022; 17:5431-5446. [PMID: 36426375 PMCID: PMC9680970 DOI: 10.2147/ijn.s379917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
PURPOSE To investigate induction of cell death in Osteosarcoma (OS) using the anti-tuberculosis drug, rifampicin, loaded into exosomes. PATIENTS AND METHODS BMSC-exosomes were isolated by ultracentrifugation and loaded ultrasonically with rifampicin. Nanoparticle exosome-rifampicin (EXO-RIF) was added to the OS cell-lines, 143B and MG63, in vitro, to observe the growth inhibitory effect. In vivo experiments were conducted by injecting fluorescently labeled EXO-RIF through the tail vein of 143B cell xenograft nude mice and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. RESULTS Sonication resulted in encapsulation of rifampicin into exosomes. Exosome treatment accelerated the entry of rifampicin into OS cells and enhanced the actions of rifampicin in inhibiting OS proliferation, migration and invasion. Cell cycle arrest at the G2/M phase was observed. Dynamin-related protein 1 (Drp1) was activated by EXO-RIF and caused mitochondrial lysis and apoptosis. Exosome treatment targeted rifampicin to the site of OS, causing OS apoptosis and improving mouse survival in vivo. CONCLUSION The potent Drp1 agonist, rifampicin, induced OS apoptosis and exosome loading, improving OS targeting and mouse survival rates. EXO-RIF is a promising strategy for the treatment of diverse malignancies.
Collapse
Affiliation(s)
- Wenkai Chen
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Wenping Lin
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Naichun Yu
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Linlin Zhang
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Zuoxing Wu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yongjie Chen
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Zongguang Li
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Fengqing Gong
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, People’s Republic of China
| | - Xu He
- Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Yue Wu
- Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People’s Republic of China
| | - Xiangchen Zeng
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yuting Yueh
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Ren Xu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, People’s Republic of China
| | - Guangrong Ji
- Department of Orthopedic Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Xiamen Key Laboratory of Regeneration Medicine, Organ Transplantation Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
32
|
Effects of miRNA-Modified Exosomes Alleviate Cerebral Ischemic Reperfusion Injury in Preclinical Studies: A Meta-Analysis. World Neurosurg 2022; 168:278-286.e2. [DOI: 10.1016/j.wneu.2022.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
|
33
|
Tsioulos G, Grigoropoulos I, Moschopoulos CD, Shapira S, Poulakou G, Antoniadou A, Boumpas D, Arber N, Tsiodras S. Insights into CD24 and Exosome Physiology and Potential Role in View of Recent Advances in COVID-19 Therapeutics: A Narrative Review. Life (Basel) 2022; 12:1472. [PMID: 36294907 PMCID: PMC9604962 DOI: 10.3390/life12101472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 08/30/2023] Open
Abstract
Cluster of differentiation (CD) 24, a long-known protein with multifaceted functions, has gained attention as a possible treatment for Coronavirus Disease 19 (COVID-19) due to its known anti-inflammatory action. Extracellular vesicles (EVs), such as exosomes and microvesicles, may serve as candidate drug delivery platforms for novel therapeutic approaches in COVID-19 and various other diseases due to their unique characteristics. In the current review, we describe the physiology of CD24 and EVs and try to elucidate their role, both independently and as a combination, in COVID-19 therapeutics. CD24 may act as an important immune regulator in diseases with complex physiologies characterized by excessive inflammation. Very recent data outline a possible therapeutic role not only in COVID-19 but also in other similar disease states, e.g., acute respiratory distress syndrome (ARDS) and sepsis where immune dysregulation plays a key pathophysiologic role. On the other hand, CD24, as well as other therapeutic molecules, can be administered with the use of exosomes, exploiting their unique characteristics to create a novel drug delivery platform as outlined in recent clinical efforts. The implications for human therapeutics in general are huge with regard to pharmacodynamics, pharmacokinetics, safety, and efficacy that will be further elucidated in future randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioannis Grigoropoulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Shiran Shapira
- Integrated Cancer Prevention Center, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, Sotiria General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitrios Boumpas
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nadir Arber
- Integrated Cancer Prevention Center, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
34
|
Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci 2022; 23:ijms231810972. [PMID: 36142881 PMCID: PMC9502508 DOI: 10.3390/ijms231810972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver disease has become a major global health and economic burden due to its broad spectrum of diseases, multiple causes and difficult treatment. Most liver diseases progress to end-stage liver disease, which has a large amount of matrix deposition that makes it difficult for the liver and hepatocytes to regenerate. Liver transplantation is the only treatment for end-stage liver disease, but the shortage of suitable organs, expensive treatment costs and surgical complications greatly reduce patient survival rates. Therefore, there is an urgent need for an effective treatment modality. Cell-free therapy has become a research hotspot in the field of regenerative medicine. Mesenchymal stem cell (MSC)-derived exosomes have regulatory properties and transport functional "cargo" through physiological barriers to target cells to exert communication and regulatory activities. These exosomes also have little tumorigenic risk. MSC-derived exosomes promote hepatocyte proliferation and repair damaged liver tissue by participating in intercellular communication and regulating signal transduction, which supports their promise as a new strategy for the treatment of liver diseases. This paper reviews the physiological functions of exosomes and highlights the physiological changes and alterations in signaling pathways related to MSC-derived exosomes for the treatment of liver diseases in some relevant clinical studies. We also summarize the advantages of exosomes as drug delivery vehicles and discuss the challenges of exosome treatment of liver diseases in the future.
Collapse
Affiliation(s)
| | | | | | | | - Puyang Gong
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| | - Jian Gu
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| |
Collapse
|
35
|
Yi X, Huang D, Li Z, Wang X, Yang T, Zhao M, Wu J, Zhong T. The role and application of small extracellular vesicles in breast cancer. Front Oncol 2022; 12:980404. [PMID: 36185265 PMCID: PMC9515427 DOI: 10.3389/fonc.2022.980404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients’ survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
36
|
Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: A promising therapeutics for wound healing. Front Pharmacol 2022; 13:957771. [PMID: 36003496 PMCID: PMC9395204 DOI: 10.3389/fphar.2022.957771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A wound occurs when the epidermis and dermis of the skin are damaged internally and externally. The traditional wound healing method is unsatisfactory, which will prolong the treatment time and increase the treatment cost, which brings economic and psychological burdens to patients. Therefore, there is an urgent need for a new method to accelerate wound healing. As a cell-free therapy, exosome derived from stem cell (EdSC) offers new possibilities for wound healing. EdSC is the smallest extracellular vesicle secreted by stem cells with diameters of 30-150 nm and a lipid bilayer structure. Previous studies have found that EdSC can participate in and promote almost all stages of wound healing, including regulating inflammatory cells; improving activation of fibroblasts, keratinocytes, and endothelial cells; and adjusting the ratio of collagen Ⅰ and Ⅲ. We reviewed the relevant knowledge of wounds; summarized the biogenesis, isolation, and identification of exosomes; and clarified the pharmacological role of exosomes in promoting wound healing. This review provides knowledge support for the pharmacological study of exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
37
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
38
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|
39
|
Brunello G, Zanotti F, Trentini M, Zanolla I, Pishavar E, Favero V, Favero R, Favero L, Bressan E, Bonora M, Sivolella S, Zavan B. Exosomes Derived from Dental Pulp Stem Cells Show Different Angiogenic and Osteogenic Properties in Relation to the Age of the Donor. Pharmaceutics 2022; 14:pharmaceutics14050908. [PMID: 35631496 PMCID: PMC9146046 DOI: 10.3390/pharmaceutics14050908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Craniofacial tissue reconstruction still represents a challenge in regenerative medicine. Mesenchymal stem cell (MSC)-based tissue engineering strategies have been introduced to enhance bone tissue repair. However, the risk of related complications is limiting their usage. To overcome these drawbacks, exosomes (EXOs) derived from MSCs have been recently proposed as a cell-free alternative to MSCs to direct tissue regeneration. It was hypothesized that there is a correlation between the biological properties of exosomes derived from the dental pulp and the age of the donor. The aim of the study was to investigate the effect of EXOs derived from dental pulp stem cells of permanent teeth (old donor group) or exfoliated deciduous teeth (young donor group) on MSCs cultured in vitro. Proliferation potential was evaluated by doubling time, and commitment ability by gene expression and biochemical quantification for tissue-specific factors. Results showed a well-defined proliferative influence for the younger donor aged group. Similarly, a higher commitment ability was detected in the young group. In conclusion, EXOs could be employed to promote bone regeneration, likely playing an important role in neo-angiogenesis in early healing phases.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
- Department of Oral Surgery, University Hospital of Düsseldorf, 40225 Dusseldorf, Germany
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Ilaria Zanolla
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Elham Pishavar
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
| | - Vittorio Favero
- Unit of Maxillofacial Surgery and Dentistry, University of Verona, 37129 Verona, Italy;
| | - Riccardo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Lorenzo Favero
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Eriberto Bressan
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Massimo Bonora
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Sivolella
- Department of Neurosciences, School of Dentistry, University of Padua, 35128 Padua, Italy; (G.B.); (R.F.); (L.F.); (E.B.); (S.S.)
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (M.T.); (I.Z.); (E.P.)
- Correspondence:
| |
Collapse
|
40
|
Therapeutic Potential of Exosomes Derived from Adipose Tissue-Sourced Mesenchymal Stem Cells in the Treatment of Neural and Retinal Diseases. Int J Mol Sci 2022; 23:ijms23094487. [PMID: 35562878 PMCID: PMC9105552 DOI: 10.3390/ijms23094487] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Therapeutic agents that are able to prevent or attenuate inflammation and ischemia-induced injury of neural and retinal cells could be used for the treatment of neural and retinal diseases. Exosomes derived from adipose tissue-sourced mesenchymal stem cells (AT-MSC-Exos) are extracellular vesicles that contain neurotrophins, immunoregulatory and angio-modulatory factors secreted by their parental cells. AT-MSC-Exos are enriched with bioactive molecules (microRNAs (miRNAs), enzymes, cytokines, chemokines, immunoregulatory, trophic, and growth factors), that alleviate inflammation and promote the survival of injured cells in neural and retinal tissues. Due to the nano-sized dimension and bilayer lipid envelope, AT-MSC-Exos easily bypass blood–brain and blood–retinal barriers and deliver their cargo directly into the target cells. Accordingly, a large number of experimental studies demonstrated the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases. By delivering neurotrophins, AT-MSC-Exos prevent apoptosis of injured neurons and retinal cells and promote neuritogenesis. AT-MSC-Exos alleviate inflammation in the injured brain, spinal cord, and retinas by delivering immunoregulatory factors in immune cells, suppressing their inflammatory properties. AT-MSC-Exos may act as biological mediators that deliver pro-angiogenic miRNAs in endothelial cells, enabling re-vascularization of ischemic neural and retinal tissues. Herewith, we summarized current knowledge about molecular mechanisms which were responsible for the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases, emphasizing their therapeutic potential in neurology and ophthalmology.
Collapse
|